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Abstract

Redundancy in Web-scale Information Extraction: Probabilistic Model and
Experimental Results

Douglas C. Downey

Chair of the Supervisory Committee:
Professor Oren Etzioni

Computer Science & Engineering

Information Extraction (IE) is the task of automatically extracting knowledge from text.

The massive body of text now available on the World Wide Web presents an unprece-

dented opportunity for IE. IE systems promise to encode vast quantities of Web content

into machine-processable knowledge bases, presenting a new approach to a fundamental

challenge for artificial intelligence: the automatic acquisition of massive bodies of knowl-

edge. Such knowledge bases would dramatically extend the capabilities of Web applications.

Future Web search engines, for example, could query the knowledge bases to answer com-

plicated questions that require synthesizing information across multiple Web pages.

However, IE on the Web is challenging due to the enormous variety of distinct concepts

expressed. All extraction techniques make errors, and the standard error-detection strategy

used in previous, small-corpus extraction systems—hand-labeling examples of each concept

to be extracted, then training a classifier using the labeled examples—is intractable on the

Web. How can we automatically identify correct extractions for arbitrary target concepts,

without hand-labeled examples?

This thesis shows how IE on the Web is made possible through the KnowItAll hypothesis,

which states that extractions that occur more frequently in distinct sentences in a corpus

are more likely to be correct. The KnowItAll hypothesis holds on the Web, and can be

used to identify many correct extractions because the Web is highly redundant: individual





facts are often repeated many times, and in many different ways. In this thesis, we show

that a probabilistic model of the KnowItAll hypothesis, coupled with the redundancy of

the Web, can power effective IE for arbitrary target concepts without hand-labeled data.

In experiments with IE on the Web, we show that the probabilities produced by our model

are 15 times better, on average, when compared with techniques from previous work. We

also prove formally that under the assumptions of the model, “Probably Approximately

Correct” IE can be attained from only unlabeled data.
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Chapter 1

INTRODUCTION

Web search engines are invaluable tools for answering questions: a user curious about

the identity of the “1946 World Series champion,” for example, need only type that phrase

into a search engine to immediately find a page that mentions the answer. However, despite

their utility, search engines can address only a fraction of the questions users attempt to

answer on the Web. Consider, for example, a job seeker in search of a list of nanotechnology

companies hiring on the West Coast, or a computer buyer needing a summary of reviews

on the Web for a particular laptop. The answers to the questions can be found on the Web,

but not on just a single page. Obtaining the answers requires extracting and synthesizing

information from multiple documents—using existing Web search engines, this is a tedious

and error-prone manual process.

Recently, systems such as KnowItAll [23, 24, 26], TextRunner [5, 6], and others [45]

have attempted to automate the collection of facts from the Web. Automatically extracting

knowledge from text is the task of Information Extraction (IE). Applied to the Web, IE

promises to radically improve Web search engines, allowing them to answer complicated

questions by synthesizing information across multiple Web pages. Further, extraction from

the Web presents a new approach to a fundamental challenge in artificial intelligence: the

automatic accumulation of massive bodies of knowledge.

IE on the Web is particularly challenging due to the variety of different concepts ex-

pressed. The strategy employed for previous, small-corpus IE is to hand-label examples for

each target concept, and use the examples to train an extractor [28, 56, 9, 13, 42, 38]. On

the Web, hand-labeling examples of each concept is intractable—the number of concepts of

interest is simply far too large. IE without hand-labeled examples is referred to as Unsu-

pervised Information Extraction (UIE). UIE systems such as KnowItAll, TextRunner,

and others have demonstrated that at Web scale, automatically-generated textual patterns
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can perform UIE for millions of diverse facts. As a simple example, an occurrence of the

phrase “C such as x” suggests that the string x is a member of the class C, as in the phrase

“films such as Star Wars.”

However, all extraction techniques make errors, and a key problem for any IE system

is determining which of its extractions are correct. In UIE, where labeled examples are

unavailable, the task is particularly challenging. How can we automatically identify correct

extractions for arbitrary target concepts, without hand-labeled examples?

This thesis introduces a solution to the above question that applies across a broad

spectrum of UIE systems and techniques. It relies on the KnowItAll hypothesis, which

states that extractions that occur more frequently in distinct sentences in a corpus are more

likely to be correct. The KnowItAll hypothesis holds on the Web, and serves as a Web-scale

complement to the fundamental distributional hypothesis of language, which states that

words with similar meanings tend to appear in similar contexts.

KnowItAll hypothesis: Extractions drawn more frequently from

distinct sentences in a corpus are more likely to be correct.

Intuitively, we would expect the KnowItAll hypothesis to hold because although extrac-

tion errors occur (e.g., KnowItAll erroneously extracts California as a City name from

the phrase “states containing large cities, such as California”), errors occurring in distinct

sentences tend to be different. Thus, typically a given erroneous extraction is repeated only

a limited number of times. Further, while the Web does contain some misinformation (for

example, the statement “Elvis killed JFK” appears almost 200 times on the Web according

to a major search engine), this tends to be the exception (the correct statement “Oswald

killed JFK” occurs over 3000 times).

At Web-scale, the KnowItAll hypothesis can identify many correct extractions due to

redundancy: in large corpora like the Web, individual facts are often repeated many times,

and in many different ways. For example, consider the TextRunner Web information

extraction system, which extracts relational statements between pairs of entities (e.g., from

the phrase “Edison invented the light bulb,” TextRunner extracts the relational statement
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Invented(Edison, light bulb)). In an experiment with a set of about 500 million Web

pages, ignoring the extractions occurring only once (which tend to be errors), TextRunner

extracted 829 million total statements, of which only 218 million were unique (on average,

3.8 repetitions per statement). Well-known facts can be repeated many times. According

to a major search engine, the Web contains over 10,000 statements that Thomas Edison

invented the light bulb, and this fact is expressed in dozens of different ways.

This thesis shows that a probabilistic model of the KnowItAll hypothesis, coupled with

the redundancy of the Web, can power UIE for arbitrary target concepts. The three primary

contributions are discussed below.

1.0.1 Classification with Monotonic Features

The KnowItAll hypothesis can be expressed as an instance of a general problem structure

found in many textual classification tasks. Consider a classification task in which each

example to be classified is described by a set of features, and we are given the identity of

a monotonic feature (MF)— a feature whose value is known to vary monotonically with

the probability that an example is of a particular class. The KnowItAll hypothesis holds

because the textual patterns used for extraction are MFs. For example, the number of

occurrences of the phrase “cities such as x” is a monotonic feature for the City class.

Monotonic features are readily found in other applications as well. In document classifi-

cation, the number of times a topic word (e.g. “politics”) appears in a document is an MF

for the class of documents relevant to the topic. Similar techniques have also been demon-

strated to be effective for named-entity recognition, using a set of manually-specified MFs

[14]. Manually-specified MFs have also been employed for word-sense disambiguation [59];

this work was later extended to automatically derive the MFs from resources like WordNet

[39].

This thesis formalizes the Monotonic Feature Model (MFM) for classification, illustrates

several applications in which the model applies, and provides theorems establishing a number

of the model’s desirable properties. When a single feature exhibiting the monotonicity

property is known, PAC learnability is guaranteed from unlabeled data alone, under certain
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assumptions. The MF model is also formally distinct from, and complementary to, problem

structures considered previously in semi-supervised learning. Further, in many cases MFs

are more informative relative to labeled examples as the feature space increases in size. This

suggests that, as classification tasks trend toward larger and more complex feature spaces,

MF-based approaches will become increasingly attractive relative to the standard technique

of labeling examples.

In addition to the theoretical analysis, we investigate the power of MFs empirically with

experiments in document classification on the standard “20 Newsgroups” data set. A learner

given an MF and unlabeled data achieves accuracy equal to that of a state-of-the-art semi-

supervised learner relying on 160 hand-labeled examples. Even when MFs are not given as

input, their presence or absence can be determined from a small amount of hand-labeled

data, which yields a new semi-supervised learning method that reduces error by 15% on the

20 Newsgroups data [19].

1.0.2 The Urns Model of Redundancy in Text

While the notion of a monotonic feature is powerful, and provides performance advantages

for document classification, it has important limitations. In more challenging classification

settings (including UIE), merely knowing that a feature is monotonic is not sufficient to

provide accurate classification. We demonstrate this fact formally and empirically, with

experiments in UIE.

In order to guarantee high classification accuracy from unlabeled data alone for more

challenging tasks, a learner requires more precise information about how target class proba-

bility varies with the MF value. In IE, the KnowItAll hypothesis states that the probability

that an extraction is correct increases with its repetition. But by how much? How can we

precisely quantify our confidence in an extraction given the available textual evidence?

We present an answer to these questions in the form of the Urns model: a special case

of the MFM that captures a stronger distributional structure often exhibited by monotonic

features in practice. Urns applies to MFs that, like the examples given for IE and document

classification above, represent counts of repeated observations. Intuitively, Urns considers
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each observation to be generated by selecting an example from one of two sets: target

elements and errors. The observation counts are monotonic features because target elements

tend to have higher probabilities of being selected than do error elements.

The formal Urns model is an instance of a classic “balls and urns” model from com-

binatorics. The MF values represent counts of draws from an urn, where each ball in the

urn is tagged with the identity of an example to be classified, and tags can be repeated

on different numbers of balls. Given the frequency distribution for tags in the target set

and error set, we can compute the probability that an observed example is a target element

based how many times its tag is drawn from the urn. A key insight of Urns is that when

the frequency distributions have predictable structure (for example, in textual applications

the distributions tend to the Zipfian), they can be estimated from unlabeled data alone.

We prove that when the frequency of each tag in the urn is drawn from a mixture of

two Zipfian distributions (one for the target class and another for errors), the parameters of

Urns can be learned without labeled data. When the data exhibits a certain separability

criterion, PAC learnability is guaranteed from unlabeled data alone. We also demonstrate

that Urns is effective in practice. In experiments with UIE on the Web, the probabilities

produced by the model are shown to be 15 times better, on average, when compared with

techniques from previous work [20].

1.0.3 Language Models for Assessing Sparse Extractions

Because extraction frequency follows a Zipf distribution, even on the Web a substantial

fraction of extractions appear infrequently. The KnowItAll hypothesis alone is ineffective at

assessing which of these sparse extractions are correct. In fact, over 50% of the extractions

in our experiments appear only once, meaning that redundancy-based methods such as

Urns have no way of assessing which extraction is more likely to be correct for fully half

of the extractions.

We show that it is possible to assess sparse extractions by leveraging the KnowItAll

hypothesis in conjunction with the distributional hypothesis of language. Namely, sparse

extractions which appear in contexts more similar to those of common extractions are more
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likely to be correct.

We introduce the insight that the sub-field of statistical language modeling provides

unsupervised methods that can be leveraged to assess sparse extractions. In experiments

in UIE, an assessment technique based on language models is shown to reduce extraction

error by 39%, on average, when compared with techniques from previous work. Further,

because unsupervised language models can be pre-computed without any labeled data or

seed examples, they are ideally suited to UIE and are substantially more scalable than

techniques from previous work [21].

1.1 Thesis Outline

We present the Monotonic Feature Model in Chapter 2, including theoretical results and

experiments demonstrating its efficacy in document classification. In Chapter 3, we highlight

the limitations of the MFM and introduce the Urns model. We present theoretical results

and experiments in UIE. We show how unsupervised language models can be used to assess

sparse data in Chapter 4. Chapter 5 concludes with a discussion of future work.
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Chapter 2

CLASSIFICATION WITH MONOTONIC FEATURES

2.1 Introduction

Is accurate classification possible in the complete absence of hand-labeled data? A Priori,

the answer would seem to be no, unless the learner has knowledge of some additional problem

structure. This chapter identifies a problem structure, called Monotonic Features (MFs),

that enables the learner to automatically assign probabilistic labels to data. A feature is

said to be monotonic when the probability of class membership increases monotonically

with that feature’s value, all else being equal.

MFs occur naturally in a broad range of textual classification tasks. For example, it can

be shown that Naive Bayes text classifiers return probability estimates that are monotonic

in the frequency of a word—for the class in which the word is most common. Thus, if we

are trying to discriminate between documents about New York and Boston, then we expect

to find that the Naive Bayes feature measuring the frequency of “Giants” in the corpus is

an MF for the class New York, and likewise for “Patriots” and Boston.

As argued in the introduction, MFs are readily apparent in Information Extraction (IE)

where strings are extracted from sentences and classified into categories (e.g. City or Film)

based on their proximity to “extraction patterns”. For example, the phrase “cities such as”

is an extraction pattern. Any proper noun immediately following this pattern is likely to

denote a city, as in the phrase “cities such as Boston, Seattle, and New York” [33]. When

classifying a proper noun, the KnowItAll hypothesis asserts that the number of times the

proper noun follows an extraction pattern in a corpus turns out to be a powerful MF.

The power of MFs is not restricted to information extraction. In document classifica-

tion, the name of the class is a natural MF—the more times it is repeated in a document,

all other things being equal, the more likely it is that the document belongs to the class.

We demonstrate this to be the case empirically in Section 2.5, extending the experiments of
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[30] and [11]. Similarly, information retrieval systems classify documents into relevant and

irrelevant documents based, in part, on the Term-Frequency-Inverse-Document-Frequency

(TF-IDF) metric, and then proceed to rank the relevant documents. The term frequency

component of this metric is a monotonic feature. MF-based techniques have been demon-

strated to be effective for named-entity recognition, using a set of manually-specified MFs

[14]. Manually-specified MFs have also been employed for word-sense disambiguation [59];

this work was later extended to automatically derive the MFs from resources like WordNet

[39].

Thus, MFs have been used implicitly in a broad range of textual classification tasks.

This chapter makes the MF abstraction explicit, providing a formal theory of MFs. We also

devise an automatic method for explicitly detecting and utilizing MFs, and quantify the

method’s benefits empirically.

2.1.1 Contributions

Typically, MFs cannot serve directly as classifiers. Instead, this chapter presents theoretical

and empirical results showing that even relatively weak MFs can be used to induce a noisy

labeling over examples, and these examples can then be used to train effective classifiers

utilizing existing supervised or semi-supervised techniques.

Our contributions are as follows:

1. We prove that the Monotonic Feature (MF) model guarantees PAC learnability using

only unlabeled data, and that MFs are distinct from and complementary to standard biases

used in semi-supervised learning, including the manifold and cluster assumptions. Further,

when compared with labeled examples, MFs provide relatively greater information gain

about unlabeled examples’ labels as the feature set increases in size.

2. We present a general technique, called Mfa, for employing MFs in combination with

an arbitrary concept learning algorithm. We demonstrate experimentally that Mfa can

outperform state-of-the-art techniques for semi-supervised document classification, includ-

ing Naive Bayes with Expectation Maximization (NB-EM), and Label Propagation, on the

20 Newsgroups data set [41].
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The remainder of the paper is organized as follows. Section 2.2 defines the classification

task we consider, and Section 2.3 defines the formal properties of monotonic features. Sec-

tion 2.4 presents our theoretical results, and formalizes the relationship between the MF

approach and previous work. We present experimental results in Section 2.5, and conclude

with directions for future work.

2.2 Formal Problem Definition, Conventions and Notations

We consider a semi-supervised classification task, in which the goal is to produce a mapping

from an instance space X consisting of d-tuples x = (x1, . . . , xd), to a binary output space

Y = {0, 1}.1 We denote the concept class of mappings f : X → Y as C.

We assume the following inputs:

• A set of zero or more labeled examples DL = {(xi, yi)|i = 1 . . .m}, drawn i.i.d. from

a distribution P (x, y) for x ∈ X and y ∈ Y.

• A set of zero or more unlabeled examples DU = {(xi)|i = 1 . . . u} drawn from the

marginal distribution P (x) =
∑

y P (x, y).

• A set M ⊂ {1, . . . , d} of zero or more monotonic features for the positive class y = 1.

The monotonic features have properties specified below.

We further define CM ⊂ C as the concept class of binary classifiers that use only the

monotonic features. Similarly, let C¬M ⊂ C indicate the concept class of binary classifiers

using only the non-monotonic features.

The goal of the task is to produce a mapping c ∈ C that maximizes classification accuracy

acc(c) evaluated over a set of test examples DT also drawn i.i.d. from P (x, y):

acc(c) =
1
|DT |

∑
(x,y)∈DT

δ(c(x), y)

where δ represents the Kronecker delta, equal to one when its arguments are equal and zero

otherwise.

1For convenience, we restrict our formal framework to the binary case, but the techniques and analysis
can be extended trivially to the multi-class case.
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We will also define the error of a classifier c ∈ C as

error(c) = 1− acc(c)

We will occasionally refer to the error over a particular set of examples S, indicated as

errorS(c).

In addition to evaluating classifiers in terms of accuracy, in Chapter 3 we will also eval-

uate probabilistic models Pmodel(y|x), which explicitly estimate probabilities of class mem-

bership based on the inputs. The probabilistic models are evaluated in terms of conditional

log likelihood score ll(model), defined as:

ll(model) =
∑

(x,y)∈DT

log Pmodel(y|x) (2.1)

2.3 Definition of Monotonic Features

Monotonic features exhibit a monotonically increasing relationship with the probability that

an example is a member of the positive class. More formally, we define monotonic features

as follows:

Definition 1 A monotonic feature for class y is a feature i ∈ {1, . . . , d} for which the

following three properties hold:

• The domain of xi is fully ordered and discrete, and has finite support.2

• The conditional probability that an example is an element of class y = 1 increases

strictly monotonically with the value of xi. That is, P (y = 1|xi = r) > P (y = 1|xi =

r′) if r > r′.

• The monotonicity is non-trivial in that P (xi) has positive probability for more than

one feature value. That is, there exists r > r′ and ε > 0 such that P (xi = r), P (xi =

r′) > ε.

With this definition, we can state precisely the monotonic feature model:

2For convenience, we present our analysis in terms of discrete and finite monotonic features, but the
results can be extended naturally to the continuous case.
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Definition 2 For a learning problem from the input space X of d-tuples x = (x1, . . . , xd)

to the output space Y, the monotonic feature model (MFM) holds if and only if at least

one of the features i ∈ {1, . . . , d} is a monotonic feature for the positive class y = 1.

When tasked with a learning problem for which the MFM holds, three distinct config-

urations of the input are possible. First, monotonic features may be known in the absence

of labeled data (|M | > 0, DL = ∅). This is the setting considered in previous applications

of monotonic features, as discussed in Section 2.1. Second, monotonic features may be un-

known, but labeled data may be provided (M = ∅, |DL| > 0); this corresponds to standard

semi-supervised learning. In this case, the MFM can still be exploited by identifying mono-

tonic features using the labeled data, as described in Section 2.5.1. Lastly, both monotonic

features and labeled data may be provided (|M |, |DL| > 0). We provide algorithms for each

case and evaluate each experimentally in Section 2.5.

2.4 Theory of Monotonic Features

This section shows that under certain assumptions, knowing the identity of a single mono-

tonic feature is sufficient to PAC learn a target concept from only unlabeled data. Further,

we prove that monotonic features become more informative relative to labeled examples as

the feature set size increases. Lastly, we discuss and formally establish distinctions between

the monotonic feature abstraction and other semi-supervised techniques.

We start by introducing the conditional independence assumption, which states that

the monotonic features are conditionally independent of the non-monotonic features given

the class. Formally, the conditional independence assumption is satisfied iff P ({xi : i ∈

M}|y, {xj : j /∈M}) = P ({xi : i ∈M}|y).

We show that when the concept class C¬M is learnable in the PAC model with classifica-

tion noise, and the conditional independence assumption holds, then knowledge of a single

monotonic feature makes the full concept class C learnable from only unlabeled data.

Our result builds on the result stated below (adapted from [8]). The theorem requires

the following definition:

Definition 3 A classifier h ∈ CM is weakly-useful iff it has the following two properties
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for ε > 0:

1. P (h(x) = 1) ≥ ε, and

2. P (y = 1|h(x) = 1) ≥ P (y = 1) + ε.

Theorem 4 (adapted from [8]) If the conditional independence assumption is satisfied, and

C¬M is learnable with classification noise, then C is learnable using unlabeled data alone,

given a classifier h ∈ CM which is weakly useful with probability 1− δ for all δ > 0.

The original theorem in [8] assumes that a weakly-useful classifier is given, but it is

straightforward to show that C is PAC learnable if h has the weakly-useful properties only

with probability 1− δ for all δ > 0.3 We can now state our result.

Corollary 4.1 If the conditional independence assumption is satisfied and the concept class

C¬M is learnable in the PAC model with classification noise, then given a single monotonic

feature, C is learnable from unlabeled data only.

Proof. Our proof proceeds by showing that for any δ > 0, with probability 1 − δ a

single monotonic feature i ∈ M is sufficient to produce a classifier h with the two weakly

useful properties. First, by assumption we know there exist distinct r, r′ such that P (xi =

r), P (xi = r′) > ε′. Thus, the probability that in m unlabeled examples we observe at

least two distinct values for xi, and each at least mε′/2 times, is at least 4e−m(ε′/2)2 by

Hoeffding’s inequality and a union bound over the two values. Given that we do observe

at least two values with sufficient probability, we construct a single-threshold classifier h

that partitions the feature xi such that at least mε′/2 of the m unlabeled samples fall

on either side of the classification threshold. Then again using a Hoeffding inequality, we

know that with probability 2e−2m(ε′/4)2 , the probability mass on each side of the classifier’s

threshold is at least ε′/4. In this case, the classifier h meets the required properties, since

P (h(x) = 1) ≥ ε′/4, and by the monotonicity property of the monotonic feature, P (y =

3In this theorem and PAC learnability results that follow, we are proving only that a Probably Approx-
imately Correct classifier can be obtained from unlabeled data, not that such a classifier can be found
using a polynomial number of examples or in polynomial time. In this particular case, the latter, stronger
result holds for Corollary 4.1 whenever it holds for Theorem 4.
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1|h(x) = 1) ≥ P (y = 1) + ε. Using a union bound, we can produce such a classifier h with

probability at least 1− δ using

m >
K

ε′2δ
(2.2)

unlabeled examples for K a constant. �
The next theorem suggests that monotonic features become preferable to labeled exam-

ples as the feature space increases in size. We compare the value of monotonic features and

labeled examples in terms of information gain, defined below. For convenience, these results

are presented using a feature space XB, in which all features are binary-valued.

Definition 5 The information gain with respect to an unlabeled example’s label y pro-

vided by a variable v is defined as the reduction in entropy of y when v is given, that is∑
y′=0,1 P (y = y′|v) log P (y = y′|v)− P (y = y′) log P (y = y′).

Next, we define the two properties of the classification task that our theorem requires.

Informally speaking, the first property states that the feature space does not have fully

redundant features, whereas the second states that examples which are far apart have less

dependent labels than those which are close together. We would expect these properties to

hold for most tasks in practice.

Definition 6 A distribution D on (XB,Y) has bounded feature dependence if there

exists εF > 0 such that the conditional probability PD(xi = r|{xj = rj : j 6= i}) < 1− εF for

all i, r, and and sets {xj = rj : j 6= i} of assignments to one or more xj.

Definition 7 A distribution D on (XB,Y) has distance-diminishing information gain

if the information gain of an example x with respect to the label of any neighboring example

x′ is less than KIδ
r
I for δI < 1, where r is the Hamming distance between x and x′.

The following theorem shows that whenever the above properties hold to a sufficient

degree, the expected information gain from a labeled example falls as the size of the feature

space increases.

Theorem 8 For a learning problem governed by distribution D with bounded feature depen-

dence and distance-diminishing information gain, with εF > δI
δI+1 , as the number of features
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d increases, the expected information gain provided by a labeled example about unlabeled ex-

amples’ labels decreases to zero. However, the information gain from an MF xf with given

relationship P (y|xf ) remains constant as d increases.

Proof. With bounded feature dependence, we have for all x ∈ XB:

P (x) =
d∏

i=0

P (xi|{xi+1, . . . , xd}) < (1− εF )d−1 (2.3)

For a given labeled example, the number of examples x ∈ XB at Hamming distance r is
(
d
r

)
.

Thus, the expected number of unlabeled examples at distance r is less than u(1−εF )d−1
(
d
r

)
.

Because D has distance-diminishing information gain, the expected information gain from a

labeled example about neighboring examples is less than
∑

r KIδ
r
Iu(1−εF )d−1

(
d
r

)
. Using the

fact that
∑

r δr
I

(
d
r

)
= (1+δI)d, we can re-write the expected information gain as u((1+δI)(1−

εF ))d−1KI(1+δI). Then with the assumption that εF > δI
δI+1 , we have that (1+δI)(1−εF ) <

1 and thus the expected information gain of a labeled example tends to zero as d increases.

Finally, note that the information provided by an MF xf about unlabeled examples’ labels

depends only on the given relationship P (y|xf ), and not on d. Thus, this information gain

is constant with d. �

The portion of Theorem 8 which concerns information gain of a labeled example is a

version of the well-known “curse of dimensionality” [7], which states that the number of

examples needed to estimate a function scales exponentially with the number of dimensions

under certain assumptions. Theorem 8 differs in detail, however; it states the curse of

dimensionality in terms of information gain, making possible a direct comparison with

monotonic features.

2.4.1 Relation to Other Approaches

In Section 2.1, we identified several learning methods that utilized Monotonic Features

(MFs) implicitly, which was a key motivation for formalizing MFs. This section explains

the ways in which MF-based classification is distinct from previous semi-supervised learning

methods.
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When MFs are provided as input, they can be viewed as a kind of “labeled feature”

studied in [22]. However, instead of “expectation regularization”, we will use the MFs to

probabilistically label examples. Thus, MFs can complement any concept learning algo-

rithm, not just discriminative probabilistic models as in [22]. Moreover, in Section 2.5, we

show that MFs can either obviate hand-labeled data, or can be estimated automatically

from a small number of hand-labeled samples.

Co-training [8] is a semi-supervised technique that also considers a partition of the

feature space into two distinct “views.” One might ask if monotonic feature classification

is equivalent to co-training with the monotonic features serving as one view, and the other

features forming the other. However, co-training requires labeled data to train classifiers for

each view, unlike monotonic feature classification which can operate without any labeled

data. Thus, there are cases where an MF-based algorithm like Mfa is applicable, but

co-training is not.

Even when labeled data is available, co-training takes the partition of the feature set as

input, whereas monotonic features can be detected automatically using the labeled data.

Also, co-training is an iterative algorithm in which the most likely examples of a class

according to one view are used to train a classifier on the other view in a mutually recursive

fashion. For a given set of monotonic features, however, iterating this process is ineffective,

because the mostly likely examples of a class according to the monotonic feature view are

fixed by the monotonicity property.

The area of probabilistic IR (e.g., [15]) studies models for determining the probability

that a document is relevant to a particular query, based on features like the frequency of the

query in the document. Our work is similar in the sense that Mfa uses occurrences of the

class name to classify documents, but is distinct in important ways. Unlike probabilistic IR,

we pose a general framework for utilizing monotonic features and existing semi-supervised

algorithms to perform classification. Also, the target of Mfa is classification, rather than

ranking as is typical in probabilistic IR. Partly because of this, Mfa invokes an underlying

semi-supervised algorithm which learns parameters for each class. This is distinct from

probabilistic IR, which focuses on optimizing a fixed function that can be used to rank

documents for any given query.
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A similar insight to the MFM is inherent in the recent Dataless Classification model

[11]. In that work, documents are classified by estimating their “semantic similarity” to

the class name. [11] shows that classification accuracy can be improved by computing

semantic similarities with the aid of an external knowledge source (Wikipedia). These

similarity scores can be viewed as MFs. In contrast to [11], our focus is on the monotonic

feature abstraction, which arises in a number of distinct tasks in addition to document

classification, as discussed in Section 2.1. We provide general techniques for utilizing the

MFM in classification, along with theorems establishing the model’s key properties.

Semi-supervised Smoothness Assumptions

In this section, we prove that the MFM is distinct from certain smoothness properties

typically assumed in previous semi-supervised learning methods, known as the cluster and

manifold assumptions. The cluster assumption states that in the target concept, the bound-

aries between classes occur in relatively low-density regions of the distribution P (x). The

manifold assumption states that the distribution P (x) is embedded on a manifold of strictly

lower dimension than the full input space X .

It can be shown that classification tasks exhibiting the MFM exist for which neither

the cluster assumption nor the manifold assumption holds. Similarly, we can construct

classification tasks exhibiting the manifold assumption, the cluster assumption, or both,

but without the MFM. We demonstrate this formally below.

In the below theorems, we will consider an input space X0 of vectors x = (x1, . . . , xd)

where x1 is an integer in the interval [0,K] and (x2, . . . , xd) is a vector of real numbers in

[0,K]d−1, for K an integer greater than 1.

Theorem 9 The monotonic feature model does not imply either the manifold assumption

or the cluster assumption.

Proof. The proof is by construction of a distribution on (X0,Y) for which the monotonic

feature model holds, but neither the manifold nor cluster assumptions hold. Define a distri-

bution D over (X0,Y) for which the marginal distributions PD(y = 0, x1 = r) ∝ 1 − r/K2

and P (y = 1, x1 = r) ∝ 1− (r/K − 1)2, and assume that the distribution PD(x2, . . . , xd, y)
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is uniform. It can be shown that PD(y = 1|x1 = r) > PD(y = 1|x1 = r − 1) + ε for ε = 1
3K

, and that PD(x1 = 0), PD(x1 = 1) > ε′ for ε′ = 1
2K ; thus, x1 is a monotonic feature for

the class y = 1. However, by construction the distribution P (x) is fully dense in the space

X0, so the manifold assumption does not hold. Additionally, the cluster assumption does

not hold, as the optimal classification boundary between y = 0 and y = 1 is the hyperplane

through x1 = K/2, the most dense portion of PD(x). �

Theorem 10 The monotonic feature model is not implied by either the manifold assump-

tion, the cluster assumption, or their conjunction.

Consider a distribution D on (X0,Y) with marginal distribution PD(y = 0, x1 = r) ∝ 1

for r < K/5 and r > 4K/5, and PD(y = 1, x1 = r) ∝ 1 for 2K/5 < r < 3K/5. Let

PD(x1) be zero otherwise. In this case, the class boundaries lie within a region of zero

density, so the cluster assumption holds. Further, we can select whether or not the manifold

assumption holds by adjusting the remainder of the distribution. Specifically, if we set

PD(x2, . . . , xd) to be one iff (x2, . . . , xd) is the zero vector, then the manifold assumption

holds, whereas if PD(x2, . . . , xd) is uniform, the manifold assumption does not hold. In

either case, PD(y = 1|xi) cannot be monotonic for any i, meaning that the monotonic

feature model does not hold. �

In conclusion, it is clear that the MFM is a novel problem structure that is both con-

ceptually and formally distinct from previously articulated structures including co-training,

the cluster assumption, and the manifold assumption.

2.5 Experiments

This section reports on our experiments in utilizing MFs for text classification. As discussed

in Section 2.1, MFs have been used implicitly by several classification methods in numerous

tasks. Here we quantify their impact on the standard “20 newsgroups” data set [41]. We

show that MFs can be employed to perform accurate classification even without labeled

examples, extending the results from [30] and [11] to a semi-supervised setting. Further, we

also demonstrate that whether or not the identities of MFs are given, exploiting the MF

model by learning MFs can improve performance.
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We begin by defining a set of methods for employing MFs in general classification set-

tings.

2.5.1 General Methods for Monotonic Feature Classification

Here, we define a set of abstract methods for incorporating monotonic features into any

existing learning algorithm. The first method, Mfa, is an abstraction of the MF word sense

disambiguation algorithm first introduced in [59]. It is applicable when monotonic features

are given but labeled examples are not provided. The second, Mfa-ssl , applies in the

standard semi-supervised learning case when some labeled examples are provided, but the

identities of the MFs are unknown and must be learned. Lastly, Mfa-both applies when

both labeled data and MF identities are given.

When monotonic features are given to the algorithm without labeled data, Mfa pro-

ceeds as shown in Figure 2.1. Mfa labels the unlabeled examples DU as elements of class

y = 1 iff some monotonic feature value xi for i ∈ M exceeds a threshold τ . The threshold

is set using unlabeled data so as to maximize the minimum probability mass on either side

of the threshold.4 This set of bootstrapped examples D′
L is then fed as training data into a

supervised or semi-supervised algorithm Φ(D′
L, DU ), and Mfa outputs the resulting classi-

fier. In general, the Mfa schema can be instantiated with any machine learning algorithm

Φ.

When MFs are unknown, but some labeled data is given, the Mfa-ssl (Figure 2.2)

algorithm attempts to identify MFs using the labeled training data DL, and adds the most

strongly monotonic features to the set M . Monotonicity strength can be measured in

various ways; in our experiments below, we rank each feature xi by the quantity f(y, xi) =∑
r P (y, xi = r)r for each class y. Note that this expression requires that f(y, xi) have

a numerical interpretation; when the MF is merely ordinal, other monotonicity measures

(e.g., rank correlation) would be required. Mfa-ssl then adds monotonic features to M in

descending order of this value, up to a limit of k = 5 per class.5

4This policy is suggested by the proof of Corollary 4.1, in which the only requirement of the threshold is
that sufficient mass lies on each side.

5A sensitivity analysis revealed that varying k by up to 40% in either direction did not decrease perfor-
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Mfa(M , DU , Φ)

1. D′
L = Labeled examples (x, y) such that y = 1

iff a xi > τ for some i ∈M

2. Output Φ(D′
L, DU )

Figure 2.1: Pseudocode for Mfa. The inputs are M , a set of monotonic features, DU , a
set of unlabeled examples, and Φ(L,U), a supervised or semi-supervised machine learning
algorithm which outputs a classifier given labeled data L and unlabeled data U . The
threshold τ is derived from the unlabeled data and M (see text).

Mfa-ssl then invokes a given machine learning algorithm ΦM (M,DL, DU ) to learn a

probabilistic classifier that employs only the monotonic features in M . Mfa-ssl uses this

classifier to probabilistically label the examples in DU to form D′
L. Mfa-ssl then returns

Φ(D′
L, DU ) as in Mfa. A feature of Mfa-ssl is that if no monotonic features are identified,

Mfa-ssl defaults to the underlying algorithm Φ.

For small amounts of labeled data, random variation on individual examples can lead to

inaccurate estimates for f(y, xi); we take three steps to help ensure that our estimates are

robust. First, we smooth the estimates using a Laplacian prior equivalent to the observation

of half of a negative example.6 Second, we do not add features to M for a class unless they

occur for more than one distinct example of the class in the training set. Third, we estimate

the f(y, xi) value as the average of the maximum a posteriori estimates computed via leave-

one-out sub-sampling.

When monotonic features are known and labeled examples are available, we run a deriva-

tive of Mfa-ssl denoted as Mfa-both. The algorithm is the same as Mfa-ssl, except that

any given monotonic features are added to the learned set in Step 1 of Figure 2.2, and

bootstrapped examples using the given monotonic features (from Step 1 in Figure 2.1) are

added to D′
L.

mance of Mfa-ssl in the experiments in Section 2.5.3.

6A sensitivity analysis revealed that varying the prior weight by 50% in either direction changed average
performance by less than 0.1% in the experiments in Section 2.5.3.
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Mfa-ssl(DL, DU , Φ, ΦM )

1. M = the k strongest monotonic features in DL

2. D′
L = Examples from DU probabilistically

labeled with ΦM (M,DL, DU )

3. Output Φ(DL ∪D′
L, DU )

Figure 2.2: Pseudocode for Mfa-ssl. The inputs DU and Φ inputs are the same as those
of Mfa (see Figure 2.1). The additional inputs include labeled data DL and a machine
learning algorithm ΦM (M,L,U) which given labeled data L and unlabeled data U outputs
a probabilistic classifier that uses only monotonic features M . k is a parameter of Mfa-
ssl(see text).

2.5.2 Experimental Methodology and Baseline Methods

We evaluate the monotonic feature approach on two tasks: document classification and

information extraction.

For document classification, we employ the standard 20 newsgroups data set; the goal

of the task is to determine from the text of a newsgroup post the newsgroup in which it

appeared. We used bag-of-word features after converting terms to lowercase, discarding

the 100 most frequent terms and all terms appearing only once. Below, we present results

averaged over four disjoint training sets of variable size, using a disjoint test set of 5,000

documents and an unlabeled set of 10,000 documents.

When the identities of monotonic features are given, we obtained one-word monotonic

features simply using the newsgroup name, with minor modifications to expand abbrevia-

tions. This methodology closely followed that of [30]. For example, the occurrence count of

the term “politics” was a monotonic feature for the talk.politics.misc newsgroup. We

also expanded the set of monotonic features to include singular/plural variants.

The second task we investigate is information extraction. Here, we use a data set from

previous work, which includes potential extractions from three classes (City, Country,

Film) [25]. We treated this as a four-valued classification task, with errors of any type

forming the fourth class. The original data set also includes a monotonic feature for each
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extraction: the number of times each extraction appeared in a search of the Web for extrac-

tion patterns based on the class name (e.g., “cities such as <x>”). To generate additional

features, we obtained another corpus of 12,076,276 distinct sentences from the Web, and cre-

ated a feature set for each example consisting of its co-occurrence counts with each distinct

surrounding context of two to four words.7

We considered only those extractions that appeared at least once in our corpus. Our

final data set included 1020 labeled examples, and 2998 unlabeled examples. Unlike the

20 newsgroups data set, the extraction data set is highly unbalanced; the labeled set in-

cludes 301 City extractions, 56 Country extractions, 206 Film extractions, and 457 errors.

We discarded the 1000 most frequent contexts, and also discarded any contexts which did

not appear with at least 10 distinct extractions from the data set, resulting in a feature

set of 191,724 distinct contexts. In each extraction experiment, we present the average

performance over eight random cross-validation runs.

Baseline methods

We compared the monotonic feature approach with two alternative algorithms, which rep-

resent two distinct points in the space of semi-supervised learning algorithms. The first,

NB-EM, is a semi-supervised Naive Bayes with Expectation Maximization algorithm [43].

For NB-EM, we used the settings shown to perform well for the 20 newsgroups data set in

[43], including normalizing feature vectors by document length. 8

The second algorithm, LP, is a semi-supervised graph-based label propagation algorithm

recently employed for text classification [12]. We used a cosine metric for distance between

examples. LP requires a function to convert these distances into weights—we found that

the function given in [12] was not effective for our data sets. Instead, we used the following

equation to convert the cosine distance di,j between two examples into a weight wi,j :

wi,j = e
1

di,j−1 (2.4)

7The ground truth and corpus used in these experiments is available for download – see Appendix A.

8We ran the EM algorithm for 10 iterations; experiments showed that increasing the number of iterations
to 20 had negligible effects on performance.
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Strictly speaking, LP is a transductive classification algorithm; it requires that test exam-

ples be present during training. To evaluate LP in our semi-supervised setting, in which

test examples are not available during training, we first ran the LP algorithm using the

training and unlabeled examples.9 Then, for each test example, we output a classification

by propagating labels from the training and unlabeled examples to the test example.

For simplicity, we first evaluate our two baseline algorithms on each data set; we then

compare the monotonic feature approach relative to the best performing baseline in each

case. Figure 2.3 shows that the NB-EM algorithm substantially outperforms LP on the

20 newsgroups data set. However, Figure 2.4 shows that LP outperforms NB-EM on the

extraction task.10 Thus, we compare with NB-EM for the document classification task, and

LP for the extraction task.

In each experiment, for the monotonic feature approach we set the underlying algorithm

Φ to the baseline algorithm used for comparison. In NB-EM, we weighted the set of examples

labeled using the monotonic features (D′
L) equally with the original labeled set, increasing

the weight by the equivalent of 200 labeled examples when monotonic features are given

to the algorithm. For LP, we weight the examples D′
L evenly with the original labeled set,

but use D′
L only to initialize the label propagation and not thereafter. “Clamping” the

bootstrapped examples D′
L (as is standard in LP with labeled examples) resulted in the

bootstrapped labels overwhelming the algorithm. In all cases, we employed a supervised

Naive Bayes classifier for ΦM .

2.5.3 Experimental Results in Document Classification

The first question we investigate is what level of performance Mfa can achieve without

labeled training data, when monotonic features are given. The results of this experiment

are shown in Table 2.1. Mfa achieves accuracy on the 20-way classification task of 0.563.

9We ran the LP algorithm for 200 iterations; experiments showed that increasing the number of iterations
to 500 did not increase performance.

10Notice that NB-EM decreases in performance given additional training data. This is not solely a con-
sequence of the semi-supervised algorithm, as a supervised NB classifier was found to exhibit the same
trend. We attribute this behavior to the many interdependencies in the features in the extraction task,
which badly violate the conditional independence assumption of the Naive Bayes classifier.
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Figure 2.3: Baseline algorithm performance in document classification. The NB-EM baseline
outperforms LP.
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Figure 2.4: Baseline algorithm performance in extraction. LP outperforms NB-EM.
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Another way to measure this accuracy is in terms of the number of labeled examples that

a baseline semi-supervised technique would require in order to achieve comparable perfor-

mance. We found that Mfa outperformed NB-EM with up to 160 labeled examples. This

first experiment is similar to that of [30], except that instead of evaluating against only

supervised techniques, we use a more comparable semi-supervised baseline (NB-EM).

Could the monotonic features, on their own, suffice to directly classify the test data? To

address this question, the table also reports the performance of using the given monotonic

features exclusively to label the test data (MF Alone), without using the semi-supervised

technique Φ. We find that the bootstrapping step provides large benefits to performance;

Mfa has an effective number of labeled examples eight times more than that of MF Alone.

Table 2.1: Performance of Mfa on document classification when monotonic features are
given, and no labeled examples are provided. Mfa achieves accuracy of 0.563, which is
ten fold that of a Random Baseline classifier that assigns labels randomly, and more than
double that of “MF Alone”, which uses only the monotonic features and ignores the other
features. Mfa’s accuracy exceeds that of the NB-EM baseline with 160 labeled training
examples, and is eight fold that of “MF Alone”.

Random

Baseline MF Alone Mfa

Accuracy 5% 24% 56% (2.33x)

Labeled Example

Equivalent 0 20 160 (8x)

The second question we investigate is whether the monotonic feature approach can

improve performance even when the class name is not given. Mfa-ssl takes the same inputs

as the NB-EM technique, without the identities of monotonic features. The performance

of Mfa-ssl as the size of the labeled data set varies is shown in Figure 2.5. The graph

shows that for small labeled data sets of size 100-400, Mfa-ssl outperforms NB-EM by an

average error reduction of 15%. These results are statistically significant (p < 0.001, Fisher

Exact Test).

Lastly, in the case that both monotonic features and labeled examples are available,
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MFA-SSL

MFA-both

Figure 2.5: Performance in document classification. Mfa-ssl reduces error over the NB-EM
baseline by 15% for training sets between 100 and 400 examples, and Mfa-both reduces
error by 31% overall.

Mfa-both reduces error over the NB-EM baseline by an average of 31% across the training

set sizes shown in Figure 2.5.

2.5.4 Information Extraction Results

We performed the same set of experiments as above in the information extraction domain.

In the case in which no labeled examples are provided, the results are shown in Table

2.2. While the monotonic features double classification accuracy over the baseline, this is

equivalent to the baseline label propagation algorithm using only eight labeled examples.

Further, bootstrapping with additional features does not help performance (in fact, Mfa

performs slightly worse than the MF alone).

We expect that the reasons the additional features Mfa uses do not improve performance

are twofold. The first is that the extraction task is more difficult than the 20 newsgroups

classification task, because the extracted classes are more similar and the problem space

contains many overlapping concepts; we show formally how this situation makes learning
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from MFs more difficult in Section 3.1. Second, the features in the extraction task (con-

texts surrounding each extraction) have substantial interdependencies, and we expect these

mislead the label propagation algorithm and decrease its effectiveness.

Figure 2.6 shows the performance of Mfa-ssl and Mfa-both versus LP in a semi-

supervised setting. As the graph shows, while Mfa-both outperforms the other methods

when no labeled examples are provided, the MFM offers no consistent performance improve-

ments when labeled examples are present. In Chapter 3, we analyze the limitations of the

MFM in this domain, and describe a refinement of the MFM that dramatically increases

UIE performance.

Table 2.2: Performance of Mfa on UIE.

Random

Baseline MF Alone Mfa

Accuracy 25% 53% 52%

Labeled Example

Equivalent 0 8 8

2.5.5 Analysis of the Performance of Mfa-ssl

Figure 2.5 shows that Mfa-ssl outperforms NB-EM in document classification, but one

important question is whether this performance difference is in fact due to the presence

of monotonic features. An alternative hypothesis is that the performance improvements

are due instead to the utilization of a smaller hypothesis space in Step 2 in Figure 2.2;

for smaller training sets, could the regularization inherent in performing feature selection

improve generalization accuracy without relying on MFs?

We tested this hypothesis by replacing Mfa-ssl’s monotonic feature measure f(y, xi)

with a standard information gain measure, and learning an equal number of features distinct

from the features selected by Mfa-ssl. We found that this information-gain based approach

results in performance essentially equivalent to that of NB-EM, suggesting that a smaller
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Figure 2.6: Performance in information extraction. Mfa and Mfa-ssl offer similar perfor-
mance to the baseline label propagation algorithm.

hypothesis space does not account for the performance boost due to the monotonic features.

Another question is whether restricting the number of learned monotonic features to a

fixed k perhaps biases Mfa-ssl toward a more uniform distribution, which happens to be

correct for the 20 newsgroups data set. Indeed, performance of NB-EM can be substantially

improved by biasing the algorithm toward a uniform marginal distribution P (y) or by bal-

ancing the training sets. However, the individual bootstrapped examples produced in Step

1 of Mfa-ssl have strongly non-uniform distributions, and as mentioned above, selecting

in Mfa-ssl a maximum of k features by a criterion other than monotonicity did not im-

prove performance over NB-EM. Lastly, while Mfa-ssl was not effective in the unbalanced

extraction experiments in Section 2.5.4, we later show it can be somewhat effective when

coupled with the Urns model (see Section 3.4.5). Ultimately, experiments on additional

unbalanced data sets are necessary.
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2.6 Conclusions

We have shown that even in the complete absence of labeled data, accurate classification

is possible given the identity of a feature that varies monotonically with class probability.

We have shown that the Monotonic Feature Model (MFM) occurs in several different text-

processing applications in practice. We presented a general framework for utilizing Mono-

tonic Features to perform classification without hand-labeled data, or in a semi-supervised

setting where monotonic features can be discovered from small numbers of hand-labeled

examples. We complemented our experimental results with a theoretical analysis, proving

formally that MFs can guarantee PAC learning under certain assumptions, that MFs can

be preferable to labeled examples as the dimensionality of the feature space increases, and

that the MFM is distinct from problem structures considered previously in semi-supervised

learning.

We demonstrated experimentally that the MFM improves accuracy in document classi-

fication, in both the semi-supervised and unsupervised settings. However, the model was

found to be ineffective for extraction. The following chapter presents techniques that address

this limitation of the MFM.
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Chapter 3

THE URNS MODEL OF REDUNDANCY IN TEXT

The previous chapter described how Monotonic Features (MFs) can reduce the amount

of human labeling required to perform semi-supervised classification. In fact, in some cases

MFs can enable classification without any labeled examples. However, the MF model

(MFM) has important limitations: in many classification settings, merely knowing that

a feature is monotonic is not sufficient to build an effective classifier. We begin this chapter

by demonstrating the limitations of the MFM theoretically.

Our solution to the limitations of the MFM is the Urns model, a special case of the MFM

that captures a stronger distributional structure often found in MFs in practice. Specifically,

many MFs (including those employed in Chapter 2) are counts of observations that each

suggest an example is in the target class. Urns models these observations as draws from

a mixture of two Zipfian distributions, one for target class elements and another for errors.

In general, this is a much stronger distributional assumption than simple monotonicity.

Theoretical results show that the Urns model can enable accurate classification in cases

in which the MFM alone cannot. Further, in experiments the Urns model is shown to

provide much more accurate probability estimates for UIE when compared with using only

the MFM, or with other models from previous work.

The contributions of this chapter are as follows:

1. A formal model that, unlike previous work, explicitly models the impact of sample

size, redundancy, and different MFs on the probability that an example is a member

of the target class.

2. Methods for estimating the model’s parameters in the unsupervised, semi-supervised

and supervised cases.

3. Experiments in Information Extraction that demonstrate the model’s improved per-
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formance over the techniques used in previous work to assess the probability that

extracted information is correct. For UIE, our model is a factor of 15 closer to the

correct log likelihood than the noisy-or model used in previous work; the model is 20

times closer than KnowItAll’s Pointwise Mutual Information (PMI) method [23],

which is based on Turney’s PMI-IR algorithm [57]. For supervised IE, our model

achieves a 19% improvement in average log likelihood over the noisy-or model, but is

only marginally better than SVMs and logistic regression.

4. Theoretical results that:

(a) Characterize how target class probability increases with count MF values, as well

as how the total number of observations impacts the accuracy of the model.

(b) Prove that given enough observations, the parameters of the model can be learned

from unlabeled data alone—and that the model can overcome the limitations of

the MFM for unsupervised classification.

The remainder of the chapter is organized as follows. Section 3.1 establishes theoreti-

cally the limitations of the MFM. Section 3.2 introduces our abstract probabilistic model,

and Section 3.3 describes its implementation in practice. Section 3.4 reports on experimen-

tal results in UIE, and Section 3.5 describes experiments in document classification. We

summarize additional ways in which Urns has been employed (beyond IE and document

classification) in Section 3.6. Our theoretical results are presented in Section 3.7. Section

3.8 contrasts our model with previous work; the chapter concludes with a discussion of

future work.

3.1 Limitations of the MFM

Corollary 4.1 states that the MFM can provide accurate classification even without labeled

examples, but relies on strong assumptions. In this section, we illustrate theoretically that

these assumptions preclude that the MF values apply to multiple distinct concepts, a situ-

ation which is prevalent in practice. This has significant ramifications for the applicability
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of the monotonic feature approach, and helps explain the relative ineffectiveness of Mfa in

IE and UIE demonstrated in Section 2.5.4.

In Corollary 4.1, the classifier constructed from the MF can set its classification threshold

at any value, provided that non-zero probability mass lies on either side of the value. While

such a classifier is sufficient given the assumptions of the theory, it is not at all guaranteed

to be effective in practice, where those assumptions are violated.

The primary difficulty confronted in practice is that MFs for one class are almost always

MFs for other, related classes as well. Consider, for example, the list of extractions shown

in Table 3.1. Listed are the top ten most frequent extractions for the City class in our

experiment, along with the number of times each was extracted. While these most frequent

extractions are correct instances of City, they are also consistent with a multitude of other

concepts—for example, they are all cities in the Western Hemisphere, and all cities with

opera houses. Likewise, all ten extractions are more generally entities that have govern-

ments, and are all located on Earth. If our MF-based classifier uses a threshold such that

only these ten examples are positive, it is in general impossible to determine whether the

target concept is City or another concept.

Table 3.1: The ten most frequently extracted City extractions.

Extraction Frequency

New York 1488

Chicago 999

Los Angeles 859

London 712

San Francisco 682

Boston 676

Paris 454

Philadelphia 440

Washington 395

Seattle 381
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More generally, it is often the case due to nested subconcepts like those discussed above

that a given MF for one class is also an MF for another distinct but related class. This is

problematic for the MFM, because given only the MF as input, it is impossible to tell which

class is the target. We formalize this below.

Proposition 11 If C¬M is learnable in the PAC model with classification noise, and con-

cepts c, c′ ∈ C are such that P (c(x) = c′(x)) is bounded away from zero, and each of a set

of monotonic features M for the class c(x) = 1 are also monotonic features for the class

c′(x) = 1, then C is not in general learnable from unlabeled data given only M (i.e., the

conditional independence assumption is violated).

Proof. Assume instead that an algorithm exists that can PAC-learn the target concept from

only unlabeled data M . For either concept c or c′, the input to the algorithm is the same,

and hence the outputted classifiers will be the same. If we choose δ < P (c(x) = c′(x))/2,

the error rate for at least one of the classifiers learned for c or c′ must be larger than δ, a

contradiction.�

In practice, we expect MFs that apply to multiple, similar but distinct classes to be

ubiquitous in text classification; thus, the above result is discouraging. Fortunately, however,

given an MF with a distributional structure based on the Urns model, we can in fact

establish PAC learnability from unlabeled data even when the MF may apply to multiple

concepts and the conditional independence assumption is violated. We demonstrate this

formally in Section 3.7.4.

3.2 The Urns Model

Urns is a model for generating the values of MFs. Our model takes the form of a clas-

sic “balls-and-urns” model from combinatorics. We first consider the single urn case, for

simplicity, and later generalize to the full multiple Urns Model used in our experiments.

The model applies specifically to MFs which represent the number of occurrences of some

event suggesting an example is a member of a class. For clarity we will refer these MFs

as count MFs. Count MFs share all the properties of MFs defined in Section 2.3, but are

further restricted to take non-negative integral values. As an example, Chapter 2 showed
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that in document classification, the number of times the class name occurs in a document

is an MF; this feature is also a count MF. Similarly, the number of science fiction movies

that a person rents could be a count MF for the “Star Wars fan” class. Not all MFs are

count MFs, however—FICO score, for example, may be an MF for the class of individuals

who will repay a loan, but it is not a count MF as it does not represent a count of repeated

observations.

The single-urn model for generating count MFs consists of a set of balls in an urn, where

each ball has a label denoting the identity of a particular example. Labels for different

examples can be repeated on differing numbers of balls in the urn. In the model, values of

count MFs are generated by making n repeated draws from the urn (with replacement) and

recording how frequently each label is obtained. The MF value for a given example is then

simply the number of times its label is drawn from the urn.

As a concrete example, consider the Information Extraction task of classifying strings

as members of the City class, using a count MF of the number of occurrences of the phrase

“cities such as x” in a corpus. The urn for this count MF contains balls labeled with different

potential extractions (e.g., “Yakima,” ”Los Angeles,” “California”). Frequently-mentioned

cities (e.g. “Paris”) are repeated on many balls, whereas more obscure cities (and most

errors) appear on fewer balls. If we observe the two phrases “scenic cities such as Yakima”

and “Washington cities such as Yakima,” this corresponds to the ball labeled “Yakima”

being drawn twice from the urn.

Formally, the parameters that characterize an urn are:

• C – the set of unique target labels; |C| is the number of unique target labels in the

urn.

• E – the set of unique error labels; |E| is the number of unique error labels in the urn.

• num(b) – the function giving the number of balls labeled by b where b ∈ C ∪ E.

num(B) is the multi-set giving the number of balls for each label b ∈ B.

Of course, classification systems do not have access to these parameters directly. The

goal of a classification system is to discern which of the labels it extracts are in fact elements
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of C, based on the number of repetitions of each label. Thus, the central question we are

investigating is: given that a particular label x was extracted k times in a set of n draws

from the urn, what is the probability that x ∈ C?

In deriving this probability formally below, we assume the system has access to multi-

sets num(C) and num(E) giving the number of times the labels in C and E appear on balls

in the urn. In our experiments, we provide methods that estimate these multi-sets in the

unsupervised, semi-supervised, and supervised settings. We derive the probability that an

element extracted k of n times is of the target class as follows:

First, we have that

P (x appears k times in n draws|x ∈ C) =∑
r

(
n

k

) (r

s

)k (
1− r

s

)n−k
P (num(x) = r|x ∈ C)

where s is the total number of balls in the urn, and the sum is taken over possible repetition

rates r.

Then we can express the desired quantity using Bayes Rule:

P (x ∈ C|x appears k times in n draws) =

P (x appears k times in n draws|x ∈ C)P (x ∈ C)
P (x appears k times in n draws)

(3.1)

Note that these expressions include prior information about the label x – for example,

P (x ∈ C) is the prior probability that the string x is a target label, and P (num(x) =

r|x ∈ C) represents the probability that a target label x is repeated on r balls in the urn.

In general, integrating this prior information could be valuable for classification systems;

however, in the analysis and experiments that follow, we make the simplifying assumption

of uniform priors, yielding the following simplified form:

Proposition 12

P (x ∈ C|x appears k times in n draws) = ∑
r∈num(C)(

r
s)

k(1− r
s)

n−k∑
r′∈num(C∪E)(

r′

s )k(1− r′

s )n−k
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3.2.1 The Uniform Special Case

For illustration, consider the simple case in which all labels from C are repeated on the same

number of balls. That is, num(ci) = RC for all ci ∈ C, and assume also that num(ei) = RE

for all ei ∈ E. While these assumptions are unrealistic (in fact, we use a Zipf distribution

for num(b) in our experiments), they are a reasonable approximation for the majority of

labels, which lie on the flat tail of the Zipf curve.

Define p to be the precision of the MF generation process; that is, the probability that

a given draw comes from the target class. In the uniform case, we have:

pUSC =
|C|RC

|E|RE + |C|RC

The probability that a particular element of C appears in a given draw is then pC =

pUSC/|C|, and similarly pE = (1− pUSC)/|E|.

Using a Poisson model to approximate the binomial from Proposition 12, we have:

PUSC(x ∈ C|x appears k times in n draws) ≈
1

1 + |E|
|C|(

pE
pC

)ken(pC−pE)
(3.2)

In order for k to be a monotonic feature, it must be that pC > pE . Notice that when

this is true, Equation (3.2) shows that the odds that x ∈ C increase exponentially with the

number of times k that x is extracted, but also decrease exponentially with the sample size

n.

A few numerical examples illustrate the behavior of this equation. The examples assume

that the precision p is 0.9. Let |C| = |E| = 2, 000. This means that RC = 9× RE—target

balls are nine times as common in the urn as error balls. Now, for k = 3 and n = 10, 000

we have P (x ∈ C) = 93.0%. Thus, we see that a small number of repetitions can yield high

confidence in an example. However, when the sample size increases so that n = 20, 000, and

the other parameters are unchanged, then P (x ∈ C) drops to 19.6%. On the other hand,

if C balls repeat much more frequently than E balls, say RC = 90 × RE (with |E| set to

20,000, so that p remains unchanged), then P (x ∈ C) rises to 99.9%.

The above examples enable us to illustrate the advantages of Urns over the noisy-or

model used in previous IE work [35, 3]. The noisy-or model for IE assumes that each
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extraction is an independent assertion, correct a fraction p of the time, that the extracted

label is “true.” The noisy-or model assigns the following probability to extractions:

Pnoisy−or(x ∈ C|x appears k times) = 1− (1− p)k

Therefore, the noisy-or model will assign the same probability— 99.9%—in all three of

the above examples. Yet, as explained above, 99.9% is only correct in the case for which

n = 10, 000 and RC = 90 × RE . As the other two examples show, for different sample

sizes or repetition rates, the noisy-or model can be highly inaccurate. This is not surprising

given that the noisy-or model ignores the sample size and the repetition rates. Section 3.4

quantifies the improvements over the noisy-or obtained by Urns in practice.

3.2.2 Applicability of the Urns model

Under what conditions does our redundancy model provide accurate probability estimates?

We address this question formally in Section 3.7, but informally two primary criteria must

hold. First, labels from the target set C must be repeated on more balls in the urn than

labels from the E set, as in Figure 3.1. The shaded region in Figure 3.1 represents the

“confusion region” – if we employ only the monotonic feature, half of the examples in this

region will be classified incorrectly, even with the ideal classifier and infinite data, because

for these examples there simply isn’t enough information to decide whether they belong to

C or E. Thus, our model is effective when the confusion region is relatively small. Secondly,

even for a small confusion region, the sample size n must be large enough to approximate

the two distributions shown in Figure 3.1; otherwise the probabilities output by the model

will be inaccurate.

3.2.3 Multiple Urns

We now generalize our model to encompass multiple urns. When we have multiple count

MFs for the same target class, we could simply sum the count MF values for each example

and apply the single-urn model as described in the previous section. However, this approach

forfeits differences between the count MFs that may be valuable for classification.
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Figure 3.1: Schematic illustration of the number of distinct labels in the C and E sets with
repetition rate r. The “confusion region” is shaded.

In IE, for example, information is often extracted using multiple, distinct mechanisms

– for example, an IE system might employ several patterns for extracting city names, e.g.

“cities including x” and “x and other towns.” It is often the case that different patterns have

different modes of failure, so extractions appearing across multiple patterns are generally

more likely to be true than those appearing for a single pattern. We can model this situation

by introducing multiple urns where each urn represents a different pattern.1

Instead of n total extractions, in the multi-urn case we have a sample size nm for each urn

m ∈M , with the label for example x appearing km times. Let A(x, (k1, . . . , km), (n1, . . . , nm))

denote this event. Further, let Am(x, k, n) be the event that label x appears k times in n

draws from urn m, and assuming that the draws from each urn are independent, we have:

Proposition 13

P (x ∈ C|A(x, (k1, . . . , km), (n1, . . . , nm))) = ∑
ci∈C

∏
m∈M P (Am(ci, km, nm))∑

x∈C∪E

∏
m∈M P (Am(x, km, nm))

1We may lump several patterns into a single urn if they tend to behave similarly.
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With multiple urns, the distributions of labels among balls in the urns are represented

by multi-sets numm(C) and numm(E). Expressing the correlation between numm(x) and

numm′(x) is an important modeling decision. Multiple urns are especially beneficial when

the repetition rates for elements of C are more strongly correlated across different urns than

they are for elements of E—that is, when numm(x) and numm′(x) tend to be closer to each

other for x ∈ C than for x ∈ E. Fortunately, this turns out to be the case in practice in IE.

We describe our method for modeling multi-urn correlation below.

To model multiple urns, we consider different precisions pm for each urn, but make the

simplifying assumption that the size and shape parameters are the same for all urns. As

mentioned in section 3.2, we expect repetition rate correlation across urns to be higher

for elements of the C set than for the E set. We model this correlation as follows: first,

elements of the C set are assumed to come from the same location on the Zipf curve for

all urns, that is, their relative frequencies are perfectly correlated. Some elements of the E

set are similar, and have the same relative frequency across urns – these are the systematic

errors. However, the rest of the E set is made up of non-systematic errors, meaning that

they appear for only one kind of mechanism (for example, “Eastman Kodak” is extracted

as an instance of Film only in phrases involving the word “film”, and not in those involving

the word “movie.”). Formally, non-systematic errors are labels that are present in some

urns and not in others. Each type of non-systematic error makes up some fraction of

the E set, and these fractions are the parameters of our correlation model. Assuming

this simple correlation model and identical size and shape parameters across urns is too

restrictive in general— differences between mechanisms are often more complex. However,

our assumptions allow us to compute probabilities efficiently (as described below) and do

not appear to hurt performance significantly in practice.

With this correlation model, if a label x is an element of C or a systematic error, it will

be present in all urns. In terms of Proposition 13, the probability that a label x appears

km times in nm draws from m is:

P (Am(x, km, nm)) =
(

nm

km

)
(fm(x))km(1− fm(x))nm−km (3.3)
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where fm(x) is the frequency of label x. That is,

fm(ci) = pmQCi−zC for ci ∈ C

fm(ei) = (1− pm)QEi−zE for ei ∈ E

In these expressions, i is the frequency rank of the label, assumed to be the same across all

urns, and QC and QE are normalizing constants such that∑
ci∈C

QCi−zC =
∑
ei∈E

QEi−zE = 1

For a non-systematic error x which is not present in urn m, P (Am(x, km, nm)) is 1 if km =

0 and 0 otherwise. Substituting these expressions for P (Am(x, km, nm)) into Proposition 13

gives the final form of our Urns model.

3.3 Implementation of the Urns Model

In order to compute probabilities for extractions, we need a method for estimating num(C)

and num(E). For the purpose of estimating these sets from tagged or untagged data,

we assume that num(C) and num(E) are Zipf distributed, meaning that if ci is the ith

most frequently repeated label in C, then num(ci) is proportional to i−zC . We can then

characterize the num(C) and num(E) sets with five parameters: the set sizes |C| and |E|,

the shape parameters zC and zE , and the extraction precision p.

3.3.1 Efficient Computation

A feature of our implementation is that it allows for efficient computation of probabilities.

In general, computing the sum in Proposition 13 over the potentially large C and E sets

would require significant computation for each example. However, given a fixed number of

urns, with num(C) and num(E) Zipf distributed, an integral approximation to the sum in

Proposition 13 (using a Poisson in place of the binomial in Equation 3.3) can be solved in

closed form in terms of incomplete Gamma functions. The details of this approximation

and its solution for the single-urn case are given in Section 3.7.2 The closed form expression

2For the multi-urn solution, which is obtained through a symbolic integration package and therefore
complicated, we refer the reader to the Java implementation of the solution which is available for download
– see Appendix A.
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can be evaluated quickly, and thus probabilities for examples can be obtained efficiently.

This solution leverages our assumptions that size and shape parameters are identical across

urns, and that relative frequencies are perfectly correlated. Finding efficient techniques for

computing probabilities under less stringent assumptions is an item of future work.

3.3.2 Supervised Parameter Estimation

In the event that a large sample of hand-tagged training examples is available for each

target class of interest, we can directly estimate each of the parameters of Urns. In our

experiments, we use a population-based stochastic optimization technique to identify pa-

rameter settings that maximize the conditional log likelihood of the training data.3 Once

the parameters are set, the model yields a probability for each extraction, given the number

of times km it appears in each urn and the number of draws nm from each urn.

This section describes how we implement Urns for both UIE and supervised IE, and

identifies the assumptions made in each case.

3.3.3 Unsupervised Parameter Estimation

Estimating model parameters in an unsupervised setting requires making a number of as-

sumptions tailored to the specific task. Below, we first detail the assumptions employed in

Urns for UIE. It is important to note that while these assumptions are specific to UIE,

they are not specific to a particular target class. As argued in [24], UIE systems cannot

rely on per-class information—in the form of either assumptions or hand-tagged training

examples—if they are to scale to extracting information on arbitrary classes that are not

specified in advance. We then present the set of assumptions employed in Urns for docu-

ment classification.

Unsupervised Parameter Estimation for UIE

Implementing Urns for UIE requires a solution to the challenging problem of estimating

num(C) and num(E) using only untagged data. Let U be the multi-set consisting of the

3Specifically, we use the Differential Evolution routine built into Mathematica 5.0.
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number of times each unique label was extracted in a given corpus. |U | is the number of

unique labels encountered (i.e. the number of unlabeled examples), and the sample size

n =
∑

r∈U r.

In order to learn num(C) and num(E) from untagged data, we make the following

assumptions:

• Because the number of different possible errors is nearly unbounded, we assume that

the error set is very large.4

• We assume that both num(C) and num(E) are Zipf distributed where the zE param-

eter is set to 1.

• In our experience with KnowItAll, we found that while different extraction rules

have differing precision, each rule’s precision is stable across different classes [24].

Urns takes this precision as an input. To demonstrate that Urns is not overly

sensitive to this parameter, we chose a fixed value (0.9) and used it as the precision

pm for all urns in our experiments. 5 Section 3.4.4 provides evidence that the observed

p value tends to be relatively stable across different target classes.

We then use Expectation Maximization (EM) over U in order to arrive at appropriate

values for |C| and zC (these two quantities uniquely determine num(C) given our assump-

tions). Our EM algorithm proceeds as follows:

1. Initialize |C| and zC to starting values.

2. Repeat until convergence:

(a) E-step Assign probabilities to each element of U using Proposition (12).

4In our experiments, we set |E| = 106. A sensitivity analysis showed that changing |E| by an order of
magnitude, in either direction, resulted in only small changes to our results.

5A sensitivity analysis showed that choosing a substantially higher (0.95) or lower (0.80) value for pm

still resulted in Urns outperforming the noisy-or model by at least a factor of 8 and PMI by at least a
factor of 10 in the experiments described in section 3.4.1.
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(b) M-step Set |C| and zC from U using the probabilities assigned in the E-step

(details below).

We obtain |C| and zC in the M-step by first estimating the rank-frequency distribution for

labels from C in the untagged data. From the untagged data and the probabilities found in

the E-step, we can obtain EC [k], the expected number of labels from C that were extracted

k times. We then round these fractional expected counts into a discrete rank-frequency

distribution with a number of elements equal to the expected total number of labels from C

in the untagged data,
∑

k EC [k]. We obtain zC by fitting a Zipf curve to this rank-frequency

distribution by linear regression on a log-log scale.6

Lastly, we set |C| =
∑

k EC [k]+unseen, where we estimate the number of unseen labels

of the C set using Good-Turing estimation ([29]). Good-Turing estimation provides an

estimate of the probability mass of the unseen labels (specifically, the estimate is equal to

the expected fraction of the draws from C that extracted labels seen only once). We simply

assume that each unseen element has probability equal
∑

k EC [k]−zC . A more accurate

method might be to choose unseen such that the actual number of unique elements observed

equals that expected by the model (where the latter is measured e.g. by sampling). Such

methods are an item of future work.

This unsupervised learning strategy proved effective for target relations of different sizes;

for example, the number of elements of the Country relation with non-negligible extraction

probability was about two orders of magnitude smaller than that of the Film and City

relations.

Semi-supervised Parameter Estimation

When both unlabeled and labeled data are available, as in Mfa-ssl and Mfa-both, we use

a single-urn model. The precision p of the urn is estimated from the labeled data (using the

f function defined in Section 2.5.1). We perform the same EM-style parameter estimation

over the unlabeled data as detailed for UIE, setting the multi-set U to the collection of MF

6To help ensure that our probability estimates are increasing with k, if zC falls below 1, we adjust zE to
be less than zC .



43

values in DU , with one important change. Instead of assuming |E| = 106, because the total

number of unlabeled examples u is known, we employ the constraint that |C|+ |E| = u.

Unsupervised Parameter Estimation for Document Classification

The assumptions we employ in Urns for document classification are similar to the single-urn

assumptions employed for UIE. The differences are that we employ the constraint |C|+|E| =

u as above and, because the count MFs are less precise, we employ a p value of 0.5.

3.4 Experimental Results in IE

How accurate is Urns at assigning probabilities of correctness to extractions? And can

these probabilities improve on the limitations of the MFM detailed in Section 3.1? In

this section, we answer these questions by comparing the accuracy of Urns’s probabilities

against other methods from previous work, and evaluating how Urns performs when used

as a component of Mfa.

This section begins by describes our experimental results for IE under two settings:

unsupervised and supervised. Semi-supervised experiments using Urns with Mfa are later

described in Section 3.4.5. We begin by describing the two unsupervised methods used in

previous work: the noisy-or model and PMI. We then compare Urns with these methods

experimentally, and lastly compare Urns with several baseline methods in a supervised

setting.

We evaluated our algorithms on extraction sets for the relations City(x), Film(x),

Country(x), and MayorOf(x,y), taken from experiments performed in [24]. The sample

size n was 64,605 for City, 135,213 for Film, 51,390 for Country and 46,858 for MayorOf.

The extraction patterns were partitioned into urns based on the name they employed for

their target relation (e.g. “country” or “nation”) and whether they were left-handed (e.g.

“countries including x”) or right-handed (e.g. “x and other countries”). Each combination

of relation name and handedness was treated as a separate urn, resulting in four urns for
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each of City(x), Film(x), and Country(x), and two urns for MayorOf(x).7 8

For each relation, we tagged a sample of 1000 extracted labels, using external knowledge

bases (the Tipster Gazetteer for cities and the Internet Movie Database for films) and

manually tagging those instances not found in a knowledge base. In the UIE experiments,

we evaluate our algorithms on all 1000 examples, and in the supervised IE experiments we

perform 10-fold cross validation.

3.4.1 UIE Experiments

We compare Urns against two other methods for unsupervised information extraction.

First, in the noisy-or model used in previous work, an extraction appearing k times is

assigned probability 1 −
∏

m∈M (1 − pm)k, where pm is the extraction precision for urn m.

We describe the second method below.

Pointwise Mutual Information

Our previous work on KnowItAll used Pointwise Mutual Information (PMI) to obtain

probability estimates for extractions [24]. Specifically, the PMI between an extraction and a

set of automatically generated discriminator phrases (e.g., “movies such as x”) is computed

from Web search engine hit counts. These PMI scores are used as features in a Naive

Bayes Classifier (NBC) to produce a probability estimate for the extraction. The NBC

is trained using a set of automatically bootstrapped seed instances. The positive seed

instances are taken to be those having the highest PMI with the discriminator phrases after

the bootstrapping process; the negative seeds are taken from the positive seeds of other

7Draws from Urns are intended to represent independent extractions. Because the same sentence can be
duplicated across multiple different Web documents, in these experiments we consider only each unique
sentence containing an extraction to be a draw from Urns. In experiments with other possibilities,
including counting the number of unique documents producing each extraction, or simply counting every
occurrence of each extraction, we found that performance differences between the various approaches were
negligible for our task.

8In the unsupervised setting, we assumed that the fraction of errors in the urns that are non-systematic
is 0.1, and that errors appearing for only left- or only right-handed rules were equally prevalent to those
appearing for only one label. The only exception was the City class, where because the target class was
the union the the two labels (“city” and “town”) rather than the intersection (as with “film” and “movie”),
we assumed that no non-systematic errors appeared for only one label. Altering these settings (or indeed,
simply using a single urn – see Section 3.4.3) had negligible impact on the results in Figure 3.2.
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relations, as in other work (e.g., [35]).

Although PMI was shown in [24] to order extractions fairly well, it has two significant

shortcomings. First, obtaining the hit counts needed to compute the PMI scores is ex-

pensive, as it requires a large number of queries to web search engines. Second, the seeds

produced by the bootstrapping process tend not to be representative of the overall distri-

bution of extractions. This combined with the probability polarization introduced by the

NBC tends to give inaccurate probability estimates.

Discussion of UIE Results

The results of our unsupervised experiments are shown in Figure 3.2. We plot deviation

from the ideal log likelihood—defined as the maximum achievable log likelihood given our

feature set.

Our experimental results demonstrate that Urns overcomes the weaknesses of PMI.

First, Urns’s probabilities are far more accurate than PMI’s, achieving a log likelihood

that is a factor of 20 closer to the ideal, on average (Figure 3.2). Second, Urns is

substantially more efficient as shown in Table 3.2.

This efficiency gain requires some explanation. KnowItAll relies on queries to Web

search engines to identify Web pages containing potential extractions. The number of queries

KnowItAll can issue daily is limited, and querying over the Web is, by far, KnowItAll’s

most expensive operation. Thus, number of search engine queries is our efficiency metric.

Let d be the number of discriminator phrases used by the PMI method as explained in

Section 3.4.1. The PMI method requires O(d) search engine queries to compute the PMI of

each extraction from search engine hit counts. In contrast, Urns computes probabilities di-

rectly from the set of extractions—requiring no additional queries, which cuts KnowItAll’s

queries by factors ranging from 1.9 to 17.

As explained in section 3.2, the noisy-or model ignores target set size and sample size,

which leads it to assign probabilities that are far too high for the Country and MayorOf

relations, where the average number of times each label is extracted is high (see bottom

row of Table 3.2). This is further illustrated for the Country relation in Figure 3.3. The
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noisy-or model assigns appropriate probabilities for low sample sizes, because in this case

the overall precision of extracted labels is in fact fairly high, as predicted by the noisy-or

model. However, as sample size increases relative to the number of true countries, the

overall precision of the extracted labels decreases—and the noisy-or estimate worsens. On

the other hand, Urns avoids this problem by accounting for the interaction between target

set size and sample size, adjusting its probability estimates as sample size increases. Given

sufficient sample size, Urns performs close to the ideal log likelihood, improving slightly

with more samples as the estimates obtained by the EM process become more accurate.

Overall, Urns assigns far more accurate probabilities than the noisy-or model, and its log

likelihood is a factor of 15 closer to the ideal, on average. The very large differences between

Urns and both the noisy-or model and PMI suggest that, even if the performance of Urns

degrades in other domains, it is quite likely to still outperform both PMI and the noisy-or

model.
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Figure 3.2: Deviation of average log likelihood from the ideal for four relations (lower is
better). On average, Urns outperforms noisy-or by a factor of 15, and PMI by a factor of
20.

Our computation of log-likelihood contains a numerical detail that could potentially

influence our results. To avoid the possibility of a likelihood of zero, we restrict the proba-

bilities generated by Urns and the other methods to lie within the range (0.00001, 0.99999).
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Table 3.2: Improved Efficiency Due to Urns. The top row reports the number of search
engine queries made by KnowItAll using PMI divided by the number of queries for
KnowItAll using Urns. The bottom row shows that PMI’s queries increase with k—the
average number of distinct labels for each relation. Thus, speedup tends to vary inversely
with the average number of times each label is drawn.

City Film MayorOf Country

Speedup 17.3x 9.5x 1.9x 3.1x

Average k 3.7 4.0 20.7 23.3
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Figure 3.3: Deviation of average log likelihood from the ideal as sample size varies for the
Country relation (lower is better). Urns performs close to the ideal given sufficient sample
size, whereas noisy-or becomes less accurate as sample size increases.
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Widening this range tended to improve Urns’s performance relative to the other methods,

as this increases the penalty for erroneously assigning extreme probabilities—a problem

more prevalent for PMI and noisy-or than for Urns. If we narrow the range by two digits

of precision, to (0.001, 0.999), Urns still outperforms PMI by a factor of 15, and noisy-or

by a factor of 13. Thus, we are comfortable that the differences observed are not an artifact

of this design decision.

Lastly, although we focus of our evaluation on the quality of each method’s probability

estimates in terms of likelihood, the advantage of Urns is also reflected in other metrics

such as classification accuracy. When we convert each method’s probability estimate into

a classification (positive for an example iff the probability estimate is greater than 0.5), we

find that Urns has an average accuracy of approximately 81%, compared with pmi at 63%

and noisy-or at 47%. Thus, Urns decreases classification error over the previous methods

by a factor of 1.9x to 2.8x.

3.4.2 Supervised IE Experiments

We compare Urns with three supervised methods. All methods utilize the same feature set

as Urns, namely the extraction counts km.

• noisy-or – Has one parameter per urn, making a set of M parameters (h1, . . . , hM ),

and assigns probability equal to

1−
∏

m∈M

(1− hm)km .

• logistic regression – Has M+1 parameters (a, b1, b2, . . . , bM ), and assigns probability

equal to
1

1 + ea+
P

m∈M kmbm
.

• SVM – Consists of an SVM classifier with a Gaussian kernel. To transform the

output of the classifier into a probability, we use the probability estimation built-in

to LIBSVM [10], which is based on logistic regression of the SVM decision values.
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Parameters maximizing the conditional likelihood of the training data were found for

the noisy-or and logistic regression models using Differential Evolution. For those models

and Urns, we performed 20 iterations of Differential Evolution using 400 distinct search

points. In the SVM case, we performed grid search to find the kernel parameters giving

the best likelihood performance for each training set – this grid search was required to get

acceptable performance from the SVM on our task.

The results of our supervised learning experiments are shown in Table 3.3. Urns,

because it is more expressive, is able to outperform the noisy-or and logistic regression

models. In terms of deviation from the ideal log likelihood, we find that on average Urns

outperforms the noisy-or model by 19%, logistic regression by 10%, but SVM by only 0.4%.

Table 3.3: Supervised IE experiments. Deviation from the ideal log likelihood for each
method and each relation (lower is better). The overall performance differences are small,
with Urns 19% closer to the ideal than noisy-or, on average, and 10% closer than logistic
regression. The overall performance of SVM is close to that of Urns.

City Film Mayor Country Average

noisy-or 0.0439 0.1256 0.0857 0.0795 0.0837

logistic

regression 0.0466 0.0893 0.0655 0.1020 0.0759

SVM 0.0444 0.0865 0.0659 0.0769 0.0684

Urns 0.0418 0.0764 0.0721 0.0823 0.0681

3.4.3 Benefit from Multiple Urns

The previous results use the full multi-urn model. How much of Urns’s large performance

advantage in UIE is due to multiple urns?

In terms of likelihood, as measured in Figure 3.2, we found that the impact of multiple

urns is negligible. This is primarily because the majority of extractions occur only a handful

of times, and for these extractions the multiple-urn model lacks enough data to estimate

the correlation of counts across urns. Multiple urns can offer some performance benefit,
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however, for more common extractions.

We evaluated the effect of multiple urns across the four relations shown in Figure 3.2.

The average precision of the top K extractions, ranking by either the single-urn or full

Urns model in decreasing order of probability, is shown in Table 3.4 for varying K. The

full Urns model always performs at least as well as the single-urn model, and sometimes

provides much more precise extractions. In fact, using multiple urns reduces the error by

29% on average for the five K values shown in the table.

Table 3.4: Precision of the K highest-ranked extractions for varying values of K between
10 and 200. Across the five K values shown, Urns reduces error over the single-urn model
by an average of 29%.

Number of highest-ranked extractions Single Urn Urns

10 1 1

20 0.9875 1

50 0.925 0.955

100 0.8375 0.845

200 0.7075 0.71

3.4.4 Is p a “universal constant”?

Our experiments employed an extraction precision parameter p of 0.9. While Urns still

massively outperforms previous methods even if this value is adjusted to 0.8 or 0.95, the

accuracy of Urns’s probabilities does degrade as p is altered away from 0.9.

In this section, we attempt to measure how consistent the observed p value is across

varying classes. This experiment differs somewhat from those presented above. In order

to test across a wide variety of classes, we moved beyond the experiments from [24] and

used the TextRunner system to provide instances of classes [5]. To choose classes to

investigate, we randomly selected 12 nouns from WordNet for which there were at least

100 extractions in TextRunner. We excluded nouns which were overly general such that

nearly any extraction would be correct (e.g., the class Example) and nouns which are rarely
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or never used to name concrete instances (e.g., the class Purchases). The results in this

section were compiled by querying TextRunner for 100 sentences containing extractions

of each class. 9

While TextRunner provides greater coverage than KnowItAll, precision in general

is lower. One of the inaccuracies of the TextRunner system is that it often fails to delimit

the boundaries of extractions properly (e.g., it extracts the phrase “alkanes or cycloalkanes”

as an instance of the Solvents class). We found that we could improve the precision

of TextRunner by over 20% on average by post-processing all extractions, breaking on

conjunctions or punctuation (i.e. the previous example becomes simply “alkanes”). Our

results employ this heuristic.

The results of the experiment are shown in Table 3.5. For each class, “p Observed” gives

the fraction of the 100 extractions tagged correct (by manual inspection). The average p

value observed across classes of 0.84 is lower than the value of 0.9 we use in our experiments;

this reflects the relatively lower precision of TextRunner as well as the increased difficulty

of extracting common nouns (versus the proper noun extractions from Section 3.4). The

results show that while there is substantial regularity in observed p values, the values are

not perfectly consistent. In fact, three classes (with “p Observed” values in bold) differ

significantly from the average observed p value (at significance level of 0.01, Fisher Exact

Test).

Given that we observe variability in p values across classes, an important question is

whether the correct p value can be predicted for a given class. We observed empirically

that the precision of extractions for a class increases with how relatively frequently the

class name is used in extraction patterns. As an example, the phrase “cultures such as x”

appears infrequently relative to the word “cultures,” as shown the Table 3.5 in terms of Web

hit counts obtained from a search engine. In turn, the class Cultures exhibits a relatively

low p value. Intuitively, this result makes sense—class names which are more “natural” for

naming instances should both appear more frequently in extraction patterns, and provide

more precise extractions.

9The list of excluded nouns and the labeled extractions for each selected class are available for download;
see Appendix A.
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We can exploit the above intuition by adjusting the estimate of extraction precision for

each class by a factor hclass. For illustration, using the values in Table 3.5, we devised the

following adjustment factor:

hclass = 0.08(−2.36− log10

Hits(class such as)
Hits(class)

) (3.4)

Obviously, this expression is heuristic and could be further refined using additional ex-

periments. However, adjusting by the factor does improve consistency. For example, the

quantity “p Observed + hclass” has only 57% of the variance of the original “p Observed”

(and the same mean, by construction). Further, none of the observed differences of “p

Observed - hclass” are statistically significantly different from the original mean, using the

same significance test employed previously.

Lastly, we should mention that even without any adjustment factor, the variance in

p value across classes is not substantially greater than that employed in our sensitivity

analysis in Section 3.4. Thus, we would expect the performance advantages of Urns over

the noisy-or and PMI models to extend to these other classes as well.

3.4.5 Using Urns in Mfa

In Section 3.1, we illustrated how the MFM is inadequate for performing accurate classifi-

cation in certain domains, including UIE. Can Urns be used to overcome these limitations?

We experimented using Urns to assign probabilistic labels to examples to create the

sets D′
L in Mfa and Mfa-ssl; we denote the new algorithms as Mfa (Urns) and Mfa-

ssl(Urns). The results in UIE, following the experimental setup given in Section 2.5.4,

are shown in Table 3.6. Urns improves performance substantially, achieving the equivalent

accuracy of the baseline label propagation algorithm trained with over 320 labeled examples.

Bootstrapping from the output of Urns using the other features in Mfa (Urns) decreases

performance slightly versus Urns alone. Like the similar performance difference between

the MF in isolation and Mfa (observed in Section 2.5.4), we expect that the decreased

performance is due to the task difficulty and dependencies within the feature set.

Does Urns improve performance in a semi-supervised setting, when learning monotonic

features? Figure 3.4 shows that when Mfa-ssl uses urns rather than Naive Bayes to assign
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Table 3.5: Average p values for various classes, measured from 100 hand-labeled examples
per class. Three of the 12 classes have p values in bold, indicating a statistically significantly
difference from the mean of 0.84 (significance level of 0.01, Fisher Exact Test). However,
if we adjust the estimate of p per class according to how frequently it occurs in the “such
as” pattern (using the factor hclass; see text), none of the resulting p − hclass values are
significantly different from the mean.

Class p Observed Hits(class such as)/Hits(class) p Observed + hclass

solvents 0.98 0.201 0.85

devices 0.93 0.022 0.87

thinkers 0.93 0.013 0.89

relaxants 0.92 0.010 0.89

mushrooms 0.86 0.001 0.90

mechanisms 0.85 0.017 0.80

resorts 0.85 0.002 0.88

flies 0.84 0.0004 0.93

tones 0.77 0.001 0.83

wounds 0.77 0.002 0.80

machines 0.69 0.002 0.71

cultures 0.67 0.002 0.70

Table 3.6: Performance of Mfa and urns on UIE. Urns increases performance over Mfa
considerably, to 79%, equivalent to the baseline semi-supervised technique (label propaga-
tion) trained with 320 labeled examples.

Random

Baseline Mfa Urns Alone Mfa (Urns)

Accuracy 25% 52% 79% 75%

Labeled Example

Equivalent 0 8 >320 >320
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Figure 3.4: Performance of Mfa-ssl augmented with Urns. Employing Urns with Mfa-
ssl consistently reduces error, by 6% on average, over the baseline label propagation algo-
rithm (LP).

probabilities based on MFs (Mfa-ssl (urns)), error is consistently reduced over the baseline

label propagation algorithm by an average of 6%. This performance is also 7% better on

average than Mfa-ssl alone from the experiments in Figure 2.6.

3.5 Experimental Results in Document Classification

We performed experiments in document classification, experimenting with both Mfa (Urns)

and Mfa-ssl (Urns). We found the performance differences between these methods and

the original Mfa and Mfa-ssl algorithms to be negligible.

We attribute the fact that Urns does not improve performance to two factors. The first

is that because the documents in this case are relatively small (newsgroup postings) and

the class names are relatively specific, the technique in Mfa of simply assigning documents

to a class whenever the class name appears was very effective. The second reason is that

in this data set, unlike in extraction, the target set size |C| is the same for all classes; this

obviates one of the primary values of Urns, its ability to learn the parameters of num(C)

using unlabeled data. Experimenting with more natural document classification data sets
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that don’t obey this restriction is an item of future work.

3.6 Other Applications of Urns

Urns is a general model. In any classification problem, if one of the features signifies a count

of observations that has an overall Zipf distribution, the Urns model can be employed. In

this section, we highlight three examples of how the Urns model has been applied to tasks

other than assigning probabilities of correctness to extractions.

3.6.1 Estimating UIE precision and recall

An attractive feature of Urns is that it enables us to estimate its expected recall and

precision as a function of sample size. If the distributions in Figure 3.1 cross at the dotted

line shown then, given a sufficiently large sample size n, expected recall will be the fraction

of the area under the C curve lying to the right of the dotted line.

For a given sample size n, define τn to be the least number of appearances k at which

an extraction is more likely to be from the C set than the E set (given the distributions in

Figure 3.1, τn can be computed using Proposition 12). Then we have:

E[TruePositives] =

|C| −
∑

r∈num(C)

τn−1∑
k=0

(
n

k

) (r

s

)k (
1− r

s

)n−k

where we define “true positives” to be the number of extracted labels ci ∈ C for which the

model assigns probability P (ci ∈ C) > 0.5.

The expected number of false positives is similarly:

E[FalsePositives] =

|E| −
∑

r∈num(E)

τn−1∑
k=0

(
n

k

) (r

s

)k (
1− r

s

)n−k

The expected precision of the system can then be approximated as:

E[Precision] ≈ E[TruePositives]
E[FalsePositives] + E[TruePositives]



56

To illustrate the potential benefit of the above calculations and evaluate their accuracy,

we computed expected recall and precision for the particular num(C) and num(E) learned

(in the unsupervised setting) in our experiments in Section 3.4. The results appear in Table

3.7. The recall estimates are within 11% of the actual recall for the City and Film classes.

Further, the estimates reflect the important qualitative difference between the large City

and Film classes as compared with the smaller MayorOf and Country classes.

Were we to increase the sample size n for the Film class and the Country class each

to 1,000,000, the model predicts that we would increase our Film recall by 81%, versus

only 4% for Country. Thus, the above equations allow an information extraction system

to dynamically choose how to allocate resources to match given precision and recall goals,

even in the absence of hand-tagged data.

Table 3.7: Estimating precision and recall in UIE. Listed is the Urns model estimate for
precision and recall, along with the actual measured quantities, for four classes. The major
differences between the classes—that the MayorOf and Country classes have roughly two
orders of magnitude lower recall than the City and Film classes—is qualitatively reflected
by the model.

City Film Country MayorOf

n 64605 135213 51390 46858

E[Recall] 12900 37 25900 58

Actual Recall 14300 176 23400 158

E[Precision] 0.78 0.63 0.79 0.62

Actual Precision 0.84 0.77 0.68 0.79

3.6.2 Estimating the functionality of relations

Consider the task of automatically detecting contradictions in text [17]. One fruitful to

approach this problem is to identify relations expressed in text that should be functional;

for example, if we know that the Headquartered relation is functional, and we see one

document asserting that Intel is headquartered in Santa Clara, and another asserting it is

headquartered in Phoenix, we can determine that either one of the documents has an error,
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or we have made an error in extraction. Leveraging functional relations has been recently

shown to be valuable for identifying contradictions in text [51]. Further, manually-detected

functional relations have been previously employed to automatically identify extractor errors

in IE [3]. Here, we illustrate how Urns can be used to automatically compute the probability

that a phrase denotes a function.

The discussion in this section is based on a set of extracted tuples. An extracted tuple

takes the form R(x, y) where (roughly) x is the subject of a sentence, y is the object, and

R is a phrase denoting the relationship between them. If the relation denoted by R is

functional, then typically the object y is a function of the subject x. Thus, our discussion

focuses on this possibility, though the analysis is easily extended to the symmetric case.

The main evidence that a relation R(x, y) is functional comes from the distribution of

y values for a given x value. If R denotes a function and x is unambiguous, then we expect

the extractions to be predominantly a single y value, with a few outliers due to noise.

Example A in Figure 3.5 has strong evidence for a functional relation. 66 out of 70

extractions for was born in (Mozart, PLACE) have the same y value. An ambiguous x

argument, however, can make a functional relation appear non-functional. Example B

refers to multiple real-world individuals named “John Adams” and has a distribution of y

values that appears less functional than example C, which has a non-functional relation.

Logically, a relation R is functional in a variable x if it maps it to a unique variable

y: ∀x, y1, y2R(x, y1) ∧ R(x, y2) ⇒ y1 = y2. Thus, given a large random sample of ground

instances of R, we could detect with high confidence whether R is functional. In text, the

situation is far more complex due to ambiguity, polysemy, synonymy, and other linguistic

phenomena.

To decide whether R is functional in x for all x, we first consider how to detect whether

R is locally functional for a particular value of x. We later combine the local functionality

probabilities to estimate the global functionality of a relation.10 Local functionality for a

given x can be modeled in terms of the global functionality of R and the ambiguity of x.

We later outline an EM-style algorithm that alternately estimates the probability that R is

10We compute global functionality as the average local scores, weighted by the probability that x is
unambiguous.
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A. was born in(Mozart, PLACE):

Salzburg(66), Germany(3), Vienna(1)

B. was born in(John Adams, PLACE):

Braintree(12), Quincy(10), Worcester(8)

C. lived in(Mozart, PLACE):

Vienna(20), Prague(13), Salzburg(5)

Figure 3.5: Functional relations such as example A have a different distribution of y values
than non-functional relations such as C. Ambiguous x argument as in B, however, can make
a functional relation appear non-functional.

functional and the probability that x is ambiguous.

Let θf
R be the probability that R(x, ·) is locally functional for a random x, and let Θf be

the vector of these parameters across all relations R. Likewise, θu
x represents the probability

that x is locally unambiguous for random R, and Θu the vector for all x.

We wish to determine the maximum a posteriori (MAP) functionality and ambiguity

parameters given the observed data D, that is arg maxΘf ,Θu P (Θf ,Θu|D). By Bayes Rule:

P (Θf ,Θu|D) ∝ P (D|Θf ,Θu)P (Θf ,Θu) (3.5)

We outline a generative model for the data, P (D|Θf ,Θu). Let R∗
x indicate the event that

the relation R is locally functional for the argument x, and that x is locally unambiguous

for R. Also, let D indicate the set of observed tuples, and define DR(x,·) as the multi-set

containing the frequencies for extractions of the form R(x, ·).

Let us assume that the event R∗
x depends only on θf

R and θu
x , and further assume that

given these two parameters, local ambiguity and local functionality are conditionally inde-

pendent. We obtain the following expression for the probability of R∗
x given the parameters:

P (R∗
x|Θf ,Θu) = θf

Rθu
x

We assume each set of data DR(x,·) is generated independently of all other data and

parameters, given R∗
x. From this and the above we have:
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P (D|Θf ,Θu) =
∏
R,x

(
P (DR(x,·)|R∗

x)θf
Rθu

x

+P (DR(x,·)|¬R∗
x)(1− θf

Rθu
x)

)
(3.6)

These independence assumptions allow us to express P (D|Θf ,Θu) in terms of distribu-

tions over DR(x,·) given whether or not R∗
x holds. We use a single-urn model to estimate

these probabilities based on binomial distributions.

Let k = max DR(x,·), and let n =
∑

DR(x,·); we will approximate the distribution over

DR(x,·) in terms of k and n. In the single-urn model, if R(x, ·) is locally functional and

unambiguous, k has a binomial distribution with parameters n and p, where p is the precision

of the extraction process. If R(x, ·) is not locally functional and unambiguous, then we

expect k to typically take on smaller values. Empirically, we find that the underlying

frequency of the most frequent element in the ¬R∗
x case tends to follow a Beta distribution.

Under the model, the probability of the evidence given R∗
x is:

P (DR(x,·)|R∗
x) ≈ P (k, n|R∗

x) =
(

n

k

)
pk(1− p)n−k

And the probability of the evidence given ¬R∗
x is:

P (DR(x,·)|¬R∗
x) ≈ P (k, n|¬R∗

x)

=
(
n
k

) ∫ 1
0

p
′k+αf−1

(1−p′)
n+βf−1−k

B(αf ,βf ) dp′

=

(
n
k

)
Γ(n− k + βf )Γ(αf + k)

B(αf , βf )Γ(αf + βf + n)
(3.7)

where n is the sum over DR(x,·), Γ is the Gamma function and B is the Beta function. αf

and βf are the parameters of the Beta distribution for the ¬R∗
x case (in practice, these are

estimated empirically).

Estimating Functionality and Ambiguity

Substituting Equation 3.7 into Equation 3.6 and applying an appropriate prior gives the

probability of parameters Θf and Θu given the observed data D. However, Equation 3.6
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contains a large product of sums—with two independent vectors of coefficients, Θf and

Θu—making it difficult to optimize analytically.

If we knew which arguments were ambiguous, we would ignore them in computing the

functionality of a relation. Likewise, if we knew which relations were non-functional, we

would ignore them in computing the ambiguity of an argument. Instead, we initialize the

Θf and Θu arrays randomly, and then execute an EM-style algorithm to arrive at a high-

probability setting of the parameters.

Note that if Θu is fixed, we can compute the expected fraction of locally unambiguous

arguments x for which R is locally functional, using DR(x′,·) and Equation 3.7. Likewise,

for fixed Θf , for any given x we can compute the expected fraction of locally functional

relations R that are locally unambiguous for x.

Specifically, we repeat until convergence:

1. Set θf
R = 1

sR

∑
x P (R∗

x|DR(x,·))θu
x for all R.

2. Set θu
x = 1

sx

∑
R P (R∗

x|DR(x,·))θ
f
R for all x.

In both steps above, the sums are taken over only those x or R for which DR(x,·) is non-

empty. Also, the normalizer sR =
∑

x θu
x and likewise sx =

∑
R θf

R.

By iteratively setting the parameters to the expectations in steps 1 and 2, we arrive at

a good setting of the parameters.

The above algorithm is experimentally investigated in [51], showing that the technique

effectively identifies functional relations, and can power effective contradiction detection.

3.6.3 Synonym Resolution

The last application of Urns we will discuss is that of resolving which strings refer to the

same objects or relations. In text, the same object is often referred to by multiple distinct

names—“U.S.” and “United States” each refer to the same country, for example. Likewise,

relationships between objects are often expressed in multiple distinct ways (e.g., “x is the

capital of y” and “x, capital of y”).

The Resolver system performs Synonym Resolution – taking as input a set of extracted

tuples (as discussed above, e.g., IsCapitalOf(D.C., United States)) and returning a set



61

of clusters, where each cluster contains coreferential object strings or relationship strings

[60].

Here we provide a high-level description of how Resolver employs an Urns-like model,

deferring to [60] for the details. Consider the task of determining whether two strings s1

and s2 refer to the same object, based on a set of tuples each including either s1 or s2 as

an argument. Resolver specifies a urn-based generative process for the observed tuples;

namely, the set of potential tuples for si are modeled as labels on balls in a urn, and the

actual observed tuples involving si are modeled as draws from the urn. Resolver assumes

that if s1 and s2 refer to the same object, then the urn contents for s1 are maximally

similar to those for s2; otherwise, the two urns can differ to a greater or lesser degree.

With this assumption, Resolver computes the probability that s1 and s2 co-refer based

on how frequently they participate in similar tuples. This method is shown to be effective

for resolving synonymous strings in practice.

3.7 Theoretical Results with Urns

In this section, we analyze the Urns model theoretically. To better understand the behavior

of Urns, would like the be able to characterize how the probability that an example is a

member of the target class increases with count MF values. Further, we would also like

assurances that Urns can perform well, given enough unlabeled data. We would like to

determine how accuracy increases with sample size, and most importantly prove that the

parameters of the model can be learned from unlabeled data, and that in so doing Urns

can overcome the limitations of the MFM.

Specifically, we investigate the following questions in the context of a single-urn model:

1. In the model, at what rate does the probability that an example is of the target class

increase with the monotonic feature value?

2. What are sufficient conditions for accurate classification, given the parameters of the

model? What sample size n is sufficient to achieve a given level of classification

accuracy?
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3. Can the parameters of the model be learned from unlabeled data?

4. Can the Urns model overcome the theoretical limitations of the MFM (discussed in

Section 3.1) for unsupervised classification?

We begin by considering the first two questions in the uniform special case previously

introduced in Section 3.2.1. The uniform case, while not fully realistic, does provide inter-

pretable results; and we provide these for illustration. We then address all four questions

in the more realistic Zipfian model used in our experiments.

In the below, for notational convenience we will utilize in place of the multi-set num(C)

a multi-set FC containing, for each element of C, the relative fraction of balls labeled with

that element. We define FE similarly, such that
∑

f∈FC∪FE
f = 1. Then the following

expression (adapted from Equation 12) specifies the probability that x is an element of C

given the observed values of k and n:

P (x ∈ C|k, n) =

∑
f∈FC

fk(1− f)n−k∑
f∈FC∪FE

fk(1− f)n−k

3.7.1 Theoretical Results: Known Parameters

This section presents our theoretical results when the parameters of Urns are known. In

the following, we examine Urns under two sets of assumptions, the Uniform Special Case

(USC) and the Zipfian Case (ZC), defined below.

Theorems 14 and 16 address question (1) in each model, describing how class probability

increases with the value k of the count MF. Specifically, we provide expressions for the

increase in the odds ratio odds(k, n) = P (x ∈ C|k, n)/(1 − P (x ∈ C|k, n)) in terms of the

count MF k. Theorems 15 and 18 address question (2). Let cknown indicate the classifier

output by Urns when the parameters are known; we provide upper bounds on the expected

error E[error(cknown)] in terms of the sample size n and the model parameters.

3.7.2 Analyzing the Uniform Special Case

The Uniform Special Case (USC) of the Urns model, first introduced in Section 3.2.1, is

characterized by the following assumptions:
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USC1 Each target label has the same probability pC of being selected in a single draw, and

each error label has a corresponding probability pE .

USC2 The feature k is a count MF, so elements of C are repeated in the urn more frequently

than elements of E (that is, pC > pE).

USC3 Frequency observations k are Poisson distributed (as in Equation 3.2).

Theoretical Results in the USC

The following theorem states how the odds ratio odds(k, n) increases with k in the USC.

Theorem 14 In the USC
odds(k1, n)
odds(k2, n)

=
(

pC

pE

)k1−k2

(3.8)

Proof. Follows from the posterior probability in the USC (from Equation 3.2):

P (x ∈ C|k, n) =
1

1 + |E|
|C|(

pE
pC

)ken(pC−pE)
(3.9)

Along with assumption USC2, Theorem 14 illustrates that in the USC the odds that an

element is a member of the class increase exponentially with the value of the count MF.

The increase is hastened when the target and error classes are less confusable (i.e. when

pC >> pE).

How accurately we can perform classification, given the parameters of the model and

the sample size? Let cknown indicate the Urns classifier when the parameters are known.

The following theorem provides an upper bound on the error of c∗ in the USC in terms of

the sample size n, and the separability pC − pE between the C and E sets.

Theorem 15 In the USC, the expected error E[error(cknown)] < ε when the sample size n

satisfies:

n ≥ 12 ln 1/ε

(pC − pE)2
(3.10)

Proof Define a model m with a threshold τ = pC+pE
2 such that Pm(x ∈ C|k, n) ≥ 0.5

whenever k ≥ nτ , and Pm(x ∈ C|k, n) < 0.5 otherwise. Since τ is a sub-optimal threshold



64

when the parameter values are known, E[error(cknown)] is bounded above by the expected

error made by model m.We express the expected error of model m over the full set C∪E by

summing the expected contribution of each individual term (equal to the probability that

the term appears a number of times resulting in misclassification).

E[error(cknown)] = ∑
x∈E

∑
k≥nτ P (k|x ∈ E,n) +

∑
x∈C

∑
k<nτ P (k|x ∈ C, n)

|C ∪ E|
(3.11)

Employing a Chernoff bound, we can bound the probability that a given term deviates from

its expected frequency enough to be misclassified.∑
k≥nτ

P (k|x ∈ E,n) =
∑

k≥n(pE+d/2)

P (k|x ∈ E,n)

≤ e−nd2/12

and ∑
k<nτ

P (k|x ∈ C, n) =
∑

k<n(pC−d/2)

P (k|x ∈ C, n)

≤ e−nd2/12

where d = pC − pE . Algebra gives the final result. �

Theorem 15 yields the following corollary, which states that under the assumptions of

the USC, even a weakly indicative MF (one for which pC − pE is just slightly greater than

zero) can provide an arbitrarily accurate classifier, given sufficiently large n. This statement

is akin to similar results in boosting algorithms in machine learning [53].

Corollary 15.1 In the USC, for any ε > 0, any count MF for which pC − pE > 0 can be

used to achieve accuracy of 1− ε given sufficient sample size n.

3.7.3 Analyzing the Zipfian Single-urn Case

The USC is a reasonable approximation for examples on the flat tail of the Zipf curve, but

it is clearly an oversimplification for all examples. The following theorems are analogous

to those presented for the USC above, but employ the more realistic Zipfian single-urn
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assumptions. In particular, we assume that the target and error sets are governed by

known Zipf distributions, described below, with sizes |C| and |E| and shape parameters zC

and zE . Further, we assume draws are generated from a mixture of these Zipf distributions,

governed by a known mixing parameter p giving the probability that a single draw comes

from C:

p =
∑

f∈FC

f (3.12)

As in our experiments, we will find it convenient to work with a continuous representation

of the commonly discrete Zipfian distribution. In the discrete Zipfian case, it is assumed

that the ith most frequent element of C has frequency αC/izC , for αC a normalization

constant. In our continuous representation, the frequency of each element of C is itself a

random variable drawn by choosing a uniform x from the range [1, |C|+1] and then mapping

x to the curve fC(x) = αC/xzC to obtain a frequency. The normalization constant αC is:

αC =
p∫ |C|+1

1
1

xzC dx
(3.13)

The normalization constant is chosen such that if we draw |C| frequencies for the labels

of the C set, the expected sum of the frequencies is p, as desired. The frequency of each

element of E is defined analogously. We will refer to the functions fC and fE as frequency

curves.

As in the USC, for a label in the ZC with underlying frequency f we assume the observed

count k is Poisson distributed with expected value nf . Thus, the likelihood of observing an

example of the C set k times in n draws is:

PZC(k|x ∈ C, n) =
1
|C|

∫ |C|+1

1

(nαCx−zC )k

enαCx−zC k!
dx (3.14)

The solution of the above equation in terms of incomplete gamma functions is given below

in Theorem 16.

We state the assumptions in the ZC as follows:

ZC1 The distributions of labels from C and E are each Zipfian as defined above, with

mixing parameter p. Specifically, the likelihood of the data is governed by Equation

3.14.
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ZC2 The observed frequency k is a count MF.

ZC3 The error label frequency curve has positive probability mass below the minimum

target label frequency; that is αE/i < αC/(|C|+ 1) for some known i < |E|+ 1.

ZC4 Analogously, the target label frequency curve has positive probability mass above the

maximum error label frequency; that is αC/i > αE for some known i > 1.

ZC5 Both the target and error set have non-zero probability mass in the urn; that is,

p, 1− p > M for some known lower bound M .

Assumptions ZC3 and ZC4 encode an assumption that given a sufficient number of

distinct labels, with high probability the most frequent labels will be target labels and

the least frequent will be error labels. These assumptions will allow us to establish PAC

learnability from unlabeled data alone.

To lend justification to the above assumptions, we note that we would expect them

to hold at least approximately in Unsupervised Information Extraction applications. The

Zipfian nature of extractions and monotonicity (ZC1 and ZC2) are well known to hold

approximately in practice. Further, assumption ZC3 is certainly empirically true when one

considers that, as a simple example, for any target set element there exist multiple less-

frequent misspellings in the error set. Assumption ZC4 tends to be at least approximately

true in practice; the most frequently extracted labels tend to be instances of the target class.

Assumption ZC5 is nearly trivially true in practice, we would always expect the target and

error sets to have probability mass above some non-zero minimum value.

Theoretical Results in the ZC

We start by explicitly expressing how the odds that an element is a member of the target

class increases with the value of the count MF:
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Theorem 16 In the ZC, the odds ratio

odds(k + 1, n)
odds(k, n)

=

(k − 1/zC)g(k, zC , np, |C|+ 1, αC) + h(k − 1/zC , np
(|C|+1)zC αC

)

(k − 1/zE)g(k, zE , n(1− p), |E|+ 1, αE) + h(k − 1/zE , n(1−p)
(|E|+1)zE αE

)

where

h(k′, n′) = n′k
′
en′

and

P (k|x ∈ C, n) =
np

αC

1/zC

g(k, zC , np, |C|+ 1, αC) (3.15)

with

g(k′, z′, n′, s′, α′) = Γ(k′ − 1/z′,
n′

s′z′α′
)− Γ(k′ − 1/z′,

n′

α′
)

assuming that neither zC nor zE are exactly equal to 1.

Proof. Given that |C|, |E|, k ≥ 1, and zC , zE 6= 1 the above result is obtained by

symbolic integration in Mathematica and algebra. �

Note that Theorem 16 does not utilize any assumptions other than the Zipfian mixture

(ZC1). Equation 3.15 is the closed-form likelihood expression used to perform efficient

inference in our experiments. Of course, the odds ratio given above is complex, and in order

to provide qualitative insights should be simplified into a more interpretable bound; this is

an item of future work.

We also wish to bound the classification error of Urns for the ZC. The following theorem

provides a bound relative to the error of the optimal classifier, which utilizes both the

Urns parameters and the precise frequencies of each label (rather than simply the observed

counts). As such, the optimal classifier exhibits the best classification performance that can

be achieved using the count MF alone.

Definition 17 The optimal classifier is one which classifies each example optimally given

knowledge of both the urn parameters, as well as the precise frequency in the urn of each

example x ∈ X.
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Define τ such that the classification threshold of the optimal classifier for a given n

is equal to nτ . From assumption ZC2, we know that a single such τ exists. Then the

following theorem illustrates that as the sample size increases, the expected error falls off

nearly linearly toward that of the optimal classifier.

Theorem 18 In the ZC, given any δ > 0, the expected error of urns is bounded as:

E[error(cknown)] ≤ β +
KC(δ) + KE(δ)
|X|n1−δ

where KC(δ) and KE(δ) are constants (with respect to n) defined below, and β is the expected

error of the optimal classifier.

The constants KC and KE are defined as follows:

KS(δ) = max
(

3/δ, 1 +
∫ xτ

S−1

1

1
4(αSx−zS − xτ

S)2
dx

)
(3.16)

where xτ
S is defined to be the unique value such that fS(xτ

S) = τ , and αS is the normal-

ization constant (see Equation 3.13).

Proof. Following the proof of Theorem 15, we aggregate the probabilities of the elements

being misclassified.

We present the analysis for expected error on elements of the C set; the E set is anal-

ogous. We bound the probability that an element with true frequency of αCx−zC > τ

appears fewer than nτ times in n draws using Chebyshev’s inequality. Chebyshev’s inequal-

ity bounds the probability that a random variable Y with expectation µ and variance σ2

appears sufficiently far from its expectation:

P (|Y − µ| > rσ) ≤ 1
r2

For a Poisson random variable, σ is bounded above by 2
√

n, so the above expression

also bounds the probability that the deviation exceeds 2r
√

n. Setting 2r
√

n equal to the

smallest deviation resulting in misclassification (nαCx−zC − nxτ
C), and integrating over the

frequency curve fC , we have the following bound for the expected error on the C set:

E[errorC(cknown)] ≤ βC +
∫ xτ

C

1
min

(
1,

1
4n(αCx−zC − xτ

C
−zC )2

)
dx (3.17)
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where βC is the fraction of the expected risk of the optimal classifier due to elements of C

(namely, the probability mass of elements of C with frequency less than τ).

Define:

γn =
1
n

+
∫ xτ

C−1/n

1

1
4n(αCx−zC − xτ

C
−zC )2

dx

≤
∫ xτ

C

1
min

(
1,

1
4n(αCx−zC − xτ

C
−zC )2

)
We claim γn ≤ KC(δ)/n1−δ, given which the theorem follows. The proof of the claim

proceeds by induction. First, note that the n = 1 case, that γ1 ≤ KC(δ), holds by construc-

tion of KC(δ)—the second term in the max function in Equation 3.16 is equal to γ1. Then

assuming γn ≤ KC(δ)/n1−δ, consider the n + 1 case:

γn+1 =
nγn

n + 1
+

∫ xτ
C−1/(n+1)

xτ
C−1/n

1
4n(αCx−zC − xτ

C)2
dx

≤ KC(δ)nδ

n + 1
+

1
n2

=
KC(δ)

(n + 1)1−δ

(
nδ

(n + 1)δ
+

(n + 1)1−δ

KC(δ)n2

)
It remains to show that: (

nδ

(n + 1)δ
+

(n + 1)1−δ

KC(δ)n2

)
≤ 1 (3.18)

With algebra, this is equivalent to the statement that KC(δ)n2((n + 1)δ − nδ) ≥ n + 1.

From the generalized binomial theorem, (n + 1)δ is at least as large as nδ + δnδ−1 − δ(1−

δ)nδ−2/2. With algebra, we have:

KC(δ)n2((n + 1)δ − nδ) ≥ KC(δ)δn1+δ

2
≥ 3n1+δ

2
≥ n + 1

as desired, using the fact that KC(δ) ≥ 3/δ. �

3.7.4 Theoretical Results with Unknown Parameters

In unsupervised classification, in general we are not given the Urns parameters in advance,

and must learn these from unlabeled data. In this section, we provide theorems bounding

the error in unsupervised classification even when the parameter values are unknown. The

following theorem shows that with high probability the parameter values of Urns can be
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estimated accurately from unlabeled data alone, as the total number of examples u =

|C|+ |E| increases, with n fixed.

Theorem 19 In the ZC, for any δ, ε > 0, given u = |C| + |E| examples for fixed n, we

can obtain an estimate of the parameters of fC and fE such that with probability 1− δ each

estimate lies within ε of the true parameter value.

Proof. The frequency curves fC and fE can be converted into functions gC(λ) and gE(λ)

giving the probability density of a particular frequency λ for labels in the C (resp. E) set.

These functions are themselves power law distributions. For example, in the error set case:

gE(λ) =


LE

λ(1+zE)/zE
for aE ≤ x ≤ bE ,

0 for x < aE or x > bE ,
(3.19)

for a suitable constant LE where zE indicates the exponent from the original frequency

curve. The distribution of error labels in the model is completely characterized by four

parameters: LE and zE , the minimal frequency aE , and the maximal frequency bE .

The probability that a particular label appears k times can then be written as follows:

P (k|x ∈ C, n) =
∫ n

0
(gC(λ) + gE(λ))

e−λλk

k!
dλ (3.20)

Let g(x) = gC(x) + gE(x). When written in the form of Equation 3.20, the distribution

over k becomes an instance of a compound Poisson process, for which the existence of

effective estimators of g(x) is well-known. In particular, Theorem 1 from [36] states that

for any x < n we can obtain a sequence of estimates ĝu(x) of g(x) such that E[ĝu(x) −

g(x)]2 = o(1) as u→∞. Thus, for any given δ, ε′ > 0, we have with probability 1− δ that

|ĝu(x)− g(x)| < ε′ for u sufficiently large. Our task is to convert this estimator of g(x) into

estimators of each of the Urns parameters. In the re-written model (Equation 3.19) we will

employ, there are eight total parameters characterizing the mixture components gC and gE .

We present the construction for the three parameters of gE , the gC case is analogous.

Consider two estimates ĝu(x0) and ĝu(rx0) where x0, rx0 < αC/(|C| + 1). That is, x0

and rx0 are sufficiently small that gC(x0) and gC(rx0) are zero by assumption ZC3. By

algebra, in this region (1 + zE)/zE = (ln g(x0) − ln g(rx0))/(ln r), so zE is a continuous
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and bounded function of g(x0) and g(rx0) on the domain of interest. This implies we can

estimate zE within ε with probability 1 − δ given our estimator ĝu, for u suitably large.

Likewise, LE is a continuous and bounded function of g(x) and zE , so we can estimate LE

effectively.

It remains to obtain an estimator for the limits of support aE and bE . We begin with

the minimal limit aE . We construct from 0 to n a uniform lattice of estimates {ĝu(xi)} each

ε apart. By assumption ZC5, gE(x) > M ′ for x ∈ [aE , aE + ε) for a known constant M ′

given that ε is sufficiently small. By taking u suitably large, we can ensure with probability

1 − δ that ∀xi < aE , |ĝu(xi) − 0| < M ′/2 and that the xj ≥ aE that falls in the interval

[aE , aE + ε) has estimate ĝu(xj) > M ′/2. Thus, the minimal xi such that ĝu(x) > M ′/2

is with probability 1 − δ an estimate within ε of aE . Estimating the maximal limit of

support bE is similar. The same procedure can be employed, except that because gC(bE)

is non-zero, we instead identify successive estimates ĝu(xk) and ĝu(xk+1) that differ by a

sufficiently large margin, where xk is greater than our estimate for aE . For u sufficiently

large and ε sufficiently small, with probability 1− δ the value xk is within ε of bE .

�

Theoretical Results using All Features

In this section, we prove that Urns can overcome the limitations of the MFM discussed in

Section 3.1.

We prove that even when the conditional independence assumption does not hold, a

sufficiently informative count MF that follows the Urns model can be used to PAC learn

from only unlabeled data, provided a “separability” criterion holds on the concept class

C¬M given the MF. This criterion requires that no two distinct concepts in C for which xi

is an MF agree on too large a fraction of the instance space:

Definition 20 A concept class C′ is ε-separable for MF xi if for any distinct concepts

c, c′ ∈ C′ for which xi is an MF, the fraction of examples x ∈ X such that c(x) = c′(x) is

less that 1− ε.

We also require a count MF that is sufficiently informative. We state this criteria in
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terms of the minimal expected classification error that can be achieved with the count MF,

in the limit of u and n large. This is equivalent to the area of the “confusion region” in

Figure 3.1, which we define formally as:

Definition 21 The area of the confusion region of a count MF is:

min
τ

[∫ τ

0
gC(λ)dλ +

∫ ∞

τ
gE(λ)dλ

]
(3.21)

Given this definition, we can state the following result, which shows that Urns is able

to overcome the limitations of the MFM.

Proposition 22 If C is ε-separable for MF xi, given that xi is an MF that follows the ZC

with confusion region of area less than 1−ε/2, C is PAC-learnable from unlabeled data alone.

Proof. By Theorem 19, we can obtain the parameters of Urns within ε′ accuracy. Because

the optimal classification threshold τ is a continuous and bounded function of the Urns

parameters (see Equation 3.21), Urns can achieve accuracy arbitrarily close to the confusion

region size of less than 1− ε/2, provided n and u are sufficiently large. Thus, the accuracy

of the Urns-based classifier is such that it assigns classifications different from those of the

target classifier on fewer than 1 − ε/2 of the examples. By the separability criterion, the

target concept is the only hypothesis compatible with the MF that differs from the output

of Urns on so few examples. Thus, an algorithm that returns the concept c ∈ C most

similar to the output of Urns will always return target concept. �

3.8 Related Work

In contrast to the bulk of previous IE work, our focus is on unsupervised IE (UIE) where

Urns substantially outperforms previous methods (Figure 3.2).

In addition to the noisy-or models we compare against in our experiments, the IE lit-

erature contains a variety of heuristics using repetition as an indication of the veracity of

extracted information. For example, Riloff and Jones [50] rank extractions by the number

of distinct patterns generating them, plus a factor for the reliability of the patterns. Our

work is intended to formalize these heuristic techniques, and unlike the noisy-or models, we
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explicitly model the distribution of the target and error sets (our num(C) and num(E)),

which is shown to be important for good performance in Section 3.4.1. The accuracy of the

probability estimates produced by the heuristic and noisy-or methods is rarely evaluated ex-

plicitly in the IE literature, although most systems make implicit use of such estimates. For

example, bootstrap-learning systems start with a set of seed instances of a given relation,

which are used to identify extraction patterns for the relation; these patterns are in turn

used to extract further instances (e.g. [50, 35, 3]). As this process iterates, random extrac-

tion errors result in overly general extraction patterns, leading the system to extract further

erroneous instances. The more accurate estimates of extraction probabilities produced by

Urns would help prevent this “concept drift.”

Skounakis and Craven [55] develop a probabilistic model for combining evidence from

multiple extractions in a supervised setting. Their problem formulation differs from ours,

as they classify each occurrence of an extraction, and then use a binomial model along

with the false positive and true positive rates of the classifier to obtain the probability that

at least one occurrence is a true positive. Similar to the above approaches, they do not

explicitly account for sample size n, nor do they model the distribution of target and error

extractions.

Culotta and McCallum [16] provide a model for assessing the confidence of extracted

information using conditional random fields (CRFs). Their work focuses on assigning ac-

curate confidence values to individual occurrences of an extracted field based on textual

features. This is complementary to our focus on combining confidence estimates from mul-

tiple occurrences of the same extraction. In fact, each possible feature vector processed by

the CRF in [16] can be thought of as a virtual urn m in our Urns. The confidence output

of Culotta and McCallum’s model could then be used to provide the precision pm for the

urn.

Our work is similar in spirit to BLOG, a language for specifying probability distributions

over sets with unknown objects [40]. As in our work, BLOG models can express observations

as draws from an unknown set of balls in an urn. Whereas BLOG is intended to be a general

modeling framework for probabilistic first-order logic with varying sets of objects, our work

is directed at modeling redundancy in IE. We also provide supervised and unsupervised
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learning methods for our model that are effective for data sets containing many thousands

of examples, along with experiments demonstrating their efficacy in practice.

Joachims provides theoretical results in supervised textual classification that use the

Zipfian structure of text to arrive at error bounds for Support Vector Machine classifiers

on textual data [34]. The strong performance of SVMs in our supervised experiments

corroborate Joachims’s claim that these classifiers are effective on textual data. However,

in contrast to Joachims’s work, our experiments and theoretical results are focused on the

unsupervised case. We show that when the Zipfian structure holds, unsupervised learning

is possible under certain assumptions.

One of the problems our EM-based algorithm for learning Urns parameters must solve

is estimating the parameter |C|, the size of the target set. This problem has commonalities

with the classic “capture-recapture” problem from ecology, in which the goal is to estimate

the size of an animal population by capturing and marking a sample of the population,

then re-sampling at a later time. There are a number of significant differences between

the capture-recapture problem and estimating Urns parameters, however. First, Urns

attempts to learn the parameter |C| from observations which are co-mingled with samples

from a confounding error distribution. Second, Urns must also characterize how the fre-

quencies of the target set vary (in terms of the Zipfian shape parameter zC). In order to

solve these more difficult parameter estimation problems, Urns exploits problem structures

often found in textual domains, such as the fact that extractions and errors tend to be Zipf

distributed.

3.9 Conclusions and Future Work

This chapter introduced a combinatorial Urns model to the problem of assessing the prob-

ability that an extraction is correct. The chapter described supervised and unsupervised

methods for estimating the parameters of the model from data, and reported on experiments

showing that Urns massively outperforms previous methods in the unsupervised case, and

is slightly better than baseline methods in the supervised case. We also provided theoretical

results proving that the Urns model can be effective in cases where the MFM alone is not,

and established that the parameters of Urns can be learned from unlabeled data alone,
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given certain conditions. Our experimental and theoretical results are summarized below.

1. Experimental Results in IE. Listed below is Urns performance advantage against

each baseline, for supervised, semi-supervised, and unsupervised IE. For (a) and (c),

error reduction is measured in terms of deviation from ideal log likelihood. For (b),

error reduction is measured in terms of classification error.

(a) Supervised IE (Table 3.3)

• 19% error reduction over noisy-or

• 10% error reduction over logistic regression

• Comparable performance to SVM

(b) Semi-supervised IE (Figure 3.4)

• 6% error reduction over LP

(c) Unsupervised IE (Figure 3.2)

• 1500% error reduction over noisy-or

• 2000% error reduction over Pointwise Mutual Information (PMI)

2. Theoretical Results in Zipfian Single-urn Case (ZC) Below is an informal

summary of the theoretical results for the ZC model.

(a) Theorem 16

• States how the odds of correctness increase with the MF value.

(b) Theorem 18

• The classification error of the model is less than a constant factor times
1

1/n(1−δ) for any δ > 0 (n denotes the sample size).

(c) Theorem 19

• Parameters of the model are learnable from unlabeled data alone, given

sufficient data.

(d) Theorem 22
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• Probably Approximately Correct (PAC) classification is possible in the model,

given sufficient data.

Several items of future work are possible. One important direction is developing a

probabilistic model for multiple mechanisms that is more flexible than multiple urns. The

correlation model used for multiple urns is limited and can only handle a pre-defined set of

distinct mechanisms. A method for UIE that leverages all contexts rather than a select set

of extraction patterns is investigated in the next chapter; but it is not a probabilistic model

and only ranks extractions, rather than producing probabilities or classifications. Lastly,

the approximate “M step” we employ for unsupervised learning of Urns parameters could

be improved upon, utilizing exact methods or more rigorous approximations.
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Chapter 4

LANGUAGE MODELS FOR ASSESSING SPARSE EXTRACTIONS

Even in a massive corpus such as the Web, a substantial fraction of extractions appear

infrequently. While the Urns model introduced in the previous chapter can assign accurate

probabilities of correctness to these sparse extractions, it cannot distinguish which of these

extractions are correct.

This chapter shows how to assess the correctness of sparse extractions by utilizing unsu-

pervised language models. The Realm system, which combines HMM-based and n-gram-

based language models, ranks candidate extractions by the likelihood that they are correct.

Our experiments show that Realm reduces extraction error by 39%, on average, when

compared with previous work.

Because Realm pre-computes language models based on its corpus and does not require

any hand-tagged seeds, it is far more scalable than approaches that learn models for each

individual relation from hand-tagged data. Thus, Realm is ideally suited for open infor-

mation extraction, a special case of UIE in which the relations of interest are not specified

in advance and their number is potentially vast.

4.1 Introduction

Zipf’s Law governs the distribution of extractions. Thus, even the Web has limited redun-

dancy for less prominent instances of relations. Indeed, 50% of the extractions in the data

sets employed in Chapters 2 and 3 appeared only once. As a result, the Urns model (and

related methods) have no way of assessing which extraction is more likely to be correct for

fully half of the extractions. This problem is particularly acute when moving beyond unary

relations. We refer to this challenge as the task of assessing sparse extractions.

This chapter introduces the idea that language modeling techniques such as n-gram

statistics [37] and HMMs [46] can be used to effectively assess sparse extractions. The chap-
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ter introduces the Realm system, and highlights its unique properties. Notably, Realm

does not require any hand-tagged seeds, which enables it to scale to Open IE—a special

case of UIE where the relations of interest are not specified in advance, and their number

is potentially vast [5].

Realm is based on two key hypotheses. The KnowItAll hypothesis, introduced in Chap-

ter 1, states that extractions that occur more frequently in distinct sentences in the corpus

are more likely to be correct. For example, the hypothesis suggests that the argument pair

(Giuliani, New York) is relatively likely to be appropriate for the Mayor relation, sim-

ply because this pair is extracted for the Mayor relation relatively frequently. Second, we

employ an instance of the distributional hypothesis [32], which can be phrased as follows:

different instances of the same semantic relation tend to appear in similar textual contexts.

We assess sparse extractions by comparing the contexts in which they appear to those of

more common extractions. Sparse extractions whose contexts are more similar to those of

common extractions are judged more likely to be correct based on the conjunction of the

KnowItAll and the distributional hypotheses.

The contributions of the chapter are as follows:

• The chapter introduces the insight that the subfield of language modeling provides un-

supervised methods that can be leveraged to assess sparse extractions. These methods

are more scalable than previous assessment techniques, and require no hand tagging

whatsoever.

• The chapter introduces an HMM-based technique for checking whether two arguments

are of the proper type for a relation.

• The chapter introduces a relational n-gram model for the purpose of determining

whether a sentence that mentions multiple arguments actually expresses a particular

relationship between them.

• The chapter introduces a novel language-modeling system called Realm that com-

bines both HMM-based models and relational n-gram models, and shows that Realm

reduces error by an average of 39% over previous methods, when applied to sparse

extraction data.
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The remainder of the chapter is organized as follows. Section 4.2 introduces the IE

assessment task, and describes the Realm system in detail. Section 4.3 reports on our

experimental results followed by a discussion of related work in Section 4.4. Finally, we

conclude with a discussion of scalability and with directions for future work.

4.2 IE Assessment

This section formalizes the IE assessment task, which has important differences from the

IE classification tasks considered in the previous chapters, and then describes the Realm

system for solving it. An IE assessor takes as input a list of candidate extractions meant to

denote instances of a relation, and outputs a ranking of the extractions with the goal that

correct extractions rank higher than incorrect ones. A correct extraction is defined to be a

true instance of the relation mentioned in the input text.

More formally, the list of candidate extractions for a relation R is denoted as ER =

{(a1, b1), . . . , (am, bm)}. An extraction (ai, bi) is an ordered pair of strings. The extraction

is correct if and only if the relation R holds between the arguments named by ai and bi. For

example, for R = Headquartered, a pair (ai, bi) is correct iff there exists an organization

ai that is in fact headquartered in the location bi.1

ER is generated by applying an extraction mechanism, typically a set of extraction

“patterns”, to each sentence in a corpus, and recording the results. Thus, many elements

of ER are identical extractions derived from different sentences in the corpus.

This task definition is notable for the minimal inputs required—IE assessment does not

require knowing the relation name nor does it require hand-tagged seed examples of the

relation. Thus, an IE Assessor is applicable to Open IE.

4.2.1 System Overview

In this section, we describe the Realm system, which utilizes language modeling techniques

to perform IE Assessment.

1For clarity, our discussion focuses on relations between pairs of arguments. However, the methods we
propose can be extended to relations of any arity.
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Realm takes as input a set of extractions ER, and outputs a ranking of those extractions.

The algorithm Realm follows is outlined in Figure 4.1. Similar to the Mfa algorithm from

Chapter 2, Realm begins by automatically selecting from ER a set of bootstrapped seeds

SR intended to serve as correct examples of the relation R. Realm utilizes the KnowItAll

hypothesis, setting SR equal to the h elements in ER extracted most frequently from the

underlying corpus. This results in a noisy set of seeds, but the methods that use these seeds

are noise tolerant.

Realm then proceeds to rank the remaining (non-seed) extractions by utilizing two

language-modeling components. An n-gram language model is a probability distribution

P (w1, ..., wn) over consecutive word sequences of length n in a corpus. Formally, if we assume

a seed (s1, s2) is a correct extraction of a relation R, the distributional hypothesis states

that the context distribution around the seed extraction, P (w1, ..., wn|wi = s1, wj = s2) for

1 ≤ i, j ≤ n tends to be “more similar” to P (w1, ..., wn|wi = e1, wj = e2) when the extraction

(e1, e2) is correct. Naively comparing context distributions is problematic, however, because

the arguments to a relation often appear separated by several intervening words. In our

experiments, we found that when relation arguments appear together in a sentence, 75% of

the time the arguments are separated by at least three words. This implies that n must be

large, and for sparse argument pairs it is not possible to estimate such a large language model

accurately, because the number of modeling parameters is proportional to the vocabulary

size raised to the nth power. To mitigate sparsity, Realm utilizes smaller language models

in its two components as a means of “backing-off’ from estimating context distributions

explicitly, as described below.

First, Realm utilizes an HMM to estimate whether each extraction has arguments of

the proper type for the relation. Each relation R has a set of types for its arguments. For

example, the relation AuthorOf(a, b) requires that its first argument be an author, and

that its second be some kind of written work. Knowing whether extracted arguments are

of the proper type for a relation can be quite informative for assessing extractions. The

challenge is, however, that this type information is not given to the system since the relations

(and the types of the arguments) are not known in advance. Realm solves this problem

by comparing the distributions of the seed arguments and extraction arguments. Type



81

checking mitigates data sparsity by leveraging every occurrence of the individual extraction

arguments in the corpus, rather than only those cases in which argument pairs occur near

each other.

Although argument type checking is invaluable for extraction assessment, it is not suf-

ficient for extracting relationships between arguments. For example, an IE system using

only type information might determine that Intel is a corporation and that Seattle is

a city, and therefore erroneously conclude that Headquartered(Intel, Seattle) is cor-

rect. Thus, Realm’s second step is to employ an n-gram-based language model to assess

whether the extracted arguments share the appropriate relation. Again, this information is

not given to the system, so Realm compares the context distributions of the extractions

to those of the seeds. As described in Section 4.2.3, Realm employs a relational n-gram

language model in order to accurately compare context distributions when extractions are

sparse.

Realm executes the type checking and relation assessment components separately; each

component takes the seed and non-seed extractions as arguments and returns a ranking of

the non-seeds. Realm then combines the two components’ assessments into a single ranking.

Although several such combinations are possible, Realm simply ranks the extractions in

ascending order of the product of the ranks assigned by the two components. The following

subsections describe Realm’s two components in detail.

We identify the proper nouns in our corpus using the Lex method [18]. In addition to

locating the proper nouns in the corpus, Lex also concatenates each multi-token proper noun

(e.g.,Los Angeles) together into a single token. Both of Realm’s components construct

language models from this tokenized corpus.

4.2.2 Type Checking with Hmm-T

In this section, we describe our type-checking component, which takes the form of a Hidden

Markov Model and is referred to as Hmm-T. Hmm-T ranks the set UR of non-seed extrac-

tions, with a goal of ranking those extractions with arguments of proper type for R above

extractions containing type errors. Formally, let URi denote the set of the ith arguments of
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Mfa(Extractions ER = {e1, ..., em})

SR = the h most frequent extractions in ER

UR = ER - SR

TypeRankings(UR)← Hmm-T(SR, UR)

RelationRankings(UR)← Rel-grams(SR, UR)

return a ranking of ER with the elements of SR at the

top (ranked by frequency) followed by the elements of

UR = {u1, ..., um−h} ranked in ascending order of

TypeRanking(ui) ∗RelationRanking(ui).

Figure 4.1: Pseudocode for Mfa at run-time. The language models used by the Hmm-T
and Rel-grams components are constructed in a pre-processing step.

the extractions in UR. Let SRi be defined similarly for the seed set SR.

Our type checking technique exploits the distributional hypothesis—in this case, the

intuition that extraction arguments in URi of the proper type will likely appear in contexts

similar to those in which the seed arguments SRi appear. In order to identify terms that are

distributionally similar, we train a probabilistic generative Hidden Markov Model (HMM),

which treats each token in the corpus as generated by a single hidden state variable. Here,

the hidden states take integral values from {1, . . . , T}, and each hidden state variable is itself

generated by some number k of previous hidden states.2 Formally, the joint distribution of

the corpus, represented as a vector of tokens w, given a corresponding vector of states t is:

P (w|t) =
∏

i

P (wi|ti)P (ti|ti−1, . . . , ti−k) (4.1)

The distributions on the right side of Equation 4.1 can be learned from a corpus in an

unsupervised manner, such that words which are distributed similarly in the corpus tend to

be generated by similar hidden states [46]. The generative model is depicted as a Bayesian

network in Figure 4.2. The figure also illustrates the one way in which our implementation

2Our implementation makes the simplifying assumption that each sentence in the corpus is generated
independently.
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Intel              ,       headquartered     in        Santa+Clara

ti ti+1 ti+2 ti+3 ti+4

Figure 4.2: Graphical model employed by Hmm-T. Shown is the case in which k = 2.
Corpus pre-processing results in the proper noun Santa Clara being concatenated into a
single token.

is distinct from a standard HMM, namely that proper nouns are detected a priori and

modeled as single tokens (e.g., Santa Clara is generated by a single hidden state). This

allows the type checker to compare the state distributions of different proper nouns directly,

even when the proper nouns contain differing numbers of words.

To generate a ranking of UR using the learned HMM parameters, we rank the argu-

ments ei according to how similar their state distributions P (t|ei) are to those of the seed

arguments.3 Specifically, we define a function:

f(e) =
∑
ei∈e

KL(

∑
w′∈SRi

P (t|w′)
|SRi|

, P (t|ei)) (4.2)

where KL represents KL divergence, and the outer sum is taken over the arguments ei of

the extraction e. We rank the elements of UR in ascending order of f(e).

Hmm-T has two advantages over a more traditional type checking approach of simply

counting the number of times in the corpus that each extraction appears in a context in

which a seed also appears (cf. [47]). The first advantage of Hmm-T is efficiency, as the tradi-

tional approach involves a computationally expensive step of retrieving the potentially large

set of contexts in which the extractions and seeds appear. In our experiments, using Hmm-

T instead of a context-based approach results in a 10-50x reduction in the amount of data

that is retrieved to perform type checking. Secondly, on sparse data Hmm-T has the poten-

tial to improve type checking accuracy. For example, consider comparing Pickerington, a

3The distribution P (t|ei) for any ei can be obtained from the HMM parameters using Bayes Rule.
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sparse candidate argument of the type City, to the seed argument Chicago, for which the

following two phrases appear in the corpus:

(i) “Pickerington, Ohio”

(ii) “Chicago, Illinois”

In these phrases, the textual contexts surrounding Chicago and Pickerington are not

identical, so to the traditional approach these contexts offer no evidence that Pickerington

and Chicago are of the same type. For a sparse token like Pickerington, this is problematic

because the token may never occur in a context that precisely matches that of a seed.

In contrast, in the HMM, the non-sparse tokens Ohio and Illinois are likely to have

similar state distributions, as they are both the names of U.S. States. Thus, in the state

space employed by the HMM, the contexts in phrases (i) and (ii) are in fact quite similar,

allowing Hmm-T to detect that Pickerington and Chicago are likely of the same type. Our

experiments quantify the performance improvements that Hmm-T offers over the traditional

approach for type checking sparse data.

Each iteration required to learn Hmm-T’s parameters takes time proportional to T k+1

times the corpus size. Thus, for tractability, Hmm-T uses a relatively small state space

of T = 20 states and a limited k value of 3. While these settings are sufficient for type

checking (e.g., determining that Santa Clara is a city) they are too coarse-grained to

assess relations between arguments (e.g., determining that Santa Clara is the particular

city in which Intel is headquartered). We now turn to the Rel-grams component, which

performs the latter task.

4.2.3 Relation Assessment with Rel-grams

Realm’s relation assessment component, called Rel-grams, tests whether the extracted

arguments have a desired relationship, but given Realm’s minimal input it has no a pri-

ori information about the relationship. Rel-grams relies instead on the distributional

hypothesis to test each extraction.

As argued in Section 4.2.1, it is intractable to build an accurate language model for

context distributions surrounding sparse argument pairs. To overcome this problem, we
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introduce relational n-gram models. Rather than simply modeling the context distribution

around a given argument, a relational n-gram model specifies separate context distributions

for an arguments conditioned on each of the other arguments with which it appears. The

relational n-gram model allows us to estimate context distributions for pairs of arguments,

even when the arguments do not appear together within a fixed window of n words. Further,

by considering only consecutive argument pairs, the number of distinct argument pairs in

the model grows at most linearly with the number of sentences in the corpus. Thus, the

relational n-gram model can scale.

Formally, for a pair of arguments (e1, e2), a relational n-gram model estimates the dis-

tributions P (w1, ..., wn|wi = e1, e1 ↔ e2) for each 1 ≤ i ≤ n, where the notation e1 ↔ e2

indicates the event that e2 is the next argument to either the right or the left of e1 in the

corpus.

Rel-grams begins by building a relational n-gram model of the arguments in the corpus.

For notational convenience, we represent the model’s distributions in terms of “context

vectors” for each pair of arguments. Formally, for a given sentence containing arguments

e1 and e2 consecutively, we define a context of the ordered pair (e1, e2) to be any window

of n tokens around e1.4

Let C = {c1, c2, ..., c|C|} be the set of all contexts of all argument pairs found in the

corpus.5 For a pair of arguments (ej , ek), we model their relationship using a |C| dimensional

context vector v(ej ,ek), whose i-th dimension corresponds to the number of times context ci

occurred with the pair (ej , ek) in the corpus. These context vectors are similar to document

vectors from Information Retrieval (IR), and we leverage IR techniques to compare them,

as described below.

To assess each extraction, we determine how similar its context vector is to a canonical

seed vector (created by summing the context vectors of the seeds). While there are many

4In practice, when computing contexts we replace each entity with an appropriate special token. For
example, from the sentence “This information came from Intel in Santa+Clara”, using a window of length
n = 3, we find three contexts for the entity pair (Intel, Santa+Clara): ‘came from OBJ’, ‘from OBJ in’,
and ‘OBJ in RELATED’.

5Pre-computing the set C requires identifying in advance the potential relation arguments in the cor-
pus. We consider the proper nouns identified by the Lex method (see Section 4.2.1) to be the potential
arguments.
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potential methods for determining similarity, in this work we rank extractions by decreasing

values of the BM25 distance metric. BM25 is a TF-IDF variant introduced in TREC-3[52],

which outperformed both the standard cosine distance and a smoothed KL divergence on

our data. The BM25 distance between the extraction context vector e and seed context

vector s is defined as:

BM25(e, s) =
∑

1≤j≤|C|

(k1 + 1) ∗ ej

k1((1− b) + b ∗ cl
acl ) + ej

wj (4.3)

wj = log
(rj + 0.5) ∗ (N − nj −R + rj + 0.5)

(R− rj + 0.5) ∗ (nj − rj + 0.5)
(4.4)

where R is the total number of seeds, rj is the number of seeds observed at least once with

context j, N is the total number of entity pairs, nj is the total number of entity pairs seen at

least once in context j, cl is the total number of contexts e appears with, acl is the average

number of contexts an extraction appears with, and k1 and b are tuning parameters.

For all our experiments we set k1 = 3 and b = 1 and used a t = 4 token window for con-

texts. We examined several variations of these parameters and found that the results were

not sensitive to these parameters. The relational n-gram model captures e1’s relationship

to e2 separately from e2’s relationship to e1. In our implementation, Rel-grams utilizes a

symmetric measure, equal to the sum of the BM25 scores computed for each direction.

4.3 Experimental Results

This section describes our experiments on IE assessment for sparse data. We start by

describing our experimental methodology, and then present our results. The first experiment

tests the hypothesis that Hmm-T outperforms an n-gram-based method on the task of type

checking. The second experiment tests the hypothesis that Realm outperforms multiple

approaches from previous work, and also outperforms each of its Hmm-T and Rel-grams

components taken in isolation.

4.3.1 Experimental Methodology

The corpus used for our experiments consisted of a sample of sentences taken from Web

pages. From an initial crawl of nine million Web pages, we selected sentences containing
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relations between proper nouns. The resulting text corpus consisted of about three million

sentences, and was tokenized as described in Section 4.2. For tractability, before and after

performing tokenization, we replaced each token occurring fewer than five times in the

corpus with one of two “unknown word” markers (one for capitalized words, and one for

uncapitalized words). This preprocessing resulted in a corpus containing about sixty-five

million total tokens, and 214,787 unique tokens.

We evaluated performance on four relations: Conquered, Founded, Headquartered, and

Merged. These four relations were chosen because they typically take proper nouns as

arguments, and included a large number of sparse extractions. For each relation R, the

candidate extraction list ER was obtained using TextRunner [5]. TextRunner computes

an index of all extracted relationships it recognizes, in the form of (object, predicate, object)

triples. For each of our target relations, we executed a single query to the TextRunner

index for extractions whose predicate contained a phrase indicative of the relation (e.g.,

“founded by”, “headquartered in”), and the results formed our extraction list. For each

relation, the 10 most frequent extractions served as bootstrapped seeds. All of the non-

seed extractions were sparse (no argument pairs were extracted more than twice for a given

relation). These test sets contained a total of 361 extractions.

4.3.2 Type Checking Experiments

As discussed in Section 4.2.2, on sparse data Hmm-T has the potential to outperform type

checking methods that rely on textual similarities of context vectors. To evaluate this

claim, we tested the Hmm-T system against an n-grams type checking method on the

task of type-checking the arguments to a relation. The n-grams method compares the

context vectors of extractions in the same way as the Rel-grams method described in

Section 4.2.3, but is not relational (n-grams considers the distribution of each extraction

argument independently, similar to Hmm-T). We tagged an extraction as type correct iff

both arguments were valid for the relation, ignoring whether the relation held between the

arguments.

The results of our type checking experiments are shown in Table 4.1. For all types, Hmm-
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Table 4.1: Type Checking Performance. Listed is area under the precision/recall curve.
Hmm-T outperforms n-grams for all relations, and reduces the error in terms of missing
area under the curve by 46% on average.

Type Hmm-T n-grams

Conquered 0.917 0.767

Founded 0.827 0.636

Headquartered 0.734 0.589

Merged 0.920 0.854

Average 0.849 0.712

T outperforms n-grams, and Hmm-T reduces error (measured in missing area under the

precision/recall curve) by 46%. The performance difference on each relation is statistically

significant (p < 0.01, two-sampled t-test), using the methodology for measuring the standard

deviation of area under the precision/recall curve given in [48]. n-grams, like Rel-grams,

employs the BM-25 metric to measure distributional similarity between extractions and

seeds. Replacing BM-25 with cosine distance cuts Hmm-T’s advantage over n-grams, but

Hmm-T’s error rate is still 23% lower on average.

Additional Experiments with Hmm-T

The type checking task is similar to the UIE task for unary extractions considered in Chap-

ters 2 and 3. Can Hmm-T improve performance on unary extractions as well?

We obtained candidate extractions of each unary relation by searching a corpus for

patterns likely to indicate the type (e.g., “countries such as x”). For a given type, the

most frequent extractions occurring more than once (to a maximum of 10) served as seed

examples. To focus our experiments on the assessment of sparse data, our test sets were

composed of all extractions co-occurring with the patterns only once. In our corpus, the

singleton extractions numbered 99 for Company, 50 for Country, 77 for Film, and 39 for

Language.

Table 4.2 shows the performance of both Hmm-T and n-grams on three classes. Here,
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Table 4.2: Performance of n-grams and Hmm-T on four classes from the UIE task. Hmm-T
reduces error by 28% on average.

Class Hmm-T n-grams

Company 0.966 0.956

Country 0.886 0.800

Film 0.803 0.741

Language 0.936 0.931

Average 0.898 0.857

we compare against the better-performing cosine metric for n-grams, rather than BM25.

Hmm-T reduces error (in terms of missing area under the precision/recall curve) by 28%

on average over n-grams.

Another question is to what extent the noisy seeds that Hmm-T uses impact its perfor-

mance. We investigated this question is the context of the unary extraction experiments

above. First, only the Film class in these experiments had seed extractions which were

errors; thus, we see that Hmm-T can improve performance over n-grams even when the

seeds are known to be correct. When the five erroneous seeds for the Film class are re-

moved, we find that this reduces error of the Hmm-T method by 8% (increasing area under

the precision/recall curve to 0.819, from 0.803) versus a larger 14% error reduction for the

n-grams method (to 0.776, from 0.741). This suggests that Hmm-T is more robust than

n-grams when seed extractions are noisy.

4.3.3 Experiments with Realm

The Realm system combines the type checking and relation assessment components to

assess extractions. Here, we test the ability of Realm to improve the ranking of a state of

the art IE system, TextRunner. For these experiments, we evaluate Realm against the

TextRunner frequency-based ordering, a pattern-learning approach, and the Hmm-T and

Rel-grams components taken in isolation. The TextRunner frequency-based ordering
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Conquered Founded Headquartered Merged Average

Avg. Prec. 0.698 0.578 0.400 0.742 0.605

TextRunner 0.738 0.699 0.710 0.784 0.733

Pl 0.885 0.633 0.651 0.852 0.785

Pl+ Hmm-T 0.883 0.722 0.727 0.900 0.808

Hmm-T 0.830 0.776 0.678 0.864 0.787

Rel-grams 0.929 0.713 0.758 0.886 0.822

(39%)

Realm 0.907 0.781 0.810 0.908 0.851

(19%) (27%) (35%) (38%) (39%)

Table 4.3: Performance of Realm for assessment of sparse extractions. Listed is area under
the precision/recall curve for each method. In parentheses is the percentage reduction in
error over the strongest baseline method (TextRunner or Pl) for each relation. “Avg.
Prec.” denotes the fraction of correct examples in the test set for each relation. Realm
outperforms its Rel-grams and Hmm-T components taken in isolation, as well as the
TextRunner and Pl systems from previous work.

ranks extractions in decreasing order of their extraction frequency, and importantly, for our

task this ordering is essentially equivalent to that produced by the Urns model or Pointwise

Mutual Information methods described in Chapter 3.

The pattern-learning approach, denoted as Pl, is modeled after Snowball [2]. The

algorithm and parameter settings for Pl were those manually tuned for the Headquartered

relation in previous work [1]. A sensitivity analysis of these parameters indicated that the

results are sensitive to the parameter settings. However, we found no parameter settings

that performed significantly better, and many settings performed significantly worse. As

such, we believe our results reasonably reflect the performance of a pattern learning system

on this task. Because Pl performs relation assessment, we also attempted combining Pl

with Hmm-T in a hybrid method (Pl+ Hmm-T) analogous to Realm.

The results of these experiments are shown in Table 4.3. Realm outperforms the Tex-
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tRunner and Pl baselines for all relations, and reduces the missing area under the curve by

an average of 39% relative to the strongest baseline. The performance differences between

Realm and TextRunner are statistically significant for all relations, as are differences

between Realm and Pl for all relations except Conquered (p < 0.01, two-sampled t-test).

The hybrid Realm system also outperforms each of its components in isolation.

4.4 Related Work

To our knowledge, Realm is the first system to use language modeling techniques for IE

Assessment.

Redundancy-based approaches to pattern-based IE assessment [20, 24] require that ex-

tractions appear relatively frequently with a limited set of patterns. In contrast, Realm

utilizes all contexts to build a model of extractions, rather than a limited set of patterns.

Our experiments demonstrate that Realm outperforms these approaches on sparse data.

Type checking using named-entity taggers has been previously shown to improve the

precision of pattern-based IE systems [1, 27], but the Hmm-T type-checking component

we develop differs from this work in important ways. Named-entity taggers are limited in

that they typically recognize only small set of types (e.g., ORGANIZATION, LOCATION,

PERSON), and they require hand-tagged training data for each type. Hmm-T, by contrast,

performs type checking for any type. Finally, Hmm-T does not require hand-tagged training

data.

Pattern learning is a common technique for extracting and assessing sparse data (e.g.

[1, 49, 44]). Our experiments demonstrate that Realm outperforms a pattern learning

system closely modeled after [1]. Realm is inspired by pattern learning techniques (in

particular, both use the distributional hypothesis to assess sparse data) but is distinct in

important ways. Pattern learning techniques require substantial processing of the corpus

after the relations they assess have been specified. Because of this, pattern learning systems

are unsuited to Open IE. Unlike these techniques, Realm pre-computes language models

which allow it to assess extractions for arbitrary relations at run-time. In essence, pattern-

learning methods run in time linear in the number of relations whereas Realm’s run time

is constant in the number of relations. Thus, Realm scales readily to large numbers of
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relations whereas pattern-learning methods do not.

A second distinction of Realm is that its type checker, unlike the named entity taggers

employed in pattern learning systems (e.g., Snowball), can be used to identify arbitrary

types. A final distinction is that the language models Realm employs require fewer param-

eters and heuristics than pattern learning techniques.

Similar distinctions exist between Realm and a recent system designed to assess sparse

extractions by bootstrapping a classifier for each target relation [27]. As in pattern learning,

constructing the classifiers requires substantial processing after the target relations have

been specified, and a set of hand-tagged examples per relation, making it unsuitable for

Open IE.

4.5 Future Work

The language modeling techniques used by Mfa (Hidden Markov Models and n-gram mod-

els) are basic and represent only a first step in utilizing language modeling for information

extraction. Experiments with more sophisticated techniques that exploit additional lan-

guage elements, such as character-level or document-level features (e.g., HMM-LDA [31])

and the recursive structure of language (e.g., probabilistic context-free grammars), is a

key item of future work. Likewise, other methods for generalizing from sparse contextual

information (e.g., performing Latent Semantic Analysis over context vectors) should be com-

pared experimentally with the Hmm-T approach. Further, Web-specific structures found in

HTML are highly indicative of particular unary types (for example, HTML wrappers have

been shown to be extremely effective at identifying unary extractions [25, 58]). Developing

language modeling techniques that utilize this additional structure is an exciting future

direction.

One specific enhancement to Hmm-T we would like to explore involves handling terms

with multiple meanings, which are widespread in information extraction and are particularly

challenging for Hmm-T to assess. We discuss this direction in detail below.
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Intel                ,      headquartered      in         Santa+Clara

ti ti+1 ti+2 ti+3 ti+4

si si+1 si+2 si+3 si+4

Figure 4.3: Graphical model employed by Pmm. The model includes sense variables si and
state variables ti for each token in the corpus.

4.5.1 Handling Polysemy

The Hmm-T language model faces a difficult problem with polysemy, the existence of terms

that refer to multiple real-world entities. Consider the term Chicago, which most frequently

refers to a city, but can also refer to a film. Hmm-T necessarily conflates all senses of

each word w into a single distribution P (t|w). As a result, the distributional similarity

computation in Equation 4.2 is dominated by each term’s majority sense, meaning that

Hmm-T will not correctly type check terms for their minority senses (e.g., the film sense

of Chicago). In this section, we describe an enhancement to Hmm-T aimed at overcoming

this limitation.

Our enhancement utilizes what we term a Polysemous Markov Model (PMM), which

augments a standard HMM with an explicit sense variable for each observed token. A

portion of the Bayes Net corresponding to the PMM is shown graphically in Figure 4.3.

Formally, each token wi in the corpus w is generated by a single hidden state ti, and the

state and token jointly generate a hidden sense variable si. The hidden states take integral

values from {1, . . . , T} (as in Hmm-T), and the hidden senses take values from {1, . . . , Sw},

where in general the number of senses Sw can vary across different terms w. The joint

distribution of senses s and observed tokens w given the hidden states t is:

P (w, s|t) =
∏

i

P (si|ti, wi)P (wi|ti)P (ti|ti−1, . . . , ti−k) (4.5)
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The distributions on the right-hand-side of Equation 4.5 can be learned from a corpus in

an unsupervised manner using Expectation-Maximization (EM). Inference complexity for

PMMs is tractable, requiring a manageable factor of Sw more computations than HMMs

on average.6

An important modeling decision lies in choosing the number of word senses Sw. The

number of distinct senses for each term can vary wildly across a lexicon. A straightforward

approach is to choose a fixed number of senses for each term, using for example the property

(due to Zipf) that the number of meanings of a term varies with the square root of its

frequency [37]. A more flexible, albeit less efficient alternative would be to employ a non-

parametric technique (e.g., Dirichlet process mixture models [4]) to dynamically choose the

number of senses for each term.

Unlike Hmm-T, Pmm can be utilized to determine if two entities share any sense in

common, including minority senses. Given entities e1 and e2, we define a distance function

(in terms of the parameters of a learned PMM) as:

d(e1, e2) = min
s,s′

KL(P (t|s, e1), P (t|s′, e2)) (4.6)

Thus, if e1 has any sense which is similar to some sense of e2, the entities are judged to be

similar, even when the senses are minority senses.

The Pmm model gives a distribution over senses for each word occurrence in a corpus.

Thus, Pmm is valuable for word sense disambiguation (WSD), the task of determining which

sense of a term is being used in a particular sentence.

Because the PMM represents senses explicitly, it can be augmented to exploit the pow-

erful heuristic that often, multiple uses of a word in a given document correspond to the

same word sense [59]. One way to implement this in a PMM would involve generating all

sentences in a document jointly, with sense variables interconnected by additional pairwise

terms P (si|sj , ti = tj) favoring sense distributions in which si is distributed similarly to sj

whenever ti = tj . Of course, such an enhancement dramatically increases the interconnec-

tivity of the graphical model. To maintain tractability, a form of approximate inference

6Tractability in parameter learning is further aided by the fact that the EM procedure can be parallelized
in a straightforward fashion.
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(e.g., Gibbs sampling) can be employed to replace or augment the exact inference used in

the original PMM.

4.6 Conclusions

This chapter demonstrated that unsupervised language models, as embodied in the Realm

system, are an effective means of assessing sparse extractions.

Another attractive feature of Realm is its scalability. Scalability is a particularly im-

portant concern for Open Information Extraction, the task of extracting large numbers of

relations that are not specified in advance. Because Hmm-T and Rel-grams both pre-

compute language models, Realm can be queried efficiently to perform IE Assessment.

Further, the language models are constructed independently of the target relations, allow-

ing Realm to perform IE Assessment even when relations are not specified in advance.
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Chapter 5

CONCLUSION

In this thesis, we illustrated a probabilistic model of the KnowItAll Hypothesis, which

states that extractions that occur more frequently in distinct sentences in a corpus are more

likely to be correct. The model leverages the redundancy inherent in large text collections

to identify correct extractions from the Web automatically, without the use of hand-labeled

training data.

We began by presenting the KnowItAll Hypothesis as an instance of a general problem

structure inherent in many textual classification tasks. The Monotonic Feature Model

(MFM) holds for a classification task when one or more feature values exhibit a monotonic

relationship with class probability. We showed theoretically that the MFM provided a

number of valuable properties for learning from unlabeled data. In particular, when the

identity of a single monotonic feature is known, PAC-learning is possible from unlabeled

data alone. Further, the MFM is formally distinct from structures used in previous semi-

supervised learning research, and offers greater information gain than labeled examples as

the feature space increases in size, under certain assumptions.

We demonstrated that the MFM can be employed effectively in practice. In experiments

with the “20 Newsgroups” document classification task, a learner given an MF and unlabeled

data achieved accuracy equal to that of a state-of-the-art semi-supervised learner relying

on 160 hand-labeled examples. Even when MFs are not given as input, a semi-supervised

learning method that discovers MFs from small amounts of labeled data was found to reduce

error by 15% on the newsgroups task.

While the MFM is effective in some cases, it has important limitations. We demonstrated

theoretically and empirically that for more complex problems, including Unsupervised In-

formation Extraction (UIE), the MFM is not sufficient. We then presented the Urns model,

a special case of the MFM that addresses its limitations. Urns takes the form of a combi-
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natorial balls-and-urns model, and computes the probability an extraction is a member of

the target class based on its MF value. We proved theoretically that the Urns model can

provide PAC learnability for problems in which the MFM alone is ineffective. The model

was also effective in practice. In experiments with UIE we showed that Urns produces

probability estimates that are on average 15 to 20 times closer to ideal, when compared

with techniques from previous work. Further, without labeled data Urns provides perfor-

mance equivalent to that of state-of-the-art semi-supervised approaches trained using over

320 labeled examples.

Because extraction frequency follows a Zipf distribution, even on the Web a substantial

fraction of extractions appear infrequently. For these sparse extractions, Urns and other

techniques that depend on the KnowItAll hypothesis alone are ineffective, because each

extraction appears only a handful of times. We introduced the insight that the sub-field

of statistical language modeling provides unsupervised methods that can be leveraged to

assess sparse extractions, through the combination of the KnowItAll hypothesis and the

Distributional hypothesis of language. In experiments in UIE, an assessment technique

based on language models reduced extraction error by 39%, on average, when compared

with techniques from previous work. Further, because unsupervised language models can

be pre-computed without any labeled data or seed examples, they are ideally suited to UIE

and are substantially more scalable than techniques from previous work.

5.0.1 Limitations and Future Work

The methods and theoretical results we presented have a number of limitations which could

be addressed in future work. Many of the theoretical results rely on strong assumptions.

In order to establish PAC-learnability in the MFM, we assume that the monotonic feature

values are conditionally independent of the other feature values. While this assumption is

not uncommon, and is employed in the co-training theory which our work builds upon, it

is typically wildly untrue in practice. As is the case with co-training and Naive Bayes clas-

sifiers, however, MFM-based techniques which in theory require conditional independence

are often effective in practice even when the assumption is violated. Theoretical results that
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characterize more precisely when the MFM is likely to be effective are an item of future

work.

In cases in which the MFM is not effective, we proved that the Urns model is sufficient

to provide PAC classification. The Urns model relies on its own set of idealizations. First,

we assume that the target and error elements are Zipf distributed. Second, for the PAC-

learnability result, we also require that as the data set grows an arbitrary number of unique

target elements have frequencies above some reference frequency (along with a similar cri-

teria for error elements). The second assumption is unlikely to hold even as the Web grows.

Weakening this assumption is an item of future work. As with the MFM, however, we

demonstrated that techniques based on the Urns model provide empirical benefits, despite

unrealistic assumptions in the theory.

When utilizing Urns for UIE in practice, the EM-based algorithm we employ to learn

Urns parameters from unlabeled data could be improved in a number of ways. The al-

gorithm often requires a sample size of hundreds or thousands of unlabeled observations

of each class in order to be effective (as illustrated in Figure 3.3). For classes where data

is less plentiful, such as many of the relations extracted by the TextRunner system, the

parameter learning algorithm is less effective. We expect that Urns could be modified to

learn accurate parameters for much smaller data sets, through the use of priors or more

robust likelihood-maximization techniques. These experiments are an area of future work.

Urns also requires that a reasonable estimate of the precision of the extraction process

be known. We demonstrated that this requirement is not prohibitive when extracting in-

stances of classes drawn from WordNet, using generic extraction patterns; the extraction

frequency can be assumed or adjusted from unlabeled text in such a way that the probabil-

ities produced by Urns still offer large improvements over previous techniques. However,

for Open IE systems such as TextRunner which discover target relations from text, the

situation is more complex. In TextRunner, extraction precision can vary greatly across

the discovered relations; thus, the probabilities output by Urns in this case are less accu-

rate. Methods for estimating extraction precision across relations in Open IE systems is an

item of future work.

There are ways in which the accuracy of Urns could be improved, primarily by incorpo-
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rating evidence from textual data other than a small set of generic patterns. The multiple

urns model combines evidence across different extraction mechanisms, but the mechanisms

must be pre-defined and conform to a stringent correlation model. The Realm system, on

the other hand, incorporates the entire corpus of textual data when assessing extractions,

and uses a much more flexible correlation model. However, Realm outputs only a ranking,

rather than probabilities or classifications. While research-prototype IE systems are often

evaluated in terms of how well they rank extractions, in practice a useful IE system requires

the ability to classify extractions as correct or incorrect. Methods for generalizing the multi-

urn model to incorporate more diverse textual data, or alternatively generalizing Realm to

produce classifications or probability estimates, is an important direction for future work.

Our estimation of the highest-priority piece of future work is additional investigation into

language modeling techniques for information extraction. Realm illustrates that statistical

language modeling techniques provide accuracy and scalability improvements over previous

techniques. Nonetheless, there is still substantial room for improvement as our experiments

demonstrate. The language models employed by Realm are relatively simple, and ignore

potentially relevant information including document characteristics, character-level features

and the recursive structure of language syntax. It seems reasonable to believe that incor-

porating this additional information would improve the accuracy of language models for

information extraction.

Lastly, as stated in the introduction a central goal of UIE is to enable radically improved

search engines that can answer complex queries by synthesizing information across docu-

ments. At first glance, it certainly appears that logical inference will be required to perform

this task in general— for example, by concluding from the statements “anti-oxidants prevent

cancer” and “oranges contain anti-oxidants” the relation Prevents(Oranges, Cancer),

even though text directly supporting this extraction (e.g., “oranges prevent cancer”) might

never occur in the corpus [54]. Alternatively, however, we might ask whether a strong

enough statistical language model could simply estimate the probability of the phrase “or-

anges prevent cancer,” with which we could (via the KnowItAll Hypothesis) arrive at an

accurate probability estimate for the associated extraction. Certainly, because this phrase

follows logically from other phrases in the corpus, we would expect a language model of
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sufficient accuracy to assign the phrase a probability much larger than chance. Compared

with performing true logical inference, the language modeling approach has the advantage

of side-stepping a number of complex issues in knowledge representation and inference over

large, noisy knowledge bases. However, constructing a language model of sufficient accuracy

for this task presents challenges of its own. Further investigation of the potential of unsu-

pervised statistical language models for performing UIE and improving Web search engines

is a key item of future work.
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Appendix A

DOWNLOADABLE RESOURCES

Most of the data sets and code bases utilized in this thesis are available for download at

http://turing.cs.washington.edu/papers/downey thesis data/.

Included are the following data sets:

• Chapter 2: The ground truth, unlabeled examples, and original corpus used for

evaluation in the information extraction experiments.

• Chapter 3: The ground truth used in the supervised and unsupervised experiments,

along with the measurements of the precision of extractions from various classes (see

Section 3.4.4.

• Chapter 4: The ground truth and corpus used for all experiments.

Also included are the following models and code bases:

• Chapter 3: Code for learning urns parameters from a set of MF values, and com-

puting probabilities using the parameters.

• Chapter 4: An Hmm-T model of latent state probabilities given terms, P (t|w),

trained on the corpus used for evaluation.1

1Due to a hard drive failure, the particular Hmm-T model evaluated in the type checking experiments in
Chapter 4 was lost. However, the model available for download performs slightly better on average than
the type checking results reported in Table 4.1 (0.877 average AUC, vs. 0.849).
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