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ABSTRACT
Facts are naturally organized in terms of entities, classes,
and their relationships as in an entity-relationship diagram
or a semantic network. Search engines have eschewed such
structures because, in the past, their creation and processing
have not been practical at Web scale.

This paper introduces the extraction graph, a textual ap-
proximation to an entity-relationship graph, which is auto-
matically extracted from Web pages. The extraction graph
is an intermediate representation that is more informative
than a mere page-hyperlink graph but far easier to construct
than a semantic network. The paper also introduces Tex-

tRunner, a search engine that utilizes this representation to
answer complex relational queries that are difficult to answer
using today’s search engines or Web Information Extraction
(IE) systems.

The paper compares TextRunner to a state-of-the-art
IE system on list searches, and finds that TextRunner is
40% more precise, with 11% better recall than the IE sys-
tem. Our experiments, computed over a 90-million page
corpus and a 227-million node extraction graph, show how
TextRunner will scale to billions of pages.

Categories and Subject Descriptors
H.3.1 [Information Systems]: Content Analysis and In-
dexing; H.3.3 [Information Systems]: Information Search
and Retrieval; E.2 [Data]: Data Storage Representations

General Terms
Algorithms, Design, Experimentation, Performance

Keywords
Search engine, corpus, information extraction, structure, re-
lation

1. INTRODUCTION
Even though modern search engines analyze hyperlinks

and anchor text, they remain keyword based. A page is
retrieved only when it (or the corresponding anchor text)
contains the keywords in the user’s query. This paper in-
troduces relational Web search—search through a textual
approximation to an entity-relationship graph that is auto-
matically extracted from Web pages. This extraction graph
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is a novel intermediate representation that is more informa-
tive than a mere page-hyperlink graph but far easier to con-
struct than a true entity-relationship diagram or a semantic
network [25].

Our extraction graph explicitly represents information that
is not directly available from a standard inverted index.
First, entities that are closely related tend to be close in
the graph. For example, the path between “Einstein” and
“the Theory of Relativity” is likely to be of length one. Sec-
ond, similar entities tend to have similar relationships as
their edges. For example, “Einstein” and “Newton” share
the relationships “discovered” and “is a physicist”. These
two properties make the extraction graph invaluable for re-
lational Web search as explained in Section 3.2.2.

Relational Web search facilitates answering several differ-
ent types of queries that are laborious using today’s engines:

• qualified-list queries: retrieve a list of objects that
share multiple properties (e.g., west coast liberal arts
college).

• unnamed-item queries: qualified-list queries that
aim to locate a single object whose name the user does
not know or cannot recall (e.g., the tallest inactive
volcano in Africa).

• relationship queries: find the relationship(s) be-
tween two objects (e.g., the relationship between Bill
Clinton and Justice Ginsberg).

• tabular queries: find a set of objects annotated by
their salient properties (e.g., inventions annotated by
their inventor and year of announcement).

Today, answering such queries often requires substantial ef-
fort on the user’s part. In unnamed-item queries, for ex-
ample, the user has a target object in mind, but cannot
name it directly. Instead, the user has to describe the tar-
get indirectly, but her search will fail if she does not choose
the appropriate descriptive phrases. Furthermore, the dif-
ferent properties of the object may be scattered over several
pages and the search engine will come up empty. Consider
a set of three documents, one of which lists “Oppenheimer”
as a “physicist,” another as an “American scientist.”, and
another that describes him having something to do with
“Berkeley.” A standard search engine cannot integrate the
information in all three; the user must piece together the
answer by locating and reading the relevant web pages her-
self.
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Figure 1: A portion of an extraction graph. Not all
edges for these nodes are shown. An edge points
from the first node in a triple toward the second.

Our search engine, called TextRunner, utilizes a stan-
dard crawler to retrieve Web pages, but applies an informa-
tion extraction mechanism (see Section 3.1) to each sentence
on each page. On most sentences, the mechanism yields at
least one triple that consists of two “object” strings and a
“predicate” string that links them. The triples are automat-
ically inserted into a massive extraction graph whose nodes
are object strings and whose edges are predicate strings.1

Given the sentence “Berkeley hired Oppenheimer soon af-
ter Oppenheimer became a physicist.”, for example, Tex-

tRunner extracts the following triples:

• (“Berkeley”, “hired”, “Oppenheimer”)

• (“Oppenheimer”, “became a”, “physicist”)

Figure 1 shows part of an extraction graph that contains
these triples as well as several other triples extracted from
distinct sentences on separate pages, illustrating how the
graph naturally synthesizes information that is scattered
across multiple Web pages.2 The figure does not show oc-
currence counts for each triple, which the extraction graph
also maintains.

Of course, all the problems associated with integrating in-
formation from disparate sources surface in the extraction
graph. The same entities and predicates are referred to by
multiple names (e.g., “Einstein” and “Albert Einstein”) and
combining information from different sentences yields nu-
merous inconsistencies and contradictions. While there are
straight forward heuristics for mitigating these problems,
they cannot be fully solved. Instead, TextRunner shows
how to utilize the graph, despite its inherent noise, to carry
out relational search effectively.

Once it has crawled the Web and produced an extrac-
tion graph, our engine is ready to process keyword queries
from users. For example, the user enters a query such as
“physicist at Berkeley” and receives a ranked list of objects
as output. This novel approach raises a host of questions
including:

• How is the extraction graph constructed?

1For brevity, we will refer to these strings as objects and
predicates throughout this paper.
2The graph can also utilize triples generated by structured
data sources. For example, there is an immediate mapping
from the RDF triples in N3 [1] into ours.

• How does TextRunner search the extraction graph
to answer queries?

• How effective is TextRunner at answering different
types of queries, and how does it compare with state-
of-the-art technology?

• How efficiently can TextRunner represent and search
the extraction graph, and does its architecture scale to
the billions of pages on the Web?

This paper addresses the above questions, and makes the
following contributions:

• We introduce and analyze the extraction graph, a novel
representation that supports relational Web search,
and report on its implementation in TextRunner.
TextRunner is the first relational search engine de-
ployed on the Web.

• We measure TextRunner’s performance on qualified-
list queries, and compare its performance with both a
state-of-the-art information extraction system.

• We analyze TextRunner’s architecture and algorithm
to show that it can scale to billions of pages with rea-
sonable hardware requirements.

The remainder of this paper is organized as follows. Sec-
tion 2 discusses previous work, followed by a detailed de-
scription of TextRunner in Section 3. Section 4 reports
on our experiments. The paper concludes with directions
for future work in Section 5.

2. PREVIOUS WORK
This section contrasts relational Web search, as embodied

in TextRunner, with three areas of related work: “associa-
tive retrieval” and spreading activation, question-answering
systems, and information extraction systems.

Relational Web search is a type of associative retrieval [27]
where the associated items refer to entities and their rela-
tionships as expressed on Web pages. Relational Web search
goes beyond previous attempts at associative retrieval for
two key reasons. First, its extraction graph is computed
automatically from data. As a result, the graph can be
computed at scale, and updated automatically as new docu-
ments appear on the web, without manual knowledge engi-
neering or human feedback. Second, its spreading activation
algorithm is designed to achieve Web scale as well.

In contrast, previous work on associative retrieval was of-
ten limited to small document sets [24] or limited domains
[18]. Crestani [7] provides an overview of several systems
that apply spreading activation over semantic networks to
the task of information retrieval. Hendler [17] also used
a marker-passing algorithm which made it possible to per-
form inference in parallel over semantic networks. However,
the creation of semantic networks requires large amounts
of domain-specific, manual knowledge engineering, which
severely curtails their scope (as noted by Crestani in [7]).

Some recent systems have utilized hypertext links between
documents [8] and anchor text [9] as the basis for associa-
tive retrieval. In both cases, this information was observed
to improve the precision of search results. However, activa-
tion was spread over a document graph as opposed to over
a relational one as in TextRunner. Furthermore, these
systems did not attempt to achieve Web scale.



The qualified-list and unnamed-item queries enabled by
relational search are similar to those handled by Question
Answering (QA) and Information Extraction (IE) systems,
which also return exact answers, or sets of answers, in re-
sponse to queries. Below, we consider both QA and IE sys-
tems in turn.

Several years ago, the TREC conference instituted the
List track, in which systems are asked to return multiple in-
stances of a class (e.g. “List the names of chewing gums.”).
TREC systems operate over relatively small document col-
lections, and typically rely on heavy linguistic or knowledge-
based machinery, which limits their scope.

Systems like Mulder [20], AskMSR [11], and commercial
systems such as ask.com perform question-answering on the
Web, but are limited to performing simple linguistic trans-
formations on a question and then extracting the answer
from a single matching sentence. These heuristics are sur-
prisingly effective, but they are limited in scope, and fail
to match TextRunner’s ability to synthesize information
from multiple documents.

KnowItAll [12] was the first published system to carry
out unsupervised, domain-independent, large-scale extrac-
tion from Web pages [13]. KnowItAll utilizes a domain-
independent set of extraction patterns. For a given relation,
these generic patterns are then used to automatically instan-
tiate class-specific extraction rules. From this basic set of
extraction patterns, KnowItAll goes on to learn domain-
specific extraction rules. The rules are applied to Web pages,
identified via search-engine queries, and the resulting extrac-
tions are assigned a probability using mutual-information
measures derived from search engine hit counts.

KnowItAll does well at extracting instances of simple
object classes such as “physicists” (16.7 million hits 3) but
is likely to have difficulty with qualified-list queries, where
objects are constrained by multiple attributes such as “the-
oretical physicists” (169,000 hits) or “American theoretical
physicists” (212 hits). As data becomes sparse, even over
billions of documents, it becomes necessary to look beyond
a single sentence, or even a single document, for information.
This is where TextRunner’s ability to synthesize informa-
tion collected from multiple documents via its extraction
graph becomes essential.

Another limitation of KnowItAll is its reliance on data
indexed by commercial search engines. KnowItAll issues
millions of queries to search engines, thereby limiting its
speed and forcing the extraction process to extend over a
period of days or even weeks. While these scalability issues
are addressed in the KnowItNow system [5], the need to
overcome data sparsity remains a lingering issue for both
systems.

3. THE TEXTRUNNER SYSTEM
TextRunner is our implementation of a relational Web

search engine. Input to TextRunner consists of a set of
query terms, just as with a traditional search engine. Tex-

tRunner’s output depends on the type of search that is
invoked. For qualified-list and unnamed-item queries, Tex-

tRunner returns one or more objects that satisfy the prop-
erties in the query. For tabular queries, TextRunner re-
turns a table as shown in Table ??. Finally, for relationship
queries, TextRunner returns the predicate(s) that relate

3According to http://www.google.com

the objects in the query.
TextRunner consists of a mechanism to extract and in-

dex an extraction graph, a method for scalable associative
retrieval, and a clustering algorithm for post-processing re-
trieved nodes to improve their ranking. In the following
sections, we describe each component in more detail.

3.1 The Extraction Graph
TextRunner uses a structure we call the extraction graph.

The extraction graph consists of labeled nodes that are con-
nected by labeled directed edges. A node ni corresponds to
an object, and a directed edge ei,j represents the relationship
between nodes ni and nj . Edges can be of a particular type
which indicates a special kind of relationship, for example,
Is-A to reflect a hypernym relationship.

Each triple T = (ni, ei,j , nj) represents a fact-like state-
ment extracted from the document corpus, and is annotated
with the following information:

• The type of edge ei,j .

• The number of times T is extracted from the corpus.

• The set of sentences and URLs from which we ex-
tracted occurrences of T .

The extraction graph bears some resemblance to semantic
network models, but there are several important differences:

• The extraction graph is automatically generated from
text.

• Nodes and edges in the extraction graph are strings,
and not assumed to be authoritative by themselves.
For example, many real-world objects might appear
under several different labels, e.g. Einstein and Albert
Einstein. Relationships may be represented by more
than one string, e.g. “invented”, “, who invented”,
rather than by a canonical form, invented(X,Y).

• We make no strong claims about the semantics of the
extraction graph. The extractor can make errors, which
lead spurious nodes and misleading edges to appear in
the graph.

• We do not attempt to resolve inconsistencies in the
graph (e.g., Einstein is listed as having died in several
different years).

Section 4 shows that despite noise in the extraction graph,
it contains enough good information to produce useful an-
swers to queries, which are difficult to answer using today’s
search engines. Moreover, as discussed in Section 5, we an-
ticipate reducing the noise in the extraction graph in future
work.

3.1.1 Implementation and Design
The TextRunner extraction graph currently contains

two types of edges. An Is-A edge type indicates the ex-
istence of a hypernym relation between two objects. These
edges are constructed automatically using an adaptation of
Hearst’s lexical patterns for locating hypernyms [15]. For in-
stance, we might learn that (Oppenheimer, Is-A, scientist)
after seeing the text “... scientists such as Oppenheimer
...”. (These are the same rules used by the KnowItAll and
KnowItNow systems. TextRunner’s Is-A edges contain



all the relationships found by KnowItNow on the same
corpus.)

A predicate edge type indicates other relations of inter-
est between two nodes in the extraction graph. One way
to obtain such edges is to take the entire string between
the two entities of interest. Not surprisingly, this permissive
approach captures an excess of extraneous and incoherent
information. At the other extreme, a strict approach that
simply looks for a verb between two nouns causes us to lose
other links of importance, such as those that specify noun
or attribute-centric properties, e.g. (Oppenheimer, profes-
sor of, theoretical physics) and (technical schools, similar to,
colleges). A purely verb-centric method may also extract
incomplete or incorrect relationships, for example, (Berke-
ley, located, Bay Area) instead of (Berkeley, located in, Bay
Area). Our approach, which we now describe, falls in some-
where in between.

To locate predicate edges within a given sentence, we au-
tomatically tag each word in the sentence with its most prob-
able part-of-speech. Using these tags, nodes are found by
identifying noun phrases using a lightweight noun phrase
chunker. For any two noun phrases that are less than a cer-
tain number of words apart, we assess the amount of content
between them, using part-of-speech, lexical and proximity
features. Strings having low-content are those with a high
amount of punctuation and/or stop words, and will gener-
ally be longer in length. Strings with high-content generally
contain verbs and prepositions; they tend to be shorter in
length, as they express more general relationships. In par-
ticular contexts, a pattern centered around a common noun
phrase may express the kind of relationship we would like to
have in the extraction graph such as in the triple (Oppen-
heimer, professor of, theoretical physics). Therefore, when
examining a link between two objects, we sometimes expand
the link to include the second object, thus drawing the rela-
tionship to now exist between the first object, and the next
entity in line. If after processing, we judge a link to have suf-
ficiently high content, it becomes an edge in the extraction
graph.

We aim to process on the order of billions of documents
on the web, therefore mechanisms for entity-relation extrac-
tion must be efficient and independent of both domain and
language. Compared to other systems which extract rela-
tionships between entities [14, 21], the machinery underlying
the TextRunner extraction graph is quite simple. Other
approaches to entity-relationship extraction use dependency
parsers to label edges with descriptions corresponding to sur-
face syntax relationships such as subject or modifier. When
we want to perform extraction from billions of web pages,
the use of such heavy linguistic machinery becomes prob-
lematic for several reasons.

Even if state-of-the-art parsers run fast enough at an av-
erage of 3 seconds per sentence [19], the performance of
the most accurate systems, which are trained from labeled
data, degrades when extended across a variety of genres [16].
Trainable parsers have been repeatedly shown to achieve
high levels of accuracy within a restricted domain such as
financial newswire data [2, 19], yet not much attention has
been focused on extending such models to be able to handle
noisy language such as that contained on web pages. The
use of dependency parsers becomes even more problematic
when we wish to process documents in languages other than
English and Chinese, the two languages which have received

the most attention in the natural language parsing commu-
nity.

Our system uses only part-of-speech tag and noun-phrase
information, both of which can be modeled with high ac-
curacy across domains and languages via a small amount
of training data or a human rule-writer [3, 22]. Our sys-
tem uses such components contained within the OpenNLP
toolkit, a freely available suite of natural language tools built
upon the application of trainable maximum-entropy models
of sentence-boundary detection, part-of-speech tagging and
noun-phrase finding [26].

3.1.2 Analysis
In order to assess the performance of the TextRunner

entity-relation extractor, we measured the rate and speed of
extraction, as well as triple precision.

We estimated the extraction rate of TextRunner and
found that by using a set of eight simple extraction pat-
terns, TextRunner extracts an Is-A link approximately
once every 40 sentences. For every 10 sentences TextRun-

ner reads, it extracts about 7.7 predicate edges.
At a processing rate of 1 document every 0.125 seconds,

TextRunner is able to process 1 million documents per
machine every 35 hours. In order to limit the amount of
processing time we spend running part-of-speech and noun-
phrase taggers, we do not process sentences longer than 35
words.

We measured the precision of our triple extractor from a
sample of approximately 1000 sentences that yielded 43 Is-A
edges and 610 predicate edges. A human assessor was asked
to look at a triple in the context of the original sentence,
and judge it according to the following criteria:

• The well-formedness of the entity nodes. (New York
and, located in, U.S. ), and (burner, is DVD-R /, RW
compatible ) are examples of “bad” extractions.

• The well-formedness of the predicate link. In the triple,
(scientists, talked about how, solutions), the predicate
string is incorrect, rendering it a “bad” extraction.

• The extent to which the link is anchored by the correct
nodes. (desk, contains, object ) would be considered a
“bad” triple if extracted from the text, “The box next
to the desk contains an object from Norway.”

We note that extracted triples reflect the content of Web
sentences text; we make no claims as to their actual verac-
ity. Thus, a triple is considered to be “good” if someone
has written down a sentence from which TextRunner can
successfully extract a triple, even if that triple reflects an
opinion or a patently false statement. The assessor consid-
ered 45.8% of triples extracted to be “good” extractions. By
edge type, we found that 71.7% of Is-A edges and 44.0% of
predicate edges were judged correct.

The next section shows how spreading activation and re-
dundancy help TextRunner to cope with noise in the ex-
traction graph.

3.2 Spreading Activation Search
TextRunner accepts a standard search query as input.

As output, it emits a ranked list R of nodes in the extrac-
tion graph. This section explains how TextRunner utilizes
spreading activation to answer queries. Spreading activation
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Figure 2: Query Processing. An inverted index over graph text allows the spreading activation algorithm
to instantly find all the triples that contain search terms. The example query shown here consists of the
terms, “American,” “physicist,” and “Berkeley,” which all have entries in the inverted index. Retrieving
graph regions that contain search terms allows spreading activation to reach other nodes within the regions
quickly. In this example, the node “Oppenheimer” will score very highly as it receives activation from all
three query terms.

is a technique that has been used to perform associative re-
trieval of nodes in a graph [7, 8, 6]. While spreading ac-
tivation has been used for retrieval in hypertext, web doc-
uments, and semantic networks, TextRunner is the first
system to use it for analyzing entity-relationship informa-
tion automatically-extracted from Web pages.

Spreading activation systems work by first injecting “acti-
vation” into an initial target set of graph nodes. The activa-
tion then spreads from each node to its connected neighbors,
then to neighbors of the neighbors, and so on. Each edge is
associated with a decay factor, which diminishes the activa-
tion strength when it traverses the edge. The decay factors
are critical: without them, activation from a single initial
target node would eventually spread equally to all parts of
the graph making activation level useless for discriminating
between nodes.

Systems decide when to stop spreading according to a
wide set of possible criteria: activation may be stopped after
it travels a certain distance, or when its strength falls below
a certain threshold. (Crestani discusses other criteria in [8].)
Once the process is complete, nodes with high amounts of
activation should be closely related to the nodes in the initial
target set.

In this section, we discuss our spreading activation object
scoring algorithm in detail. We also describe how TextRun-

ner uses it to efficiently process an incoming user query, in
spite of an extraction graph that contains hundreds of mil-
lions of nodes and edges.

3.2.1 Scoring
The scoring algorithm assigns a score S to nodes so they

can be sorted by relevancy. Score spreads through the net-
work in a spreading-activation-like manner. Like activation,
score is first given to an initial target set of nodes. The ini-
tial set includes all nodes that contain a search query term

q0, q1, ...qn−1.
If a node ni contains a query term qj , then TextHit(ni, qj) =

1. Otherwise, TextHit(ni, qj) = 0. The algorithm also tests
whether an edge e contains a query term qj . In that case,
TextHit(e, qj) = 1.

The score for a single node ni on a single search term
qj is the sum of three factors: the TextHit() score for ni

itself, the TextHit() scores for edges connected to ni, and
any score that was spread from neighboring nodes. The
score S for a node ni on query Q is the sum of scores
earned by all of the query component terms. So, S(ni, Q) =
P

qi∈Q
S(ni, qi). Thus, we can write:

S(ni, Q) = C1 ∗

X

qi∈Q

TextHit(ni, qi) +

C2 ∗

X

qi∈Q

X

e′∈edges(ni)

TextHit(e′, qi) +

C3 ∗

X

qi∈Q

X

n′∈neighbors(ni)

[α(edge(ni, n
′)) ∗ S(n′

, qi)]

where α(edge(ni, n
′)) is a decay factor, and falls between

0 and 1. The C constants are weights for the three sources.
The value α(edge(ni, n

′)) is dependent on the type of the
edge that happens to link nodes ni and n′. We choose a value
of close to 1 for edges that are of the “Is-a” type, or for an
edge e where TextHit(e,Q) = 1. (Choosing large α values
for e when TextHit(e,Q) = 1 allows score to flow more
easily via edges that represent query-relevant predicates.)
Otherwise, we choose a value closer to 0. Edges with high
redundancy counts are considered more likely to be accurate,
and so will be given higher α values. (In the future, we may
also adjust α values based on the edge label itself, perhaps
allowing easier flow along edges with rare, interesting labels.)

There are a few further points that are specific to the



TextRunner scoring mechanism. First, the system tracks
the original TextHit() source for all score flows. Score is
not allowed to “flow backwards” to nodes it has already
traversed. Second, TextRunner currently prevents score
from flowing beyond a source’s immediate neighbors. As the
graph is extremely large, computing scores becomes more
burdensome as activation flows further from its source; this
issue is discussed in more depth in Section 3.4.

3.2.2 Query Processing
The extraction graph can be very large. Our 90 million

page test corpus results in over 652 million extracted triples.
After assembling these triples into the extraction graph the
system must process queries over a graph of approximately
544 million edges and 227 million nodes. How can Tex-

tRunner process such queries efficiently?
Prior to processing any queries, TextRunner computes

an inverted index over the text of the triples that make up
the extraction graph G. This index is analogous to a stan-
dard inverted index computed over corpus documents for
document retrieval. In a standard inverted index, each cor-
pus term points to a list of all the documents in which that
term appears. For the inverted index in TextRunner each
term found in the triple text points to a list of all the triples
in which the term appears.

Unfortunately, the extraction graph may be too large to
fit on any single machine. So, TextRunner divides the
triple set over a set of index machines, and maintains mul-
tiple inverted indices. Each machine computes a separate
inverted index for the locally-stored triples.

TextRunner processes queries as follows:

1. A query Q arrives at a single query processor ma-
chine. The query processor breaks Q into its com-
ponent terms q0, q1, ..., qn−1.

2. The query processor then asks the set of index ma-
chines to use spreading activation scoring to return the
most relevant objects for query terms q0, q1, ..., qn−1.
Each index machine has a local inverted index for look-
ing up nodes and edges, as shown in Figure 2.

3. Each of the index machines returns the best locally-
stored objects to the query processor

4. The query processor then sorts the total set of objects
by the spreading activation score and emits the ranked
list.

3.3 Result Display
Returning a ranked list of graph nodes can be a good way

to satisfy a user query. However, because of the structure
embedded in the extraction graph there are a set of methods
TextRunner can use to post-process the ranked list, and
make it even more useful.

One such method is predicate clustering. A traditional
search engine searches and returns only documents, so a
top-k list is fairly easy to scan and understand. In contrast,
TextRunner will return objects of widely varying types.
For example, in response to the query, “American physi-
cist”, TextRunner will retrieve nodes that are labeled with
names, specialties, organizations, and important dates. Of
course, all nodes are labeled by strings, so there is no infor-
mation about a node’s “true type.”

While the user may not know the exact name of her search
target, it seems reasonable to think she will know the rough
type. In that case, a heterogeneous list could be very dis-
tracting. It would be better if the ranked output could be as
type-homogeneous as possible. The resulting output groups
together relevant objects that might have previously been
separated in the pure score ranking. Testing against a set of
ten queries shows that clustering raises precision from 0.045
to 0.2690, while dropping the number of correct extractions
from 45 to 39.

The clustering algorithm takes an ordered list of nodes
(objects) R, and returns a set of clusters C, which partition
R. Each object is assigned to a single cluster. Within a
cluster, the objects retain the same ordering as in R. We
hope that all the objects within any given cluster are of
roughly the same “type”.

All objects are simple strings, without any additional ex-
plicit type information. Although entity tagging could be
used to identify a string’s type, the tags are generally lim-
ited to a small handful of hard-coded values: person, orga-
nization, date, etc. Since user queries can cover arbitrary
topic areas, such a limitation is substantial.

Instead of examining the contents of the object strings
themselves, TextRunner clusters objects based on simi-
larity among the predicates they use. The more predicates
two objects share, the closer they will be considered. The
motivation is that objects that appear with similar predi-
cates will tend to be of similar type. For example, scientists
are often on the left-side of the predicates “discovered” and
“described.” In contrast, dates are often on the right-side
off the predicate “died in.”

Having defined the similarity metric, TextRunner can
use any clustering algorithm. The current version uses ag-
glomerative clustering, repeatedly merging the most-similar
objects. When comparing two clusters, the distance is sim-
ply the average distance computed when an object is drawn
from each cluster. Merging is repeated until the two clos-
est clusters have similarity less than a minimum similarity
constant.

3.4 Scalability
A major challenge for TextRunner is to respond to queries

at interactive speeds even as its corpus grows to tens of bil-
lions of pages and the extracted extraction graph grows as
large as a hundred billion edges. In our experiments, con-
ducted over a 90 million page corpus and 20 machines, Tex-

tRunner’s average query response time was 41 seconds.4

This section explains how TextRunner’s design ensures
that the number of disks and CPUs needed to maintain this
response time grows linearly with the corpus size. First, we
discuss the construction of the extraction graph. Second, we
discuss the scalability of query processing.

The extraction graph is simply the composition of a large
set of extracted triples. Importantly, all triples are gener-
ated with a single pass through the corpus. Moreover, the
extraction task is naturally decomposable so different Web
pages can be processed in parallel on different machines.

After triple generation, TextRunner builds a
“node-centric” distributed inverted index. Each node that
results from triple generation is “assigned” to a single ma-
chine in the pool. Each triple is then copied to each of the

4We expect that with further system optimization, this
number can be cut by an order of magnitude.



machines that contain either of its two nodes. Finally, each
machine computes an inverted index over the text of the
locally-stored triples. Each machine is thus guaranteed to
store all the triples that contain a reference to any node
assigned to that machine.

Storing each triple twice (one for each of its nodes) roughly
doubles the necessary index storage space to about 356 gi-
gabytes. Duplicating triples imposes a storage cost, but
collecting all of a node’s single-hop neighbors on a single
machine is critical to scalable query processing.

The query processing stage begins by spreading activa-
tion across the extraction graph. Most search engines that
use flow through a network to compute score information
(e.g., PageRank) do so at index time, but TextRunner’s
spreading activation scores are query-dependent and thus
have to be computed speedily at query time. Yet spreading
activation is difficult to compute at large scale because the
number of nodes affected by activation emitted by a single
source will be roughly bd, where b is the branching factor,
and d is the depth of activation.

To make spreading activation both efficient and paralleliz-
able, TextRunner’s score computation for a single node is
local to a single machine. Since any two objects adjacent in
the extraction graph might be placed on different machines,
TextRunner can only guarantee single-machine processing
by duplicating regions of the triple set.

As each machine currently only stores the triples imme-
diately connected to a locally-assigned node, in our experi-
ments d was set to 1. Even this tightly-constrained system
is still quite powerful. Most importantly, as illustrated in
Figure 1, spreading activation of depth 1 enables the system
to synthesize triples extracted from distinct pages.

TextRunner can support spreading activation for greater
depths simply by increasing the amount of duplicated triple
information. When d = 2, each machine must store all
triples containing nodes within two hops of a locally-assigned
node. If there is an average number of neighbors b in the
graph, the storage penalty should be about b2. Increasing
the value d increases the amount of information available
when scoring the nodes at a given machine, and so may
result in a small amount of extra computation.

Since spreading activation generally requires a maximum-
spread limit (else it flood the entire graph), a small d is not
unreasonable [7]. Since each node appears on only one ma-
chine, the central query processor can ask each machine to
return only its local top k-scoring results, and be guaranteed
to retrieve the global top k. As query-processing burdens on
the TextRunner system scale linearly with the corpus size,
we can process roughly 4.5 million documents on each ma-
chine. So processing a ten-billion page corpus, and retain-
ing current performance, should require fewer than 2,500
machines.

4. EXPERIMENTAL RESULTS
To assess TextRunner, we focused our evaluation on

qualified list queries and used a combination of automatic
processing and manual tagging to compare TextRunner

with a Web Information Extraction (IE) system (KnowIt-

Now[4]).
TextRunner runs on a cluster of 20 dual-Xeon machines,

each with a single local disk of 250GB. We restricted Tex-

tRunner to extracting information from a 90-million page
corpus crawled and indexed by Nutch, an open-source search

common surgical procedures
animated cartoon characters
British spy novelists
classic French fare
Italian motorcycle companies
female deities
NATO country leader
Commonwealth nations
plasma physicists

Table 1: A sample of the qualified-list queries test
set.

engine [23]. On this collection, where average document
length is 30 sentences, TextRunner extracts approximately
67.5 million individual Is-A edges and 1.9 billion predicate
edges, each of which is inserted into its extraction graph.
The total number of nodes in the graph is 227 million due
to the fact that many triples are extracted more than once.
All of the experiments described below were carried out on
this extraction graph.

4.1 Qualified-List Queries
Qualified-list queries enable the user to search for sets of

objects described by multiple properties even though each
property may be mentioned on a distinct Web page. Given
the success of IE systems such as KnowItAll [13] in locat-
ing instances of simple classes (e.g., cities or movies) on the
Web, it is natural to ask whether qualified-list queries could
be answered in the same manner. Thus, when a user sub-
mits the query “American physicist”, KnowItAll utilizes
Hearst-style extraction patterns (e.g., “American physicists
such as ...”) to answer the query. KnowItAll typically uti-
lizes large numbers of Google queries, giving it an unfair ad-
vantage relative to TextRunner’s 90-million page index.5

To better control the experiment, we utilized KnowItNow

[4] which invokes KnowItAll’s extraction algorithms but
queries its own indexed corpus. Thus, we had both Tex-

tRunner and KnowItNow extracting information from
the same set of Web pages.

To create a set of test qualified-list queries, we identi-
fied a set of common noun phrases contained in KnowIt-

Now’s hypernym ontology. We restricted these phrases to a
set of items that were described by at least two attributes,
for instance, “classic French fare”, “OPEC country”, and
“animated cartoon character.” This enabled us to directly
evaluate the value of TextRunner’s predicate edges and
spreading activation search which are added on top of the
Is-A edges obtained through KnowItNow’s set of hyper-
nym patterns. More examples of qualified-list queries can
be seen in Table 4.

We further restricted the test queries to ones where query-
ing the phrase using the Google search engine returned a hit
count lower than a certain threshold. In such cases, there
may be no need for a system such as TextRunner. We
limited evaluation to a set of twenty test queries because we
had to manually tag extractions to determine precision.

4.1.1 Results
5Note that KnowItAll’s reliance on numerous Google
queries, for every qualified-list query, makes it slow and thus
impractical as a search engine.
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Figure 3: Precision and Recall of TextRunner and
KnowItNow on the qualified-list queries test set.
TextRunner has an average recall that is 11.4% bet-
ter than KnowItNow and is 40% more precise.

We evaluated the precision and recall of TextRunner

and KnowItNow over our query test set. To enable the
evaluation of recall, given that the full set of answers to
each query is not known, we asked each system to output
up to a fixed number of objects Lq for each query q. This
enables us to define recall R at each list position p as

Rp =
X

q∈Q

Correct(q, p)

Lq

where Q is the set of queries, and Correct(q, p) represents
the number of correct extractions for a query q through po-
sition p. For example, if we asked a system to output 20
objects per query, it would achieve perfect recall if it was
able to return a correct instance in every position from 1 to
20, for every query. We set L, the size of the list output, to
be 10. For our set of queries, this setting for L ensures that
we do not ask for more answers than are known to exist.

Figure 3 shows the average precision and recall over the
queries in our test set for both the TextRunner and Know-

ItNow systems, when asking each system to return up to
ten results per query. On 80% of the test queries, KnowIt-

Now failed to find the maximum allowable number of an-
swers. This happened only 25% of the time for TextRun-

ner. If we compare answers in the top-ranked position,
TextRunner achieves a precision of 0.62 compared to 0.47
obtained by KnowItNow.

At a maximum of ten answers per query, TextRunner’s
recall is 11.4% better than KnowItNow. The answers
found by TextRunner were found to be 40% more pre-
cise. Thus, when compared on the same corpus, relational
search consistently finds more correct instances compared to
an information extraction system that is built upon hyper-
nym extraction patterns alone.

5. CONCLUSIONS AND FUTURE WORK
This paper introduced TextRunner, which extracts in-

formation from the Web to answer challenging qualified-list
queries. TextRunner relies on the extraction graph, a
novel approximation to a semantic network that is automati-

cally extracted from Web pages. In a series over experiments
over 90 million Web page corpus, and the resulting 227 mil-
lion node extraction graph, we provided measurements that
seek to quantify the benefit of TextRunner when com-
pared to state-of-the-art search and information extraction
systems.

We enumerate some of the most prominent directions for
future work below. First, TextRunner needs to be evalu-
ated on larger query sets, larger document collections, in a
variety of different domains, and via exposure to live users.
It would also be instructive to test TextRunner on addi-
tional corpora such as LexisNexis or Medline. Second, Tex-

tRunner would benefit from merging of both objects (i.e.,
entity merging) and predicates (i.e., finding synonyms). Typ-
ical algorithms for these tasks (e.g., [10]) use domain specific
information, but it is easy to envision a general set of heuris-
tics as follows. Entities that share enough triples are merged,
then predicates that share enough objects are merged as
well. This mutually recursive process can be repeated until
quiescence. Third, TextRunner should intelligently han-
dle references to multiple real-world objects that share a
single name (e.g. “Jaguar” is a car and an animal). This
problem can lead TextRunner to mistakenly mix relation-
ships from distinct, but similarly-named, objects. Finally,
we plan to investigate TextRunner’s ability to integrate
information seamlessly from non-textual sources including
RDF, databases, and HTML tables with information ex-
tracted from the Web.

Much of the innovation in search-engine research focuses
on the Web as a set (or graph) of documents. Semantic
Web research analyzes the other extreme where informa-
tion is expressed in machine-processable languages such as
RDF and OWL. Relational Web search is a step in the re-
search program that seeks to unify these disparate bodies
of research. TextRunner takes as input today’s HTML-
based Web, and commits to a scalable design, but attempts
to yield better query responses by extracting structure and
unearthing valuable semantic information.
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