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Abstract

There has been recent research in open-ended information
extraction from text that finds relational triples of the form
(arg1, relation phrase, arg2), where the relation phrase is a
text string that expresses a relation between two arbitrary
noun phrases. While such a relational triple is a good first
step, much further work is required to turn such a textual rela-
tion into a logical form that supports inferencing. The strings
from arg1 and arg2 must be normalized, disambiguated, and
mapped to a formal taxonomy. The relation phrase must like-
wise be normalized and mapped to a clearly defined logi-
cal relation. Some relation phrases can be mapped to a set
of pre-defined relations such as Part-0f and Causes. We fo-
cus instead on arbitrary relation phrases that are discovered
from text. For this, we need to automatically merge synony-
mous relations and discover meta-properties such as entail-
ment. Ultimately, we want the coverage of a bottom-up ap-
proach together with the rich set of axioms associated with a
top-down approach.
We have begun exploratory work in “ontologizing” the output
of TextRunner, an open information extraction system that
finds arbitrary relational triples from text. Our test domain is
2.5 million Web pages on health and nutrition, which yields
relational triples such as (orange, contains, vitamin C) and
(fruits, are rich in, antioxidants). We automatically disam-
biguate the strings arg1 and arg2, mapping them to WordNet
synsets. We also learn entailments between normalized re-
lation strings (e.g. “be rich in” entails “contain”). This en-
hanced ontology enables reasoning about relationships that
are not seen in the corpus, but can be inferred by inheritance
and entailment. Further, we define ontology-based relation-
ships between the extracted triples themselves, and experi-
mentally show that these can be used in significantly improv-
ing probability estimation for the triples.

1. Introduction
A dream from the early days of Artificial Intelligence is to
build a system that can read autonomously with deep un-
derstanding. In the 1970’s and 1980’s natural language pro-
cessing (NLP) research tackled this problem directly, but in
a way that was too brittle to apply to unrestricted text. While
we may dismiss this body of research as “toy systems” that
required carefully selected input text, they genuinely per-
formed deep reasoning about those texts.
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Since the 1990’s the mainstream of NLP research shifted
to robust information extraction (IE) systems with shallow
reasoning, often statistically based. Such IE systems can
handle unseen text that the earlier NLP systems could not
handle, but have the more modest goal of scanning for a
limited number of predefined relations, and ignoring every-
thing else. Current IE systems have hardly any mechanisms
to make inferences beyond what is explicitly stated in the
text.

However, the time may be ripe to combine the best of
both eras, and build robust NLP systems that support deep
reasoning. Consider textual relations with instances in the
form (arg1, relation phrase, arg2) that have text strings for
the arguments and the relation phrase. The argument strings
must be normalized and mapped to a formal taxonomy to
enable inheritance-based reasoning. Similarly, the relation
string must be normalized and mapped to an axiomatized set
of relations where possible. Learning entailments between
relations can enable further inferencing.

The normalized instances of relations must be converted
into probabilistic logical statements with clearly definedse-
mantics. Suppose we have an instance (X, relation, Y) where
X and Y are mapped to non-leaf nodes of a WordNet-like
taxonomy. Does this mean that for all instances of X there
exists an instance of Y where the relationship holds, or some
other combination of universal and existential quantifiers?
The ontologized instances should be in a format suitable for
an inference engine that can make plausible inferences. We
have taken some early steps in this research direction, but
the bulk of these ideas still need to be tested and validated.

The remainder of this paper is organized as follows. Sec-
tion 2 gives a brief overview of NLP research from the
1970’s up to the present. Section 3 presents a case study
of the steps needed to transform textual relations into ontol-
ogized relations. Section 4 gives some preliminary results
where we use relationships between the ontologized rela-
tions for better confidence estimation of these relations. We
conclude in Section 5 with some general discussion.

2. Trends in NLP Research
NLP research has seen extreme swings in goals and meth-
ods over the last thirty years. Research in the 1970’s and
1980’s lacked robust techniques, but had lofty goals of deep
understanding. NLP systems by Roger Schank and his stu-



dents could read that John went into a restaurant, and infer
that John was hungry and had a goal of eating, that he sat
at a table, ordered food, ate it, paid, and left the restaurant.
Good overviews of this work are given in (Schank & Abel-
son 1977; Dyer 1983; Lehnert 1988).

These deep understanding systems parsed the text into un-
ambiguous meaning, represented by a network of semantic
primitives (Schank & Reisbeck 1982) and a rich knowledge
base used to make plausible inferences from this semantic
representation. Unfortunately, neither the parsing nor the
reasoning could scale to the variablility of naturally occur-
ring text.

NLP research since the early 1990’s has focused primarily
on robustness, at the expense of deep reasoning. The Mes-
sage Understanding Conferences (MUC) (Sundheim 1991;
Chinchor 1998) spurred the NLP community to create sys-
tems that could selectively extract relevant information from
previously unseen texts. However, hardly any inferencing is
done beyond normalizing the information that goes into an
output template. Statistical and machine learning systems
have almost completely replaced the intricate hand-crafted
knowledge of earlier language understanding systems.

Some recent IE systems have extracted domain-
independent relations, but still narrowly focused on a few
relations. Pennachiotti and Pantel developed a system that
extracts the relations such asis-a, part-of, andsuccession
from the Trec-9 corpus andis-a, part-of, production, and
reaction from a chemistry corpus (Pennacchiotti & Pantel
2006). Snow, Jurafsky, and Ng used a hyponym classifier to
extractis-arelations from a large collection of newswire and
encyclopedia text (Snow, Jurafsky, & Ng 2006).

Recently, a few systems have been created that do “open
IE”. This is general purpose information extraction that op-
erates bottom-up from a text corpus, without a predefined
notion of what information is relevant. Open IE gathers all
relational triples it finds, in the form (arg1, relation phrase,
arg2), where arg1 and arg2 are noun phrases and the relation
phrase expresses a logical relation of some kind between the
two arguments.

The most advanced open IE system is TextRunner from
Etzioni’s research group (Bankoet al. 2007), which ex-
tracts relational triples from text corpora using domain-
independent, self-supervised learning. TextRunner merges
duplicate triples and assigns a redundancy-based probabil-
ity of correctness to each triple (Downey, Etzioni, & Soder-
land 2005). Examples of triples found from a corpus of Web
pages on nutrition are (tomatoes, are high in, lycopene) and
(antioxidant, can help prevent, many forms of cancer).

Recently some NLP systems are moving toward deep rea-
soning. An impressive example is the HALO project (Fried-
landet al. 2004), which combines a common sense knowl-
edge base with knowledge gleaned from chemistry text-
books. The chemistry knowledge is input by a combination
of automatic NLP and manual knowledge engineering. This
general purpose and domain-specific knowledge enables an
NLP system to read and answer questions from a standard-
ized Advanced Placement test in Chemistry, and perform at
a level close to that of typical high school students who take
that test.

One of the three research teams for HALO used the Uni-
versity of Texas KM1 component library (Barker, Porter, &
Clark 2001) as their knowledge base. This knowledge base
contains hundreds of axiomatized concepts, such as the con-
ceptBe-Contained, which is defined as a relation between a
Tangible-Entityas the object (passive participant in an event)
and aTangible-Entityas the base (relatively fixed thing).

The KM system can reason about howBe-Contained
is related toSpatial-Entitiesas origin and destination and
how Be-Containedis related to the conceptsEncloses, Has-
Region, Is-Inside, Is-Region-Of, Move-Into, andMove-Out-
Of. Such fully axiomatized concepts, along with the KM
reasoner, provide the capability of deep understanding equal
to that of Schank’s semantic primitives.

3. Towards Deep Information Extraction
In this section, we will discuss the individual steps involved
in ontologizing textual relations, and getting them ready for
use in an automated reasoning system. We will use as our
running example, textual relations from TextRunner for a
corpus of nutrition Web pages. We enumerate the steps be-
low. We will discuss many of these in greater detail in later
sections.

1. Normalize the argument phrases.This involves map-
ping the argument strings to the “objects” of some logical
domain. In this paper, we consider WordNet noun synsets
as our objects domain. Normalizing arguments thus be-
comes a problem of word sense disambiguation. We need
to be able to enhance this domain and add new synsets, if
we want to handle unrestricted text. We don’t yet cover
this case in our implementation. Also note that normaliza-
tion solves the important problem of identity resolution –
do two stringssi andsj refer to the same real world entity
or not?

2. Normalize the relation phrase. This involves normal-
izing to drop unimportant differences between phrases,
such as adverbs or verb morphological form. It may also
involve mapping predicate phrases to a pre-defined set of
concepts.

3. Formalize the semantics. Ontologized relations must be
given precise logical semantics before automated reason-
ing can be applied. Does(x, rel, y) mean that for all hy-
ponyms ofx the relation holds for all hyponyms ofy, or
some other combination of the two quantifiers?

4. Learn meta-properties of relation phrases. Are two re-
lation phrases synonymous, or does relationr1 existing
betweenx andy imply that relationr2 also holds between
them (entailment)? Is a relation transitive with respect to
another relation?

5. Assign probability of correctness. Automatically ex-
tracted relations will inevitably include errors. Can we
use relationships between the ontologized relations to bet-
ter estimate their probabilities. We later define such rela-
tionships, using the hyponymy and siblinghood relation-
ships that we have between objects (available from Word-
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Net), and the entailment relationships that we have de-
rived between relation phrases.

6. Inference engine. The inference engine should be able
to combine the relations that were derived from text with
other relations and axioms in a knowledge base.

3.1 Case Study: Fruit and Antioxidants

We first present some examples of TextRunner relations to
better motivate the issues involved in executing the steps we
listed above. Figure 1 shows three such relations. These il-
lustrate textual relations that we want to ontologize. Some
normalization has been done to the original source text
phrases: modifiers and adverbs have been dropped, and
nouns and verbs are transformed into their morphological
base. This normalization, however, is not sufficient to en-
able machine reasoning about the relations.

1. (orange, contain, vitamin C)
“One orange contains all the vitamin C your
body needs for the day!”

2. (fruit, be rich in, antioxidant)
“Whole grains, fruits, and vegetables are also
rich in antioxidants, such as vitamins C and E,
and beta-carotene.”

3. (green bean, should be alert to, problem)
“Growers who rotate with soybeans or green beans
should be alert to potential problems with fields
infested with soybean cyst nematodes.”

Figure 1: Examples of textual relations extracted from a cor-
pus of Web pages on nutrition, along with a sentence from
which the relation was extracted.

While the first two of these textual relations seem per-
fectly reasonable, they have limited utility for an automated
reasoner. The first two relations have no terms in common
and, thus, appear to be totally unrelated strings. A language
understandingsystem should be able to reason that oranges
are a type of fruit, that vitamin C is a type of antioxidant,
and that being “rich in”x can imply containingx. None of
this reasoning is possible at the level of text phrases.

While the first two relations have interrelated meaning,
and thus corroborate each other, the third relation can be im-
mediately labeled as false by a human reader. Green beans
or any other vegetable having cognition runs counter to any
other true assertions in a human reader’s knowledge, and
thus can be assigned low belief.

3.2 Normalizing Argument Noun Phrases

As mentioned above, we normalize the argument noun
phrases of a relation by mapping them to WordNet noun
synsets (Harabagiu, Miller, & Moldovan 1999). Thus, we
are dealing with a word sense disambiguation (WSD) prob-
lem, since most terms in WordNet occur in multiple synsets.

For example “orange” could be a fruit, a color, a tree, a pig-
ment, or a river in South Africa. The fruit sense is what we
want in the context of example 1 in Figure 1.

We now describe the technique we use for WSD. To dis-
ambiguatex in (x, rel, y), we consider all the sentences
S1, . . . , Sk from which this relation was extracted. Using
these, and a window size of4 words on each side ofx, we
create a setC of context words forx. Words with similar
meaning tend to be distributionally similar, and have sim-
ilar PMI (pointwise mutual information) values with other
words. Thus these occurrences ofx will on average have
greater similarity with words similar to the correct sense
compared to those similar to incorrect senses. For each
sense, we compute the average similarity ofx with all the
WordNet synonyms, siblings and direct hyponyms of that
sense. We measure similarity according to the metric pro-
posed in (Dagan, Marcus, & Markovitch 1993). It com-
putes similarity between corresponding vectors of PMI val-
ues. The set of words forming the PMI vector space is just
the setC and not all the words in the corpus (this is impor-
tant). We assign the sense for which this average similarity
is highest. In the experiments section, we report the results
we got with this method.

A formal taxonomy enables a system to make inferences
that cannot be made otherwise. If (orange, contain, vitamin
C), we can infer from inheritance that (orange, contain, vi-
tamin) and that (orange, contain, antioxidant), since vitamin
C is a subclass of vitamin and also a subclass of antioxidant.
Similarly, (orange, contain, vitamin C) is a specialization of
(citrus fruit, contain, vitamin C).

A general-purpose taxonomy like WordNet is likely to
have gaps for some domain concepts – a taxonomy may have
“fat” but not its hyponym “unsaturated fat”. (Snow, Jurafsky,
& Ng 2006) have shown that adding terms to a taxonomy can
be done with high precision, given a good classifier for ex-
pressions that denoteis-a relations. Augmenting WordNet
on the fly while normalizing relations is in our plan for fu-
ture work. Proper names are another case where a taxonomy
is unlikely to help. There has been considerable research re-
cently in named entity recognition (Collins & Singer 1999;
McCallum & Li 2003) and in identity resolution across alter-
nate forms of the same name (Dong, Halevey, & Madhavan
2005; Kanani, McCallum, & Pal 2007). We would also like
to leverage these in future work.

3.3 Normalizing Relation Phrases
We first normalize the relation phrase by dropping adverbs
and reducing verbs to a morphological base form. Thus, “are
also rich in” is normalized to “be rich in”. We also learn en-
tailments between relation phrases – (X, be rich in, Y) im-
plies that (X, contains, Y) is also true with high probability,
as described in Section 3.5. This allows inheritance between
relations that goes beyond what would be provided by a verb
taxonomy.

Our future plans are to tie the normalized relation phrases
to formal concepts such asBe-Containedfrom the KM com-
ponent library that was described in Section 2.3. Each of
these formal concepts is fully axiomatized to enable a rich
set of inferences. KM currently has a few hundred of such



general purpose concepts, and ultimately may need sev-
eral thousand axiomatized concepts for adequate coverage
of free text.

A scalable approach to mapping relation phrases to a set
of formal concepts is to associate each formal concept with
a small set of the most common terms used to refer to the
concept. This is already done for each of the manually en-
gineered KM concepts. The set of relations that map to a
given concept is then expanded by learning entailments. If
(X, contain, Y) is manually mapped toBe-Contained, and
(X, be rich in, Y) entails (X, contain, Y), then “be rich in” is
implicitly mapped toBe-Containedas well.

3.4 Quantification
Human language is typically underspecified about scoping
and quantification. Automated reasoning systems that are
based on first order logic require a clear resolution to scop-
ing and quantification.

Does example 2 in Figure 1 mean that all instances of fruit
are rich in all instances of antioxidants (interpretation A). Or
does it mean that at all instances of fruit are rich in at least
one instance of antioxidant (B)? Or does it mean that at least
one instance of fruit is rich in all antioxidants (C) or that at
least one fruit is rich in at least one antioxidant(D)?

A. ∀x ∈ fruit ∀y ∈ antioxidant, richin(x, y)
B. ∀x ∈ fruit ∃y ∈ antioxidant, richin(x, y)
C. ∃x ∈ fruit ∀y ∈ antioxidant, richin(x, y)
D. ∃x ∈ fruit ∃y ∈ antioxidant, richin(x, y)

Figure 2: Possible semantics of the textual relation (fruit,
rich in, antioxidant).

The most likely interpretation is a probabilistic version of
B: most fruits contain at least one antioxidant. Interpreta-
tions A and C contradict domain knowledge about nutrition,
and interpretation D is a trivially weak version of B. Exam-
ple 1 with its generic use of “the orange”, is an even knottier
problem for determining quantification automatically. Even
with domain knowledge, determining correct quantification
from natural language is a difficult problem.

We choose option B as the default quantification. This
enables inference of relations where arg1 is replaced with a
hyponym (specialization). If the system believes that (citrus
fruit, contain, vitamin C), it can infer with equal certainty
that (grapefruit, contain, vitamin C) and (pink grapefruit,
contain, vitamin C). Arg2 may similarly be replaced with
a hypernym (generalized class). If (citrus fruit, contain,vi-
tamin C) then (citrus fruit, contain, antioxidant) and, some-
what vacuously, (citrus fruit, contain, substance).

3.5 Learning Meta-properties of Relation Phrases
Our goal is to automatically extract relational triples span-
ning a large set of relation phrases, which precludes man-
ually engineering axioms for these relations. Instead, we
can learnmeta-propertiesof relation phrases, such asentail-
ment, transitivity, andtransitivity-through.

Relationr entails another relationr’ if an instance(x, r,
y) implies that(x, r’, y) is also true. For example, in the

domain of nutrition,(x, be rich in, y)entails(x, contain, y).
Transitivity holds for a relationr if (a, r, b) and (b, r, c)
imply that (a, r, c) is also true. Another meta-property that
can be learned is transitive-through. Relationr’ is transitive
through relationr if whenever(a, r, b)and(b, r’, c) are true,
then so is(a, r’, c). For example, if(tomato, contain, ly-
copene)and(lycopene, help prevent, cancer), then(tomato,
help prevent, cancer)

We now describe how we compute entailments in our im-
plementation. For any relationr, we say the ordered pair
(x, y) is an instance ofr if (x, r, y) has been extracted from
the corpus. Given relationsr1, r2, let their respective in-
stance sets beI1, I2. If r1 ⇒ r2 holds, then we should
haveI1 ⊆ I2. Due to data sparseness, we don’t expect this
containment to actually hold. However, we would expect
a measure like|I1 ∩ I2|/|I1| to be a good score to give to
this entailment. In our experiments, this did not turn out to
work well. The distribution we had for instance set sizes for
relations was very skewed. It varied from6 to more than
10, 000. If I2 is orders of magnitude larger thanI1 then this
score can be high just by chance overlap. We need to con-
sider |I2| too in assigning a score. We experimented with
several metrics, and the one that was found to work best
was|I1 ∩ I2|/|I1| log|I2|. We chose a threshold0.01 for this
score, and chose all entailments with score greater than this
value.

3.6 Assigning Probabilities

A set of relations that have been extracted automatically
from text are bound to contain some errors. Probability esti-
mation for extracted relations is an important component of
information extraction systems. We consider three types of
evidence for such probability estimates.

1. Language Based Features:These are features derived
from the output of POS taggers and deep parsers on the
corpus text. These include the POS tags themselves, their
bigrams and trigrams, the number of words separating
the argument noun phrases, features derived from paths
connecting them in the parse tree, and so on (Kambhatla
2004). State of the art relation extraction systems are
mostly based on these features.

2. Redundancy:The more frequently an instance has been
extracted from a large corpus, the more likely it is to be
correct (Downey, Etzioni, & Soderland 2005). When re-
dundancy is present, this has been shown to be a very ef-
fective source of evidence. However, an open IE system
like TextRunner is bound to give a lot of good extractions
with low counts, in addition to good extractions with high
counts.

3. Ontological Corroboration:This is a new source of ev-
idence that we introduce. It becomes available from our
ontologizing the relations. It is derived from ontology-
based relationships between the extracted relations them-
selves. We describe these next.

We define the following relationships between ontolo-
gized relations.



Figure 3: Illustration of relationships between ontologized
triples

1. Hyponymy: We define a relation (x′, r′, y′) to be a hy-
ponym of (x, r, y) if x′ is a hyponym or synonym ofx,
y′ is a hyponym or synonym ofy, and relation phraser′

entailsr. For example, in Figure 3, (tomato, rich in, ly-
copene) can be seen to be a hyponym of (vegetable, con-
tains, antioxidant).

2. Hypernymy:We define hypernymy to just be the inverse
relationship of hyponymy.

3. Siblinghood:We define a relation (x′, r′, y′) to be a sib-
ling of (x, r, y) if x′ is a sibling or synonym ofx, y′ is a
sibling or synonym ofy, andr andr′ are related by an
entailment in either direction. For example, in Figure 3,
(tomato, rich in, lycopene) can be seen to be a sibling of
(carrot, loaded with, beta-carotene).

It is easy to see why, if two relations are related by hy-
ponymy, this provides additional evidence that they are both
true. The hyponym relation can be thought of as an “in-
stance” of the hypernym relation. We discussed this earlier
when we talked about the semantics of relations between
non-leaf nodes in the ontology. We claim that two relations
related by siblinghood present a similar scenario. Relation
phrases, like predicates in logic, tend to have fixed argument
classes. Siblinghood between relations is evidence for par-
ticular argument classes for the involved relation phrases.

4. Preliminary Results
Our dataset consisted of272, 960 relations extracted from a
corpus of web pages on health and nutrition. These spanned
around27, 000 WordNet synsets, and7, 000 distinct relation
phrases. Our entailment threshold of0.01 gave us20, 550
entailments. Based on a sample of60 drawn from these, we
obtained a precision of0.67. For word sense disambigua-
tion, we tagged a sample of 125 relations. 70% of these
were found to have correct senses assigned to both their ar-
guments. The baseline WSD that always selected the first
WordNet synset had accuracy 55%. The baseline was pretty
good, presumably because WordNet numbers senses accord-
ing to decreasing frequency of usage.

We now turn to probability estimation for these relations.
We trained classifiers to predict labels (true or false) for
them, and assign them truth probabilities. The Baseline Fea-
ture Set (BFS) consists of POS tags, bigrams of POS tags,
size of the relation phrase, and the extraction frequency of
the relation. We used feature selection methods to choose

Acc Precision Recall F
Naive Bayes – BFS 69% 0.57 0.61 0.59
Naive Bayes – OFS 74% 0.65 0.61 0.63
Log Reg – BFS 72% 0.67 0.46 0.54
Log Reg – OFS 75% 0.70 0.54 0.61
SVM – BFS 73% 0.70 0.43 0.53
SVM – OFS 75% 0.71 0.50 0.59

Table 1: Classifier performance comparison between the two
feature sets

eight features from the large candidate set of POS tags and
their bigrams. The Ontology Feature Set (OFS) uses all the
features in BFS. In addition, it uses three additional features
derived from the kind of ontological evidence that we dis-
cussed earlier. For each relation, we use the counts for the
number of hyponyms, hypernyms, and siblings that the re-
lation has in the entire set of272, 960 relations, as features.
We expect non-zero values for these features to provide ad-
ditional evidence that the relation is true.

We first evaluate the accuracy and F-measure perfor-
mance. We tried three classifiers – Naive Bayes, Logistic
Regression, and SVMs with a RBF kernel using (Franket al.
2005). We used a set of355 tagged relations, and performed
5-fold cross-validation. The set had127 correct relations,
giving an overall precision of0.36. The results we obtained
are shown in Table 1.

Evaluating the quality of the assigned probabilities is of
greater interest to us. We will assess this by using the proba-
bilities as a ranking function on the relations, and determin-
ing the precision – recall tradeoff that occurs as we descend
this ranked list. We determine precision and recall values
for the topk relations for a range ofk values. We deter-
mine precision by tagging a random sample of size 50. For
recall, we had a common, fixed set of 100 correct relations,
randomly chosen from all relations. The fraction of this set
contained in the topk relations gave the corresponding recall
value. Figure 4 compares the precision–recall curves given
by Logistic Regression and Naive Bayes when using the two
feature sets. We see significant improvements when using
the OFS feature set compared to BFS. The results seems to
indicate that while these ontological features are not active
for all correct relations, when they are active they are very
accurate evidence for the relation being true.

5. Discussion
We have outlined the basic steps needed to “ontologize”
instances of relations of the form (arg1, relation phrase,
arg2). This maps the argument strings to a formal taxonomy,
adding new concepts to the taxonomy as required, normal-
izes the relation phrases, and learns meta-relations that form
semantic links between relations. This enables a reasoner to
draw plausible inferences beyond what is stated directly in
the original text.

We have presented experimental results for several of
these steps. We have shown that current technology is suf-
ficient to disambiguate noun phrases, to normalize relation
phrases, and to learn entailments between relations. We also
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Figure 4: Using ontological feature set (OFS) for a Logis-
tic Regression (LR) or Naive Bayes (NB) classifier gives a
large boost to the precision-recall compared with a baseline
feature set (BFS).

demonstrated that the resulting ontology can assists in infor-
mation extraction by validating extractions that are corrobo-
rated by the ontology. In preliminary experiments the recall-
precision curve was raised considerably when we incorpo-
rated ontology-based features in estimating relation proba-
bilities. The high precision end of the curve was raised from
precision 0.51 to precision 0.76, and area under the curve
was increased by 32%.

Much work remains to move from extraction of textual re-
lations to formal ontologies that support automatic reason-
ing. While deep reasoning at a human level is beyond our
reach in the near future, a first pass at each of the steps out-
lined in this paper can be accomplished with current tech-
niques in natural language processing and knowledge repre-
sentation.
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