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Introduction 
The time is ripe for the AI community to set its sights on 
Machine Reading---the autonomous understanding of text.  
Below, we place the notion of “Machine Reading” in 
context, describe progress towards this goal by the 
KnowItAll research group at the University of Washington, 
and highlight several open questions. 

 
Over the last two decades or so, Natural Language 

Processing (NLP) has developed powerful methods for 
low-level syntactic and semantic text processing tasks such 
as parsing, semantic role labeling, and text categorization.  
Over the same period, the fields of machine learning and 
probabilistic reasoning have yielded important 
breakthroughs as well.  It is now time to investigate how to 
leverage these advances to understand text.1 

 
By “understanding text” we mean the formation of a 

coherent set of beliefs based on a textual corpus and a 
background theory.  Because the text and the background 
theory may be inconsistent, it is natural to express the 
resultant beliefs, and the underlying reasoning process, in 
probabilistic terms. 

 
Many of the beliefs of interest are only implied by the 

text in combination with a background theory.  To recall 
Roger Schank’s old example, if the text states that a person 
left a restaurant after a satisfactory meal, it is reasonable to 
infer that he is likely to have paid the bill and left a tip.  

                                                 
1 Similar observations have been made recently by Tom 
Mitchell (Mitchell 2005), Noah Friedland (Friedland 
2005), and others.  We have been vigorously pursuing this 
goal over the last four years via the KnowItAll family of 
unsupervised Web information extraction systems.  Our 
project was inspired in part by earlier work on “Reading 
the Web” (Craven et al. 1998). 
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Thus, inference is an integral component of text 
understanding. 

Related Work 
Machine Reading (MR) is very different from current 
semantic NLP research areas such as Information 
Extraction (IE) or Question Answering (QA).  Many NLP 
tasks utilize supervised learning techniques, which rely on 
hand-tagged training examples.  For example, IE systems 
often utilize extraction rules learned from example 
extractions of each target relation.  Yet MR is not limited 
to a small set of target relations.  In fact, the relations 
encountered when reading arbitrary text are not known in 
advance!  Reading is an exploratory, open-ended, 
serendipitous process.  Thus, it is infeasible to generate a 
set of hand-tagged examples of each relation of interest. 

 
In contrast with many NLP tasks, MR is inherently 

unsupervised. 
 
Another important difference is that IE and QA focus on 

obtaining isolated “nuggets” from text whereas MR is 
about forging and updating connections between myriad 
beliefs.  While MR builds on NLP techniques, it is a 
holistic process that synthesizes information gleaned from 
text with the machine’s existing knowledge.  MR is a 
process that seeks to construct philosopher W. V. Quine’s 
famous “Web of Belief” from text. 

 
Textual Entailment (TE) (Dagan, Glickman, and 

Magnini 2005) is much closer in spirit to MR than IE or 
QA, but with some important differences. TE systems 
determine whether one sentence is entailed by another.  
This is a valuable abstraction that naturally lends itself to 
tasks such as paraphrasing, summarization, etc.  MR is 
more ambitious, however, in that it combines multiple TE 
steps to form a coherent set of beliefs based on the text.  In 
addition, MR is focused on scaling up to arbitrary relations 
and doing away with hand-tagged training examples.  
Thus, TE is an important component of MR, but far from 
the whole story. 



 

Discussion 
For the foreseeable future, humans’ ability to grasp the 
intricate nuances of text will far surpass that of machines.  
However, MR will have some intriguing strengths.  First, 
MR will be fast.  Today’s machines already map a 
sentence to a “shallow” semantic representation in a few 
milliseconds.  Second, MR will leverage statistics 
computed over massive corpora.  For example, Peter 
Turney (Turney 2002) has shown how mutual-information 
statistics, computed over the Web corpus, can be used to 
classify opinion words as positive or negative with high 
accuracy. 

 
These observations suggest a loose analogy between 

Machine Reading and Computer Chess.  The computer’s 
approach to playing chess is very different than that of a 
person.  Each player, human or computer, builds on their 
own “natural” strengths.  A computer’s ability to analyze 
the nuances of a chess position (or a sentence) is far 
weaker than that of a person, but the computer makes up 
for this weakness with its superior memory and speed.  Of 
course, MR is an “ill-structured problem” that the 
computer cannot solve by mere lookahead search.  
However, we conjecture that MR, like computer chess, will 
be “shallow” yet lightning fast.  Furthermore, MR’s 
development will be very different than the development of 
human reading.  As with Computer Chess, MR will build 
on the machine’s strengths in memory and speed.  Table 1 
contrasts human reading versus the state-of-the-art in MR 
today. 

 

Human Reading  Machine Reading  

  
� High precision 
� Broad scope 
� Sentence-by-sentence 
� High comprehension 
� Background Knowledge. 
� Single language  
� Slow 
 

� Noisy 
� Limited scope 
� Corpus-wide statistics 
� Minimal reasoning 
� Bottom up 
� General 
� Very Fast! 
 

Table 1: Human reading and Machine Reading (MR) side-by-
side.  Despite being much weaker than human reading, MR 
already exhibits some intriguing capabilities, shown in bold 
above. 

Initial Steps towards Machine Reading 
Numerous preliminary attempts at text understanding can 
be found in the field of Information extraction (IE). IE has 
traditionally relied on extensive human involvement to 
identify instances of a small, predefined set of relations, 

but a recent goal of modern information extraction has 
been to reduce the amount of human participation involved 
when extending to a new domain or set of relations. 

 
An important step in this direction was the training of IE 

systems using hand-tagged training examples.  When the 
examples are fed to machine learning methods, domain-
specific extraction patterns can be automatically learned 
and used to extract facts from text.  However, the 
development of suitable training data requires a non-trivial 
amount of effort and expertise. 

 
DIPRE (Brin 1998) and Snowball (Agichtein 2000) 

further demonstrated the power of trainable information 
extraction systems by reducing the amount of manual labor 
necessary to perform relation-specific extraction.  Rather 
than demand hand-tagged corpora, these systems required 
a user to specify relation-specific knowledge in the form of 
a small set of seed instances known to satisfy the relation 
of interest or a set of hand-constructed extraction patterns 
to begin the training process. 

 
The KnowItAll Web IE system (Etzioni et al. 2005) took 

the next step in automation by learning to label its own 
training examples using only a small set of domain-
independent extraction patterns, thus being the first 
published system to carry out unsupervised, domain-
independent, large-scale extraction from Web pages. 

 
For a given relation, these generic patterns were used to 

automatically instantiate relation-specific extraction rules, 
which were then used to learn domain-specific extraction 
rules.  The rules were applied to Web pages, identified via 
search-engine queries, and the resulting extractions were 
assigned a probability using mutual-information measures 
derived from search engine hit counts.  For example, 
KnowItAll utilized generic extraction patterns like 
“<Class> such as <Mem>” to suggest instantiations of 
<Mem> as candidate members of the class. Next, 
KnowItAll used frequency information to identify which 
instantiations are most likely to be bona-fide members of 
the class.  Thus, it was able to confidently label New York, 
Paris, and London as members of the class “Cities” 
(Downey, Etzioni, and Soderland 2005).  Finally, 
KnowItAll learned a set of relation-specific extraction 
patterns (e.g. “headquartered in <city>”) that led it to 
extract additional cities and so on. 

 
KnowItAll is self supervised---instead of utilizing hand-

tagged training data, the systems select and label their own 
training examples, and iteratively bootstrap their learning 
process.  Self-supervised systems are a species of 
unsupervised systems because they require no hand-tagged 
training examples whatsoever.  However, unlike classical 
unsupervised systems (e.g., clustering) self-supervised 
systems do utilize labeled examples and do form classifiers 
whose accuracy can be measured using standard metrics.  
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Figure 1: A sample screen shot of TextRunner in response to the query “invented” as a predicate.  While the
results are informative, they are far from perfect.  However, they demonstrate TextRunner’s ability to extract a 
wide range of information from arbitrary Web text. 
TextRunner (Banko, Cafarella, and Etzioni 2007) is a 
fully implemented Open IE system that seamlessly extracts 
information from each sentence it encounters.  Instead of 
requiring relations to be specified in its input, TextRunner 
learns the relations, classes, and entities from the text in its 
corpus in a self-supervised fashion.2 

f relying on hand-tagged data, self-supervised 
utonomously “roll their own” labeled examples. 

self-supervised, KnowItAll is relation-specific---
s a laborious bootstrapping process for each 
f interest, and the set of relations of interest has to 
d by the human user in advance.  This is a 
t obstacle to MR because during reading one 
ounters unanticipated concepts and relations of 

 
TextRunner extraction module reads in sentences and 

rapidly extracts one or more textual triples that aim to 
capture (some of) the relationships in each sentence.  For 
example, given the sentence “Berkeley hired Robert 
Oppenheimer to create a new school of theoretical 
physics”, the extractor forms the triple (Berkeley, hired, 
Robert Oppenheimer).  The triple consists of three strings 
where the first and third are meant to denote entities and 
the intermediate string is meant to denote the relationship 
between them.  There are many subtleties to doing this 
kind of extraction with good recall and precision, but we 
will not discuss them here. 

Open Information Extraction 

 

                                                

itation led us to develop Open Information 
n (Open IE)---a novel extraction paradigm that 
 domain-independent discovery of relations 
 from text and readily scales to the diversity and 
e Web corpus.  The sole input to an Open IE 
 a corpus, and its output is a set of extracted 
  An Open IE system makes a single pass over its 
aranteeing scalability with the size of its corpus. 

 

 
2 To get a sense of TextRunner’s capabilities, visit 
http://www.cs.washington.edu/research/textrunner. 



 TextRunner indexes all of its triples in Lucene, which 
enables it to rapidly answer queries regarding the extracted 
information.   See Figure 1 for a sample result page. 
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Due to the myriad ways in which facts are asserted in 

massive corpora such as the Web, the problem of 
synonymy is particularly acute for TextRunner both in the 
case of multiple names for the same entity and in the case 
of multiple ways denoting a relationship between two 
entities.  We refer to the union of both problems as 
Synonym Resolution. 

 
Previous techniques for synonym resolution have 

focused on one particular aspect of the problem, either 
objects or relations.  In addition, the techniques either 
depend on a large set of hand-tagged training examples, or 
are tailored to a specific domain by assuming knowledge 
of the domain’s schema which is not available in the 
context of Open IE 

 
To address synonym resolution for Open IE, we 

developed Resolver, a scalable, domain-independent, 
unsupervised synonym resolution system that applies to 
both objects and relations (Yates and Etzioni, 2007).  
Resolver introduces a probabilistic relational model for 
predicting whether two strings are co-referential based on 
the similarity of the assertions containing them.   In 
preliminary experiments over TextRunner extractions, 
Resolver achieved impressive precision (0.9 for relation 
synonymy, and 0.74 for objects) at acceptable levels of 
recall.  Details of the algorithms and the experiments are in 
(Yates and Etzioni, 2007). 

 

Figure 2:  A sample of 11,300,000 assertions extracted by 
TextRunner from Web text.  This Venn diagram depicts the 
fraction of triples extracted that are useful, and the precision of 
both concrete and abstract extractions.  TextRunner’s efficient 
querying capability enables us to home in on a particular set of 
extractions.  For example, querying TextRunner with the 
predicate “invented” yields a large number of triples denoting 
inventors and their inventions.  TextRunner is at 
http://www.cs.washington.edu/research/textrunner. 

 
TextRunner operates at very large scale.  In a recent run, 

it processed 110,000,000 Web pages yielding over 
330,000,000 extractions with an estimated precision of 
close to 90% on concrete extractions.3  Clearly, 
TextRunner is an early embodiment of the idea that MR 
will be fast but shallow. 

Conclusion 
We have argued that the time is ripe for Machine Reading 
to join Machine Learning and Machine Translation as a 
full-fledged field of AI research.  We have described 
several initial steps in this direction, but numerous open 
problems remain. 

 
While TextRunner is a state-of-the-art IE system, its 

ability to read is very primitive.  Its value is in showing 
that NLP techniques can be harnessed to begin to 
understand text in a domain-independent and unsupervised 
manner.  We are now working on composing TextRunner 
extractions into coherent probabilistic theories, and on 
forming generalizations based on extracted assertions. 

 
One open problem worth highlighting is recursive 

learning---how can an MR system leverage the 
information it has read to date to enhance its understanding 
of the next sentences it encounters?  Humans become 
exponentially more proficient at a task as they practice it---
can we develop MR systems that exhibit some of that 
amazing learning capability?  

 
 

 

 

                                                 In conclusion, Machine Reading is an ambitious 
undertaking but the pieces of the puzzle are at hand, and 
the payoff could lead to a solution to AI’s infamous 
knowledge acquisition bottleneck. 

3 Concrete extractions are ones whose arguments refer to 
particular entities or classes.  For example, an extracted 
triple where both arguments are proper nouns is concrete, 
but so is the extraction that tells us that Lycopene is an 
antioxidant.  In contrast, an abstract extraction is one that 
describes general properties of classes such as “pedestrians 
cross streets”.  See Figure 2 for a breakdown of a large 
sample of TextRunner extractions. 
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