
Commonsense from the Web: Relation Properties

Thomas Lin and Mausam and Oren Etzioni
Turing Center

University of Washington
Seattle, WA 98195, USA

{tlin,mausam,etzioni}@cs.washington.edu

Abstract

When general purpose software agents fail, it’s often be-
cause they’re brittle and need more background common-
sense knowledge. In this paper we present relation properties
as a valuable type of commonsense knowledge that can be au-
tomatically inferred at scale by reading the Web. People base
many commonsense inferences on their knowledge of rela-
tion properties such as functionality, transitivity, and others.
For example, all people know that bornIn(Year) satisfies the
functionality property, meaning that each person can be born
in exactly one year. Thus inferences like "Obama was born in
1961, so he was not born in 2008", which computers do not
know, are obvious even to children. We demonstrate scalable
heuristics for learning relation functionality from noisy Web
text that outperform existing approaches to detecting func-
tionality. The heuristics we use address Web NLP challenges
that are also common to learning other relation properties,
and can be easily transferred. Each relation property we learn
for a Web-scale set of relations will enable computers to solve
real tasks, and the data from learning many such properties
will be a useful addition to general commonsense knowledge
bases.

Introduction
People are more robust than software agents because they
can fall back on commonsense knowledge when encoun-
tering unexpected situations. With the advent of the Web,
projects such as WebKB (Craven et al. 2000), KnowItAll
(Etzioni et al. 2004), Cyc (Matuszek et al. 2005), YAGO
(Suchanek, Kasneci, and Weikum 2007), KNEXT (Gordon,
Van Durme, and Schubert 2010), and many others have ex-
plored approaches for reading this type of knowledge off the
Web. However, Web reading aspects of those projects have
typically focused on retrieving explicitly stated knowledge.

A problem with commonsense is that much of it is not
explicitly stated on the Web. For example, a statement like
"a thirsty person would want water" is shared background
knowledge that everyone knows, and thus isn’t what peo-
ple would typically post to the Web. Commonsense projects
have used various methods to elicit this additional knowl-
edge, including having it hand-encoded by human experts
(Lenat 1995) or volunteers (Singh et al. 2002), inference

Copyright c© 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

(Schoenmackers, Etzioni, and Weld 2008) and generaliza-
tion (Speer, Havasi, and Lieberman 2008).

An additional type of implicit commonsense knowledge,
which projects have not typically investigated, is relation
properties. Consider the following example from Ritter et
al. (2008):

given: Brad Pitt, was born in, Oklahoma
do we know if: Brad Pitt, was born in, California

If we are given that Brad Pitt was born in Oklahoma
(above), our common sense tells us that Brad Pitt was not
also born in California. This is because the relation ex-
pressed by the phrase was born in can be characterized here
as a function from people’s names to their unique birth-
places. Not all relations are functional, for example if Brad
Pitt visited Oklahoma, that tells us nothing about whether he
also visited California.

Consider another example:

given: Eiffel Tower, is located in, France
given: France, is located in, Europe
do we know if: Eiffel Tower, is located in, Europe

It is common sense that if the Eiffel Tower is in France
and France is in Europe, then the Eiffel Tower is also in
Europe because we know that the is located in relation is
transitive. However, just like with the was born in example,
this is background knowledge that software applications do
not have by default in the same way as people do. Because
people understand the properties of these relations, it makes
them more robust to noise when dealing with the real world.

In addition to functionality and transitivity, there are
dozens of other relation properties that people have internal-
ized such as symmetry (f(a,b) → f(b,a), e.g., is friends with),
1-to-1 (e.g., is president of), 1-to-many (each element maps
to multiple elements, e.g., is co-advised by) and temporal
permanence (whether a relation depends on time). Having
all this relation property information for a large set of rela-
tions would be a valuable and useful addition to a common-
sense knowledge base.

But how can we obtain relation property knowledge? It
would be difficult to hand encode all of it because there are
a very large number of relations in the world (potentially
millions), and for each we are interested in a large and po-
tentially complex set of properties. Also because this knowl-

Figure 1: Our larger vision, in which learning Relation Properties
provides us with commonsense to enable more robust agents and
applications.

edge is implicit, it cannot just be read directly off the Web.
In this paper we propose that relation properties can be au-

tomatically learned from the Web in a scalable manner. To
do this, we first employ Open Information Extraction (Open
IE) (Banko et al. 2007) to extract a large set of explicit asser-
tions from the Web. Given these assertions, we can then sta-
tistically infer properties from instances, and add the prop-
erty information to a commonsense knowledge base. Figure
1 illustrates the proposed setup.

For each property that we would like to detect, we can
obtain a logical formulation (Popescu 2007). Using f(a,b)
to denote the relation f holding between arguments a and b,
some examples of logical formulations are:

Functional: ∀a,b,c: f(a,b)& f(a,c) → (b=c)
Transitive: ∀a,b,c: f(a,b)& f(b,c) → f(a,c)

Once we have a logical formulation, we can analyze how
often the formulation holds within our corpus of assertions.
For example, for was born in(State), we might observe that
each arg1 only maps to a single arg2, and therefore the for-
mula for the functionality property holds. However, this is
a much more difficult problem than just checking for satis-
faction of logical formula because of the large number of
non-trivial challenges that we encounter when working with
real-world noisy English on the Web. Issues like first argu-
ment ambiguity, second argument ambiguity, relation am-
biguity, synonyms, hypernyms, extraction error, sparsity on
certain topics and misinformation on others are all problems
that can affect the accuracy of the method.

As a first step toward learning all interesting relation prop-
erties, we develop scalable heuristics for learning the func-
tionality property from noisy Web text. Functionality ex-
hibits most of the challenging characteristics of learning
general relation properties, and many of the heuristics we ex-
plore will also generalize to learning other properties. Also,
functionality detection has recently seen many applications
such as contradiction detection (Ritter et al. 2008), synonym
resolution (Yates and Etzioni 2009), quantifier scope disam-
biguation (Srinivasan and Yates 2009) and review mining

(Popescu 2007).
The primary contributions of this paper are to frame the

importance of relation properties as commonsense and de-
scribe effective methods for handling the functionality prop-
erty that can also apply to learning other relation proper-
ties. In the next section we describe related work in relation
properties and functionality detection. In the third section,
we describe the methods we used for functionality detection
from noisy Web text. We then compare several techniques
via an evaluation on a set of test relations, and show that
one of our function systems, named Mr. Clean, is able to
achieve higher precision and recall than previous work. We
conclude by showing how functionality can help on a dis-
ambiguation task and providing intuition for how the same
techniques used for functionality can also apply to learning
other relation properties.

Related Work
Relations are often expressed using verbs, so an effort to
detect properties for relations could conceivably be tied to
a large online verb lexicon like VerbNet (Kipper-Schuler
2005). VerbNet does provide valuable syntactic and seman-
tic information about verbs, but it does not currently have
the type of property information we are interested in. More-
over, VerbNet contains 4,656 verb senses (5,257 in extended
VerbNet) and this misses many of the relation strings in Web
text. Our Open IE system identifies 16,247 high quality re-
lations (resolved for synonymy, grounded by real-world en-
tities in instances, and occuring multiple times on the Web),
and over 1M distinct relation strings between arguments.

AuContraire (Ritter et al. 2008) is a contradiction detec-
tion system that also has a functional relation detection as-
pect. Ritter et al.’s idea is to determine a list of functional re-
lations (e.g., wasBornIn), and use that to find contradictions
(e.g., Obama was born in 1961 and Obama was born in 2008
are contradictions). AuContraire emphasizes requiring a lot
of hand-engineered knowledge, which limits the scalability
of their approach. They include type-specific sources such
as geographic knowledge and lists of common first names
in order to deal with the problems that arise in natural lan-
guage functionality detection. Also, for polysemous rela-
tions where some arg2 types are functional but others aren’t,
they classify the entire relation as non-functional without
separating types. This led to the vast majority of frequent
relations being labeled as non-functional.

Srinivasan and Yates (2009) developed a Quantifier Scope
Disambiguation (QSD) system that relied on first making
judgments on relation functionality. In order to determine
functionality, they look for numeric phrases following the
relation.

the fire, destroyed, four shops
the fire, destroys, the shop

For example, you can tell that the destroyed relation is
non-functional because the Web has evidence of something
destroying multiple things. One problem with this approach
is that it performs poorly for relations that naturally expect
numbers as the target argument (e.g., has an atomic num-
ber of). However, the key difference between their work

and ours is that they end up finding whether relations are
functional when time is fixed (temporal functionality). This
is because their functionality determinations are all based
on evidence within single sentences (where time is fixed),
rather than by combining evidence from multiple sentences
(over which time may vary).

Temporal functionality does not satisfy our logical for-
mulation for functionality. For example in Srinivasan’s test
set, destroyed is non-functional but destroys is functional,
because you can only destroy one thing at a time but you
could have destroyed multiple things in the past. If destroys
is treated as functional then the following two statements
would appear to contradict, but they don’t:

Hurricane Gilbert, destroys, Jamaica
Hurricane Gilbert, destroys, the Yucatán Peninsula

While temporal functionality is appropriate for certain ap-
plications (e.g., QSD), it does not help with others (e.g., con-
tradiction detection). By combining a temporal functional-
ity detection system with an instance-based functionality de-
tection system using a simple rule-based approach, we can
create a classifier that distinguishes between functional, not
functional, and temporally functional.

In a preliminary study Popescu (2007) aimed at detecting
relation properties, but required human labeled type restric-
tions on the relations making their approach far less scalable
than ours. Moreover, we demonstrate the effectiveness of
using existing knowledge resources to this task.

Scalable Functionality Detection
Following our logical definition ∀a,b,c: f(a,b)& f(a,c) →
(b=c), functionality is when a relation maps each arg1 to ex-
actly one arg2. For example, bornIn(Year) is functional be-
cause someone can only be born in one year. Note that some
relations that may seem functional at first (e.g., married) are
actually non-functional by our definition because people can
marry multiple people. Functionality can also be considered
as a distribution on expected number of arg2s for any arg1. If
very few arg2 are expected, this can fall under a type of non-
functionality known as approximate pseudo-functionality
(Schoenmackers, Etzioni, and Weld 2008) where a relation
is still functional enough for scalable inference.

Acquiring Instances
We want to classify relation properties for as many relations
as possible. We choose to get assertions via Open IE because
it is able to extract assertions from the Web in a scalable
relation-independent method with precision comparable to
traditional extraction systems (Banko and Etzioni 2008). We
use output from the TextRunner Open IE system (Banko and
Etzioni 2008), so our assertions are of the form (arg1, rela-
tion, arg2). TextRunner has been run on over 500 million
webpages, yielding over 800 million extractions. Our func-
tionality detection method involves checking arg2 values for
specific unambiguous arg1 values, so we restrict the asser-
tions to those that have proper nouns as the first argument.
We also disallow dictionary words, so this automatically fil-
ters out ambiguous arg1 values like "dad" that AuContraire
needed EM to detect.

When extracting off the Web, redundancy is a valuable
measure for ranking which extractions are more likely to
be correct. If the same extraction arises from multiple sen-
tences on different sites, it is more likely to be correct. How-
ever, not all redundancy indicates quality. For example, the
same news headline ("Saudi collector buys a Picasso") or fa-
mous quotation ("a raven is like a writing desk") may appear
in many places. A disclaimer sentence could be repeated
a thousand times on different pages within a domain. We
found that an effective method for filtering duplicate source
sentences was to keep a running list of sentence fragments
(when split on non-alphanumeric characters) and for any
assertion, filter out evidence sentences that share sentence
fragments as duplicates.

Equality Checking and Connected Components
We first design a functionality system where the inputs are
(1) a list of relations and (2) the instances (arg1 → arg2 map-
pings) for each of those relations, and the output is a proba-
bility that each relation is functional. To determine whether
a relation is functional from a set of instances, we check
whether it is functional for each distinct arg1 in that set (lo-
cal functionality) by comparing all arg2 values for that arg1.
If an arg1 maps to multiple arg2 that are not equal, then this
supports non-functionality. If an arg1 maps to multiple arg2
that are all equal, then this supports functionality. As Fig-
ure 2 shows, this is a challenging problem because of many
sources of noise. To find signal here, we need arg2 equality
metrics that are resilient against some noise.

When checking arg2 equality, an important consideration
is argument types. If two arg2 are of different types, we
don’t want to count that as evidence for non-functionality,
e.g., bornIn(1961) vs. bornIn(Hawaii). To keep the method
scalable, initially we only separate arg2s into types that can
be determined without additional background knowledge:
proper nouns (with capitalization) vs. common nouns vs.
numbers. If two arg2s for an arg1 are of different types, we
do not count that as evidence for either functionality or non-
functionality.

Another large source of noise is the synonymy problem
where the same concept is expressed in different ways in
arg2. A method that we found useful for handling this is to
examine all the arg2s for an arg1, and form connected equal-
ity clusters among the arg2 that share non-dictionary words.
For example, for the query "Bluetooth, was named after, ?",
we see arg2 values like (1) Harald Bluetooth, (2) Harald
Bluetooth, King of Denmark, and (3) the King of Denmark.
Our method connects (1) and (2) via the word Harald and
then connects (2) and (3) via Denmark. It is then able to
determine that Harald Bluetooth and the King of Denmark
refer to the same entity without background knowledge like
AuContraire required. Setting the arg2 as vertices in an
undirected graph, this is the connected components problem
from graph theory.

This method also helps solve meronymy issues such as lo-
cations. We see many cases where a famous person lived in:
(1) Boston, (2) Boston, Massachusetts, (3) Massachusetts.
Our method can automatically determine that Boston and
Massachusetts refer to the same entity in the scope of the

Figure 2: Sample second argument values that we see in Web text for a non-functional relation (visited) vs a functional relation (was born
in) illustrate the challenge in discriminating properties such as functionality, 1-to-1 and 1-to-many from Web text.

relation. Because local functionality looks at arg2 where
the arg1 is fixed, we avoid ambiguity problems that we’d
normally get with this type of matching. For example, this
method would not confuse Bank of America and the river
bank, because those two terms are unlikely to appear in the
same arg2 list.

We then combine all the local functionality scores (e.g.,
the functionality of "Obama, was born in") to determine
global functionality (the overall functionality of was born
in). From a small representative set, we estimate values
for P(b=c|Rf) and P(b=c|¬Rf) where b and c are any two
arg2s with the same arg1 and Rf represents that relation be-
ing functional. For each relation we can then use Bayes’ rule
with our pairwise argument equality determinations over the
instances to estimate P(Rf). Our implemented system based
on the methods described in this section is named Con-
nComp.

Clean Lists and Freebase
Connected Components reduces error from synonymys
(Mars, the Red Planet) and meronyms (Paris, France), but
the exact arg2 values needed for it to work will not always
be present, and it uses weak typing so it cannot distinguish
between different senses of polysemous relations. We de-
sign an even stricter argument restriction approach to ad-
dress those problems - namely, only consider the elements
that match elements of predefined type lists.

For the intuition behind this, consider the two examples
in Figure 2. If we knew that visited(State) and was born
in(State) were appropriate typed relations, then we could
check the functionality of relations in the cases where the
arg2 matched on a predefined list of states. In this case we
would see evidence of non-functionality for visited(State)
(Giuliani visited multiple states including Florida, Michi-
gan and South Carolina), and evidence of functionality for
was born in(State) (George Washington was only born in
one state - Virginia).

This method requires that we have enumerated lists of the
popular elements for the types that we are interested in. We
need the type lists to be clean, which we define as: (1) all
of the elements are of that type, and (2) each element of
the list appears only a single time in the list (so a list of

people can have Hillary Clinton or Hillary Rodham Clinton
but not both). To maintain scalability, we get our type lists
from Freebase (Metaweb Technologies 2009). Freebase is
a pre-existing community-generated freely available online
database of over 12 million terms, and their downloadable
data includes over 1,000 typed lists. They are also constantly
expanding.

This Clean Lists method also requires that we know which
types are valid as the second argument of our relations. Sev-
eral methods for finding appropriate arg2 types for each re-
lation include: (1) Hand-specifying the appropriate types
for each relation, (2) Using a selectional preferences system
e.g., (Ritter, Mausam, and Etzioni 2010) to determine the
matching types, and (3) Matching the observed arg2 against
the type lists to determine which types are most prevalent in
the arg2 set.

Mapping our relations to Freebase in this method also
gives us some additional benefits. First, our relations are
now typed, so we can identify polysemous relationships and
come up with functionality determinations for each of their
senses. This is important because for relations like weighs,
senses like weighs(Weight) are functional while senses like
weighs(Option) are not. Second, once the relations are asso-
ciated with Freebase types, they can be connected to existing
systems that use Freebase or WordNet (through Freebase-
WordNet mappings). Third, Freebase also gives us a good
way to filter remaining ambiguous arg1: filter arg1s that
match on multiple elements in a type list. For example,
"George" is ambiguous because it matches many elements
within the people list (e.g., George Bush, George Will).

A potential downside of mapping to Freebase is sparsity
issues when the arg2 value doesn’t exactly match the way
it is expressed in a type list. One technique for addressing
this is to admit not only exact string matches to our type
lists, but also matches where the arg2 is an element of the
type list plus one additional preceding word (e.g., so that
"the United States" can match "United States"). We make
sure the additional word is not a preposition (e.g., "over"
or "near") because that changes the arg2 semantics. Another
way to combat sparsity is to introduce more data. Our corpus
is the Web, so more data can be easily obtained as needed.

We implement Clean Lists in a system named Mr. Clean.

Figure 3: A comparison of Mr. Clean, ConnComp, and Numer-
icPhrases on a test set for Functionality Detection. Mr. Clean
achieves the highest precision/recall.

The input to Mr. Clean includes (1) a list of relations, (2)
their instances, and (3) type lists from Freebase. The output
includes a list of typed relations, and for each, a "% Func-
tional" determination that corresponds to the % of arg1 that
are locally functional for that typed relation.

Evaluation
The "% Functional" output from Mr. Clean can be used to
rank or classify relations. We found that because of extrac-
tion error and misinformation on the Web, functional rela-
tions tended to be in the 90-100% functional range, rather
than 100%. Varying the threshold needed for functionality
allows us to create a precision/recall curve.

We also implement a version of Srinivasan’s numeric
phrases system using singular pronouns in arg1, their exact
list of numeric quantifiers, and the extraction pattern they
used that corresponds best to relations of the form we con-
sider. We ran that system, which we will refer to here as
NumericPhrases, over 100 million English sentences from a
crawl of high quality webpages.

We compare the precision/recall of ConnComp, Mr.
Clean, and NumericPhrases on a set of test set of 20 rela-
tions. We chose 10 functional relations (was born in, died in,
is headquartered in, was founded in, assassinated, weighs,
represents, comes from, is named after, was published in)
and 10 non-functional relations (visited, traveled to, mar-
ried, was banned in, attacked, sang, painted, acquired, looks
like, wrote). We chose these relations because their func-
tionality determinations are fairly clear, and they are all very
common relations so TextRunner has ample data.

The results in Figures 3 and 4 show that on this test set,
Mr. Clean is able to achieve higher precision/recall than
the other methods, and is also able to identify more typed
relations from the original set. An example of where Nu-
mericPhrases did not work is the looks like relation. While
it is possible for someone to look like multiple other peo-

Figure 4: Clean Lists finds many more functional typed relations.

ple, it isn’t stated explicitly in text with numeric phrases
(nobody says "he looks like 2 celebrities.") Mr. Clean is
the only system that can add types to relations - it can dis-
tinguish relations like wrote(Song) from wrote(Person), or
wasBornIn(Year) from wasBornIn(Country). Mr. Clean ap-
pears to be the best, but note that it only works for relations
where the arguments fit cleanly into type lists. For relations
that don’t (e.g., considered), we should use ConnComp and
NumericPhrases.

Finding Prominent Senses using Functionality
To illustrate the utility of knowing functionality, we show
here how it helps with a disambiguation task. The problem
here is: "When a term belongs to multiple type lists, which
sense is the most prominent?" For example, Freebase clas-
sifies Oregon as both a state and a city because it is also the
name of a small city in Wisconsin. Is the primary sense of
Oregon the state sense or the city sense?

One way to approach this problem is to count inlinks to
Wikipedia articles to determine prominent senses (Fader,
Soderland, and Etzioni 2009). However, this problem can
also be solved with less work using functionality. Mr. Clean
classifies wasBornIn(City) as functional, so if we see that
someone was born in both Portland and Oregon and we
know that Portland is only a city, then we have reason to be-
lieve that the primary sense of Oregon is a state rather than a
city because we now know that you would not be born in two
different cities. The algorithm is that when we have multiple
potential types for an arg2 and a relation that is likely to be
functional, we can find the prominent sense by disallowing
potential types that are already used by unambiguous arg2
that share the same arg1 values.

As a test set, we consider the situation where we have
wasBornIn with arg2 types: city, state, country, and year.
There are 123 wasBornIn arg2 in our corpus that fall into

Assign All Random As-
signments

Functional
Distribute

Correct 117 58.16 95
Incorrect 131 64.83 4
Accuracy 47.18% 47.29% 95.96%

Table 1: Knowing functionality allows us to assign prominent
senses to ambiguous terms with much higher accuracy than naïve
baselines.

multiple of those type lists. Of these, 121 matched in 2 Free-
base lists, and 2 of them matched in 3 lists. There were 5
terms that matched multiple lists but did not fit into any of
them. One term matched multiple lists but actually best fit
in a qualifying list that it did not match.

Table 1 shows the number of correct and incorrect type as-
signments that we would get using a baseline of "assign all
arg2 to all types," "randomly assign arg2 to qualifying types"
(the expected number of values is reported), and from using
our functionality method. We see that by taking advantage
of functionality information, we are able to do this task very
well. There’s also a synergistic, recursive nature between
this task and typed functionality detection: the better we can
do this disambiguation, the more accurate the functionality
results. And we can feed in more accurate functionality re-
sults for even better disambiguation.

Conclusions and Future Work

In this paper we proposed relation properties as a valuable
type of commonsense knowledge that we can automatically
infer at scale by reading the Web. In a case study on the
functionality property, we showed that with Open IE and
techniques such as filtering, equality checking, connected
components and clean lists, we are able to scalably and ac-
curately determine relation functionality. Relation function-
ality is useful for numerous practical tasks such as contra-
diction detection, synonym resolution, quantifier scope dis-
ambiguation, and the prominent senses task that we showed.
Lin et al. (2010) extends the discussed techniques and ap-
plies functionality detection to a large set of relations to gen-
erate a knowledge base of functional relations.

In the future we wish to extend our work to automatically
learn other relation properties, as they generally all share
similar NLP challenges. The Open IE-based method for ac-
quiring instances is especially valuable for identifying prop-
erties such as transitivity and functionality that can best be
detected via algorithms that incorporate tuples from varying
sources. It is also useful as an independent method (with in-
dependent errors) for properties like symmetry where lexico-
syntactic patterns may seem more natural. Precise equal-
ity checking techniques, such as connected components and
other heuristics we used, are vital for identifying proper-
ties like 1-to-many. Drawing in structured type information,
such as from Freebase, to clean the data and type the rela-
tions will be helpul toward identifying almost all relation
properties because it is so effective at reducing the noise
from natural language.

The relation properties we end up learning for a wide
range of relations and properties will be valuable implicit
knowledge for a commonsense knowledge base to enable
more robust software agents and applications. Harking back
to the examples from the introduction, we envision a future
where general purpose AI programs all have the common
sense to figure out that Brad Pitt could not also have been
born in California by knowing functionality, and that the Eif-
fel Tower must be located in Europe because it’s located in
France, by knowing transitivity.

Acknowledgements
This research was supported in part by NSF grant IIS-
0803481, ONR grant N00014-08-1-0431, DARPA contract
FA8750-09-C-0179, a NDSEG Fellowship, and carried out
at the University of Washington’s Turing Center.

References
Banko, M., and Etzioni, O. 2008. The tradeoffs between open and
traditional relation extraction. In ACL 2008.
Banko, M.; Cafarella, M.; Soderland, S.; Broadhead, M.; and Et-
zioni, O. 2007. Open information extraction from the web. In
IJCAI 2007.
Craven, M.; DiPasquo, D.; Freitag, D.; McCallum, A.; Mitchell, T.;
Nigam, K.; and Slattery, S. 2000. Learning to construct knowledge
bases from the world wide web. In Artificial Intelligence.
Etzioni, O.; Cafarella, M.; Downey, D.; Kok, S.; Popescu, A.-M.;
Shaked, T.; Soderland, S.; Weld, D.; and Yates, A. 2004. Web-scale
information extraction in KnowItAll. In WWW 2004.
Fader, A.; Soderland, S.; and Etzioni, O. 2009. Scaling wikipedia-
based named entity disambiguation to arbitrary web text. In WikiAI
2009.
Gordon, J.; Van Durme, B.; and Schubert, L. 2010. Learning from
the web: Extracting general world knowledge from noisy text. In
WikiAI 2010.
Kipper-Schuler, K. 2005. Verbnet: A broad-coverage, comprehen-
sive verb lexicon. In Ph.D. thesis. University of Pennsylvania.
Lenat, D. 1995. Cyc: A large-scale investment in knowledge in-
frastructure. In CACM, volume 38.
Lin, T.; Mausam; and Etzioni, O. 2010. Identifying functional
relations in web text. In EMNLP 2010.
Matuszek, C.; Witbrock, M.; Kahlert, R.; Cabral, J.; Schneider,
D.; Shah, P.; and Lenat, D. 2005. Searching for common sense:
Populating Cyc from the web. In AAAI 2005.
Metaweb Technologies. 2009. Freebase data dumps. In
http://download.freebase.com/datadumps/.
Popescu, A.-M. 2007. Information extraction from unstructured
web text. In Ph.D. thesis. University of Washington.
Ritter, A.; Downey, D.; Soderland, S.; and Etzioni, O. 2008. Itś a
contradiction - no, it’s not: A case study using functional relations.
In EMNLP 2008.
Ritter, A.; Mausam; and Etzioni, O. 2010. A latent dirichlet allo-
cation method for selectional preferences. In ACL 2010.
Schoenmackers, S.; Etzioni, O.; and Weld, D. 2008. Scaling textual
inference to the web. In EMNLP 2008.
Singh, P.; Lin, T.; Mueller, E.; Lim, G.; Perkins, T.; and Zhu, W.
2002. Open Mind Common Sense: Knowledge acquisition from
the general public. In ODBASE 2002.
Speer, R.; Havasi, C.; and Lieberman, H. 2008. AnalogySpace:
Reducing the dimensionality of common sense knowledge. In
AAAI 2008.
Srinivasan, P., and Yates, A. 2009. Quantifier scope disambigua-
tion using extracted pragmatic knowledge: Preliminary results. In
EMNLP 2009.
Suchanek, F.; Kasneci, G.; and Weikum, G. 2007. Yago: A core of
semantic knowledge unifying Wordnet and Wikipedia. In WWW
2007.
Yates, A., and Etzioni, O. 2009. Unsupervised methods for de-
termining object and relation synonyms on the web. In JAIR, vol-
ume 34, 255–296.

