
An Analysis of Open Information Extraction based on
Semantic Role Labeling

Janara Christensen , Mausam , Stephen Soderland and Oren Etzioni
Turing Center

University of Washington
Seattle, WA 98195, USA

{janara,mausam,soderlan,etzioni}@cs.washington.edu

ABSTRACT
Open Information Extraction extracts relations from text
without requiring a pre-specified domain or vocabulary.
While existing techniques have used only shallow syn-
tactic features, we investigate the use of semantic role
labeling techniques for the task of Open IE. Semantic
role labeling (SRL) and Open IE, although developed
mostly in isolation, are quite related. We compare SRL-
based open extractors, which perform computationally
expensive, deep syntactic analysis, with TextRunner,
an open extractor, which uses shallow syntactic analysis
but is able to analyze many more sentences in a fixed
amount of time and thus exploit corpus-level statistics.

Our evaluation answers questions regarding these sys-
tems, including, can SRL extractors, which are trained
on PropBank, cope with heterogeneous text found on
the Web? Which extractor attains better precision, re-
call, f-measure, or running time? How does extractor
performance vary for binary, n-ary and nested relations?
How much do we gain by running multiple extractors?
How do we select the optimal extractor given amount
of data, available time, types of extractions desired?

1. INTRODUCTION
The challenge of Machine Reading and Knowledge Ex-
traction at Web scale [10] requires a scalable system
for extracting diverse information from large, hetero-
geneous corpora. The traditional approaches to infor-
mation extraction, e.g., [17, 1], seek to learn individual
extractors for each relation of interest and hence, cannot
scale to the millions of relations found on the Web. In
response, the Open Information Extraction paradigm [5]
attempts to overcome this knowledge acquisition bottle-
neck by extracting relational tuples without any restric-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright ACM ...$10.00

tions of a pre-specified vocabulary, domain or ontology.

TextRunner[6], a state-of-the-art open extractor, is a
relation classifier based primarily on shallow syntactic
features. In this paper, we study the applicability of
semantic role labeling (SRL) for the task of Open IE.

Our first observation is that SRL and Open IE, although
developed in isolation, are related tasks: semantically
labeled arguments correspond to the arguments in Open
IE extractions, and verbs often match up with Open IE
relations. We construct a scheme for Open IE based on
SRL, and create novel extractors based on two state-of-
the-art SRL systems, one developed at UIUC and the
other at Lund [15, 12]. These systems represent the
top ranking systems at CoNLL 2005 and 2008, respec-
tively. We study the trade-offs between TextRunner
and SRL-based extractors across a broad range of met-
rics and experimental conditions, both qualitative and
quantitative.

Given the distinct perspectives from which Open IE
and SRL have been developed, we expect TextRun-
ner and SRL extractors to be quite different. For ex-
ample, we expect the SRL extractors to have lower re-
calls on Web text due to out-of-vocabulary verbs and
diverse writing styles, since they are trained on a more
homogeneous corpus (PropBank). On the other hand,
their deep processing in comparison to TextRunner’s
shallow syntactic features may result in a much higher
precision. We also believe a priori that TextRunner
will be faster, but cannot quantify the difference, as no
previous work has studied this. This paper reports that,
contrary to our beliefs, SRL is robust to noisy Web text,
and achieves a much larger recall; whereas TextRun-
ner obtains a much higher precision than SRL extrac-
tors, at lower recalls. Finally, TextRunner is 20-700
times faster than SRL systems we have tested (depen-
dent on use of dependency parser versus constituency).

While previous studies assume a small data set and am-
ple time available for processing, to our knowledge, we
are the first to study the alternative experimental con-
ditions in which the data set is large and the processing

time is limited. This is especially important for most
universities and companies, which do not have access
to Microsoft or Google sized cluster of machines. Even
cloud computing resources are expensive and hence lim-
ited. In this paper, we examine both of these conditions,
SmallCorpus and LargeCorpus respectively. For
LargeCorpus, we devise a scheme to make use of the
available time carefully. We first run TextRunner,
which is enormously faster than the SRL-extractors we
tested. For the remaining available time, we run other
extractors over an intelligently chosen subset of the cor-
pus. This hybrid scheme obtains the best value for time
compared to the individual extractors.

We first describe the Open IE paradigm in more de-
tail and then explain how SRL systems can be used to
produce Open IE output. Next, we discuss qualitative
differences between the output produced by traditional
Open IE systems and the output produced by SRL-
based systems. Finally, we describe two experiments
under different conditions and end with related work
and conclusions.

2. BACKGROUND
Open Information Extraction [5] is a paradigm
where the system makes a single (or constant number
of) pass(es) over its corpus and extracts a large set of
relational tuples without requiring any relation-specific
training data. These tuples attempt to capture the
salient relationships expressed in each sentence. For in-
stance, given the sentence, “McCain fought hard against
Obama, but finally lost the election,” an Open IE sys-
tem would extract two tuples <McCain, fought against,
Obama>, and <McCain, lost, the election>. These tu-
ples can be binary or n-ary, where the relationship is ex-
pressed between more than two entities, or nested (e.g.,
<Microsoft, announced,<they, acquired, Komoku>>).

TextRunner is a state-of-the-art Open IE system that
performs extraction in two key steps. (1) A self-supervised
learner outputs a CRF-based classifier that uses unlex-
icalized features (it models closed class words but not
function words) for extracting relationships. The self-
supervised nature alleviates the need for hand-labeled
training data and unlexicalized features help scale to the
multitudes of relations found on the Web. (2) A single
pass extractor, which uses shallow syntactic techniques
like POS tagging and NP chunking, applies the CRF
classifier to extract an unbounded number of relation-
ships expressed in text. The use of shallow features
makes TextRunner highly efficient.

The extractions from TextRunner are ranked using
redundancy, an assessor that assigns higher confidence
to tuples occurring multiple times based on a proba-
bilistic model [9].

Semantic Role Labeling consists of detecting se-

Tuples Binary, N-ary, Nested

Metrics Precision, Recall, F-measure

Settings SmallCorpus, LargeCorpus

Systems TextRunner, SRL-IE-UIUC, SRL-IE-Lund

Table 1: A table outlining the various experi-
mental conditions in this paper.
mantic arguments associated with a verb in a sentence
and their roles (such as Agent, Patient, Instrument,
etc.). Given the sentence “The pearls I left to my son
are fake” an SRL system would conclude that for the
verb ‘leave’, ‘I’ is the agent, ‘pearls’ is the patient and
‘son’ is the benefactor. Because not all roles feature in
each verb, the roles are commonly divided into meta-
roles (A0-A7) and additional common classes such as
location, time, etc. Each Ai can represent a different
role based on the verb, though A0 and A1 most often
refer to agents and patients respectively.

Availability of lexical resources such as PropBank [13]
and FrameNet [3], both of which annotate text with
roles for each argument, has enabled significant progress
in SRL systems over the last few years [18, 12, 8, 14].
We use UIUC-SRL [15] and Lund-SRL [12] as our
base SRL systems. We choose these systems, as they
represent the state-of-the-art for systems based on con-
stituency and dependency parsing – they are winners of
the CoNLL shared tasks 2005 and 2008 respectively.

Both these SRL systems apply a pipeline of parsing,
argument identification, and classification trained over
PropBank. UIUC-SRL operates in four key steps: prun-
ing, argument identification, argument classification and
inference. Pruning involves using a full parse tree and
heuristic rules to eliminate constituents that are un-
likely to be arguments. Argument identification uses a
classifier to identify constituents that are potential ar-
guments. In argument classification, a classifier assigns
role labels to the candidates identified in the previous
stage. Argument information is incorporated across ar-
guments in the inference stage, which uses an integer
linear program to make global role predictions.

Lund-SRL has a similar process. It first applies a de-
pendency parser and then uses a pipeline of classifiers to
identify predicates and identify and classify arguments.
Next it applies a set of linguistic constraints and uses
a predicate-argument reranker to rank the candidates.
Lastly, it uses a syntactic-semantic reranker to score the
joint syntactic-semantic models.

3. SRL-BASED OPEN IE
Our first observation is that verbs and their semanti-
cally labeled arguments almost always correspond to
Open IE relations and arguments respectively. SRL
computes more information than Open IE requires. There-
fore, for the purpose of a comparison with Open IE
systems, we convert SRL output into extractions. We

illustrate this conversion process via an example.

For example, given the sentence, “Eli Whitney created
the cotton gin in 1793,” TextRunner extracts two
tuples, one binary and one n-ary:

arg0 Eli Whitney arg0 Eli Whitney
rel created rel created (arg1) in

arg1 the cotton gin arg1 the cotton gin
arg2 1793

binary tuple n-ary tuple

The SRL systems label constituents of a sentence with
the role they play in regards to the verb in the sentence.
An SRL system will identify the following semantic roles
for the verb ‘create’:

A0 Eli Whitney
verb created
A1 the cotton gin

temporal in 1793

It is easy to see that the two formats are very related.
For fair comparisons we convert SRL output to equiva-
lent number of Open IE tuples. Our method first assigns
the verb along with its modifiers, following preposition,
and negation, if present, to be the relation. It then as-
signs all constituents labeled Ai for that verb, as well
as any that are marked Direction, Location, or Tempo-
ral to be the arguments of the relation. We order the
arguments in the same order as they are in the sentence
and with regard to the relation (except for direction, lo-
cation and temporal, which cannot be arg0 of an Open
IE extraction and are placed at the end of argument
list). As we are interested in relationships between en-
tities, we consider only the verbs that have at least two
arguments.

The generation of nested relations happens similarly.
The key difference is in identifying whether a seman-
tic tuple is a nested extraction. SRL-IE identifies such
cases by noticing that an argument to one verb is long
and contains a full semantic tuple with a different verb.
This is easy to operationalize since an SRL system al-
ways reports all the semantic tuples found in the sen-
tence.

In our experiments, we ignore part of the semantic in-
formation (such as distinctions between various Ai’s)
that UIUC-SRL and Lund-SRL provide. An IE sys-
tem built using SRL may retain this information, if the
downstream process (such as question answering en-
gine) can make use of this information. Notice that,
in our conversion, an SRL extraction that was correct
in the original format is never changed to an incorrect
Open IE extraction. However, an incorrectly labeled
SRL extraction could convert to a correct Open IE ex-
traction, if the arguments were correctly identified but
assigned incorrect semantic roles.

4. QUALITATIVE COMPARISON OF EX-
TRACTORS

Because SRL and Open IE are developed from differ-
ent perspectives, we first study their differences quali-
tatively.

Argument boundaries: The SRL systems are le-
nient in deciding what constitutes an argument and
tend to err on the side of including too much rather than
too little; TextRunner is more conservative, some-
times to the extent of omitting crucial information, par-
ticularly post-modifying clauses and PPs. For example,
TextRunner extracts <Bunsen, invented, a device>
from the sentence “Bunsen invented a device called the
Spectroscope”. SRL extractors include the entire phrase
“a device called the Spectroscope” as the second argu-
ment. Generally, the longer arguments in SRL-IE-
UIUC and SRL-IE-Lund are more informative, but
TextRunner’s succinct arguments normalize better
leading to an effective use of redundancy in ranking.

Out-of-vocabulary verbs: While we expected Tex-
tRunner to handle unknown verbs with little difficulty
due to its unlexicalized nature, the SRL-based systems
could have had severe trouble leading to a limited appli-
cability in the context of Web text. However, contrary
to our expectations, both SRL systems gracefully han-
dle new verbs (i.e., verbs not in their PropBank train-
ing) by only attempting to identify A0 (the agent) and
A1 (the patient). In practice, this is very effective –
both SRL extractors recognize the verb and its two ar-
guments correctly in “Larry Page googled his name and
launched a revolution.” In practice, out-of-vocabulary
verbs are rare and appeared in only 5% of our data.

Part-of-speech ambiguity: All systems have dif-
ficulty in cases where the part of speech of a word is
ambiguous or difficult to tag automatically. For exam-
ple, the word ‘write’ when used as a noun causes trouble
for both systems. In the sentence, “Be sure the file has
write permission.”, all three extractors extract <the
file, write, permission>. Part-of-speech ambiguity af-
fected about 20% of sentences.

Complex sentences: Because TextRunner relies
on shallow syntactic features, it performs more poorly
on complex sentences. SRL-based systems, due to their
deeper processing, can better handle complex syntax
and long-range dependencies.

N-ary and nested relations All extractors suffer sig-
nificant quality loss in complex extractions compared
to binary. For example, given the sentence “Google an-
nounced it will acquire YouTube,” TextRunner mis-
takenly extracts <Google, announced, it>. N-ary and
nested relations were present in 40% and 35% of our
data respectively.

5. EXPERIMENTAL RESULTS
In our quantitative evaluation we examine the strengths
and weaknesses of these extractors under two exper-
imental conditions: (1) SmallCorpus (Section 5.1),
in which we have a small corpus and ample compu-
tation time available, and (2) LargeCorpus (Section
5.2), in which the corpus is large and all systems cannot
complete the processing. We evaluate the quality of bi-
nary, n-ary, and nested extractions in all these settings
(see Table 1). In all experiments, we threshold Tex-
tRunner’s CRF-confidence at 0.4, which maximizes
F-measure on a development set.

Data sets: Because of the SRL-based systems’ rela-
tively slow processing time, we required our test sets be
of manageable size. Moreover, Open IE on the Web has
benefited from redundancy, and so the data sets needed
to mimic the redundancy found on the Web. We created
two test sets, one for binary and n-ary, and the other for
nested extractions. The first set focused on five target
relations – invent, graduate, study, write, and develop,
and the second used two relations with common nested
extractions – say and announce. The first set of rela-
tions is similar to that used in [5]. To our knowledge,
we are the first to investigate nested extractions, hence
our dataset to study that is unique.

A key challenge was dataset construction that was of
manageable size but still mimicked the redundancy found
on the Web. We could not use prior datasets, since ei-
ther they were not Web text, or they were too large.
To obtain redundant data commonly found on the Web,
we first queried a corpus of 500M Web documents for
a sample of sentences with these verbs (or their in-
flected forms, e.g., invents). We chose 200 typical agents
per verb (e.g., Edison (for invent), Microsoft (for an-
nounce)) and searched for sentences with both the verb
as well as these agents. This resulted in a test set of
29,842 sentences for binary and n-ary relations, and
a second set of 16,777 sentences for nested relations.
These test sets have the desired properties and enable
us to study the performance of different extractors on
Web text.

To compute precision on these test sets, we tagged a
random sample of over 4,800 extractions. A tuple is cor-
rect if the arguments have correct boundaries and the
relation accurately expresses the relationship between
all of the arguments, even if the relation is uninforma-
tive. For example, for the sentence “Bunsen invented a
device called the Spectroscope”, both second arguments,
‘a device’ and ‘a device called the Spectroscope’ would
be marked as correct.

Determining the absolute recall is precluded by the amount
of hand labeling necessary. Instead, we compute pseudo-
recall by taking the union of correct tuples from all

methods as denominator.1

5.1 SmallCorpus Setting
Table 2 reports the performance of the three extractors
on our data sets for this traditional NLP setting. Over-
all, SRL-IE-Lund achieves the highest precision, and
SRL-IE-UIUC achieves the highest recall and the high-
est F1 score. TextRunner’s performance on nested
extractions is especially poor, but that is expected, since
it only extracts relations between noun phrases and
nested extractions, by definition, have a full extraction
as an argument. On the other hand, both SRL-based
systems run far slower than TextRunner. TextRun-
ner on average processes a sentence in under 0.02 secs
whereas SRL-IE-Lund and SRL-IE-UIUC are over
20x and 500x slower respectively. SRL-IE-UIUC ran
much slower because of its use of constituency parsing
(which is slower compared to dependency parsing) and
its use of an integer linear program for global inference.

By taking a union of the SRL-based systems’ output
and the highest precision subset of TextRunner’s ex-
tractions, we achieve the highest recall and F-measure
(Table 2). We identify the highest precision subset of
TextRunner’s extractions by our novel locality rank-
ing (see Figure 2).2 This shows the benefit of using
multiple systems for extraction – they extract different
tuples. We call this the smart union of all systems,
and this is the method of choice for the SmallCorpus
setting.

Although SRL-IE-Lund has higher overall precision,
there are some conditions under which the shallow pro-
cessing of TextRunner can obtain superior precision!
We analyze the performance of these systems under two
different rankings – redundancy, which has been exam-
ined before for TextRunner[4], and locality, a novel
measure.

Redundancy: Redundancy is the number of times a
relation has been extracted from unique sentences. In-
tuitively, we have more confidence in a relation that is
extracted many times than a relation that is extracted
only a small number of times. We compute redundancy
over normalized extractions, ignoring noun modifiers,
adverbs, and verb inflection. Figure 1(a) displays the
results for binary extractions, ranked by redundancy.
We use a log scale on the x-axis, since high redundancy
extractions account for less than 1% of the recall. For
binary extractions, redundancy improved TextRun-
ner’s precision significantly, but at a dramatic loss in
recall – it achieved 0.82 precision at 0.009 recall. For a
highly redundant corpus, TextRunner would be the
1Tuples from two systems are considered equivalent if for
the relation and each argument, the extracted phrases are
equal or if one phrase is contained within the phrase of the
other.
2discussed in more detail next.

TextRunner SRL-IE-Lund SRL-IE-UIUC Smart Union

P R F1 P R F1 P R F1 P R F1

Binary .55 .26 .35 .70 .51 .59 .63 .75 .68 .67 .95 .77

N-ary .42 27 .32 .61 .27 .37 .53 .57 .55 .56 .78 .66

Cpu Time: Binary, N-ary 6 minutes 155 minutes 3126 minutes 3287 minutes

Nested .09 .02 .03 .63 .44 .59 .52 .84 .64 .57 1.0 .72

Cpu Time: Nested 3 minutes 60 minutes 2016 minutes 2078 minutes

Table 2: In SmallCorpus, SRL-IE-Lund has the highest precision. Taking the union of the SRL systems and the

higher precision results from TextRunner achieves the highest recall and F-measure. Both SRL-based systems require

over an order of magnitude more processing time. The bold values indicate the highest values for the metric and

relation-type.

1e−04 1e−03 1e−02 1e−01 1e+00

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Recall

Pr
ec

is
io

n

TextRunner
SRL−IE−Lund
SRL−IE−UIUC

1e−04 1e−03 1e−02 1e−01 1e+00

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Recall

Pr
ec

is
io

n

TextRunner
SRL−IE−Lund
SRL−IE−UIUC

Figure 1: SmallCorpus: redundancy ranking for binary and n-ary relations. (Note the log scale) (a) TextRunner

has highest precision at highest redundancy, but at a very low recall (0.01). The arguments in SRL-based extractors

do not normalize well; the high redundancy region has a large fraction of systematic extraction errors. (b) For n-ary

extractions, redundancy is not very effective.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Recall

Pr
ec

is
io

n

TextRunner
SRL−IE−Lund
SRL−IE−UIUC

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Recall

Pr
ec

is
io

n

TextRunner
SRL−IE−Lund
SRL−IE−UIUC

Figure 2: SmallCorpus: locality ranking for binary, and n-ary relations. (a) Locality ranking gives a large boost

to TextRunner’s precision for binary relations, and at a recall of 0.2, much higher than that achieved by redundancy

ranking. (b) For n-ary extractions, locality helps all systems.

algorithm of choice, however, this experiment clearly
shows that highly redundant extractions are usually
very limited, even in Web-style text.

For n-ary and nested relations, and binary relations for
SRL-based extractors (Figure 1(a,b)), redundancy ac-
tually hurts precision (nested relation graphs omitted).
These extractions tend to be so specific that genuine
redundancy is rare, and the highest frequency extrac-
tions are often systematic errors. E.g., the most fre-
quent SRL-IE-UIUC extraction was <nothing, write,
home>, from sentences with the phrase “nothing to
write home about”.

Locality: Our experiments with TextRunner led us
to discover a new validation scheme for the extractions
– locality. We define locality as the number of tokens in
between the first and the last arguments in the sentence.
We observed that TextRunner’s shallow features can
identify relations more reliably when the arguments are
closer to each other in the sentence. Figure 2 reports
the results from ranking extractions by locality.

We find a clear correlation between locality and pre-
cision of TextRunner, with precision 0.81 at recall
0.17, where the locality is 3 tokens or less for binary
extractions. This result is very surprising because SRL
systems perform deep syntactic and additional seman-
tic analysis, still TextRunner’s shallow syntactic pro-
cessing with simple locality assessment is able to obtain
significantly higher precision (though at reasonable, but
lower recall of 0.17). Comparing this result with preci-
sion 0.82 at recall 0.01 for redundancy-based assessing,
we find that locality-based ranking is dramatically more
useful. SRL extractors do not benefit from locality for
binary extractions. For n-ary relations, all systems can
improve precision by varying locality. Locality has little
effect on nested relations.

This new assessor allows us to construct a high preci-
sion subset of TextRunner, which we use in the smart
union (see the experiment above). For binary extrac-
tions we filter all extractions where locality > 5, i.e.,
there are more than five tokens between the arguments.

An Ablation Study: SRL systems perform two key
types of processing in addition to TextRunner’s shal-
low syntactic techniques: (1) they use a full syntac-
tic parser, and (2) they perform argument identifica-
tion and classification. To tease apart the benefits, we
perform an additional experiment in which we create
extractions directly from the output of Lund-SRL’s
parser. These extractions achieve a precision of 0.62
at recall of 0.41 for binary extractions. This is much
lower than SRL-IE-Lund’s results (precision 0.7 and
recall 0.51) illustrating the gain due to a complete SRL
system.

0 50 100 150

0.
0

0.
2

0.
4

0.
6

0.
8

Time (minutes)

F−
m

ea
su

re

TextRunner
SRL−IE−Lund
Hybrid

Figure 3: LargeCorpus: F-measure achieved in a given

amount of computation time. The hybrid extractor ob-

tains the best F-measure for binary extractions.

In summary, we find that SRL extractors perform better
overall, however, TextRunner, under locality rank-
ing, achieves superior precision at lower recalls. Nei-
ther redundancy nor locality benefits SRL extractors
much (except for n-ary). SRL is orders of magnitude
slower, which becomes a bottleneck in the next experi-
ment, when the available time is limited.

5.2 LargeCorpus Setting
To determine scaling to Web-scale knowledge extrac-
tion, we study an experimental condition, often not
considered in NLP and IE communities – the setting in
which the data is large enough that all processing can-
not be achieved. Because experimenting with massive
corpora makes it very hard to estimate (pseudo)recall
and thus the F-measure, we simulate this setting by
using our current data set, and varying the amount of
available time.

In the extreme setup when the time is so limited that
no extractor can complete processing, TextRunner is
the extractor of choice, because the recalls of the slower
extractors will be so low that they will far outweigh
the benefits of higher precision. TextRunner, on the
other hand, will be able to generate a large number of
extractions at reasonable precision.

In the more interesting and likely more realistic case,
where additional time is available after TextRunner
completes its processing, we have the opportunity to
combine the different extractors. We present a hybrid
system that combines the strengths of TextRunner
(fast processing time and high precision on a subset of
sentences) with the strengths of SRL-IE-Lund (higher
recall and better handling of long-range dependencies).
The focus is on using the remaining time efficiently. We
illustrate the binary setting, though results on n-ary are
similar, and don’t consider SRL-IE-UIUC owing to its
very slow speed, though it is straightforward to include.

We first run TextRunner over all the sentences and
then use the remaining time to run SRL-IE-Lund and
take the union of all extractions. We add to this idea by

using a filter policy and an intelligent order of sentences
for extraction to improve the precision.

TextRunner’s precision is low when the redundancy
of the extraction is low, and when the arguments are
far apart. Thus, redundancy, and locality form the key
factors for our filter policy: if both of these factors are
below a given threshold, discard the tuple. The thresh-
olds were determined by a parameter search over a small
development set.

A good ordering policy would apply SRL-IE-Lund first
to the sentences in which TextRunner extractions
have been filtered by the filter policy. We could rank
a sentence S according to the average distance between
pairs of arguments from all tuples extracted by Tex-
tRunner from S. While this ranking system would or-
der sentences according to their likelihood of yielding
maximum new information, it would miss the cost of
computation. To account for computation time, we ad-
ditionally estimate the amount of time SRL-IE-Lund
will take to process each sentence using a linear model
trained on the sentence length. We then choose the
sentence that maximizes information gain divided by
its estimated computation time.

If the available time is minimal then our hybrid ex-
tractor reduces to TextRunner. If it is very large,
then the hybrid is similar to the smart union of two
systems (see SmallCorpus). In intermediate cases,
hybrids make effective use of available time. Overall,
the hybrid extractor run the best algorithm given the
available computation time.

In summary, we find that all extractors are useful and,
for best results, they should all be employed to varying
degrees, which are based on the available time and their
efficiency.

Evaluation: Figure 3 reports F-measure for binary
extractions measured against available computation time.
Hybrid has substantially better F1 scores than both
TextRunner’s and SRL-IE-Lund’s demonstrating the
power of combining extractors.

6. RELATED WORK
Open information extraction is a relatively recent paradigm
and hence, has been studied by only a small number of
researchers. The most salient is TextRunner, which
also introduced the model [5, 6].

A recent Open IE system, WOE [21], uses dependency
features (WOEparse) and training data generated using
Wikipedia infoboxes to learn a series of open extractors
(WOEpos). Our ablation study in Section 5.1 suggests
the quality of the parser-based extractor to be between
TextRunner and complete SRL systems; we expect
WOEparse, their better performing system, to be sim-

ilar. Moreover, WOE does not output n-ary or nested
extractions.

A paradigm related to Open IE is Preemptive IE [16].
While one goal of Preemptive IE is to avoid relation-
specificity, Preemptive IE does not emphasize Web scal-
ability, which is essential to Open IE.

A version of Knext uses heuristic rules and syntactic
parses to convert a sentence into an unscoped logical
form [19]. This work is more suitable for extracting
common sense knowledge as opposed to factual infor-
mation.

Another related system is Wanderlust [2]. After an-
notating 10,000 sentences parsed with LinkGrammar,
it learns 46 general linkpaths as patterns for relation
extraction. In contrast to our approaches, this requires
a large set of hand-labeled examples.

We are the first to use SRL for Open IE, but its use
for traditional IE is investigated by Harabagiu et al.
[11]. They used a lexico-semantic feedback loop in a
question-answering system for a set of pre-defined rela-
tions.

7. CONCLUSIONS
This paper investigates the use of Semantic Role La-
beling for the task of Open Information Extraction.
Although the two tasks were developed in isolation,
they are quite related. We describe SRL-IE-UIUC
and SRL-IE-Lund, the first SRL-based Open IE sys-
tems. We empirically study the trade-offs between these
systems and TextRunner, a state-of-the-art Open IE
system under several settings: SmallCorpus with un-
bounded computation time, and LargeCorpus with
limited amount of time; using different metrics: preci-
sion, recall, F1 score and running time; and for different
kinds of extractions: binary, n-ary and nested.

We find that in the traditional NLP setting (SmallCorpus),
the deeper analysis of SRL-based systems overall out-
performs TextRunner. However, TextRunner out-
put can be ranked using our novel measure, locality,
leading to superior precision at non-trivial recalls. A
smart union of the three approaches performs best.

TextRunner is over an order of magnitude faster,
making it the algorithm of choice when time is ex-
tremely limited. These complimentary strengths lead
us to design a hybrid extractor that intelligently chooses
sentences to extract from, and thus, efficiently uses the
remaining computation time. Our hybrid extractor achieves
better performance than either system if an intermedi-
ate amount of time is available for processing. Overall,
we provide evidence that, contrary to belief in the Open
IE literature [6], deep syntactic approaches have a lot
to offer for the task of Open IE.

8. REFERENCES
[1] Eugene Agichtein and Luis Gravano. Snowball:

Extracting relations from large plain-text
collections. In Proceedings of the Fifth ACM
International Conference on Digital Libraries,
2000.

[2] Alan Akbik and Jügen Broß. Wanderlust:
Extracting semantic relations from natural
language text using dependency grammar
patterns. In Proceedings of the WWW 2009
Workshop on Semantic Search, 2009.

[3] Collin F. Baker, Charles J. Fillmore, and John B.
Lowe. The berkeley framenet project. In COLING
’98: Proceedings of the 17th international
conference on Computational linguistics, pages
86–90, 1998.

[4] Michele Banko. Open Information Extraction for
the Web. PhD thesis, University of Washington,
2009.

[5] Michele Banko, Michael J. Cafarella, Stephen
Soderland, Matt Broadhead, and Oren Etzioni.
Open information extraction from the web. In
IJCAI’07: Proceedings of the 20th international
joint conference on Artifical intelligence, pages
2670–2676, 2007.

[6] Michele Banko and Oren Etzioni. The tradeoffs
between open and traditional relation extraction.
In ACL ’08: Proceedings of the 46th Annual
Meeting of the Association for Computational
Linguistics, pages 28–36, 2008.

[7] Andrew Carlson, Justin Betteridge, Richard C.
Wang, Estevam R. Hruschka Jr., and Tom M.
Mitchell. Coupled semi-supervised learning for
information extraction. In WSDM ’10:
Proceedings of the Third ACM International
Conference on Web Search and Data Mining,
2010.

[8] Bonaventura Coppola, Alessandro Moschitti, and
Giuseppe Riccardi. Shallow semantic parsing for
spoken language understanding. In NAACL ’09:
Proceedings of Human Language Technologies:
The Annual Conference of the North American
Chapter of the Association for Computational
Linguistics, pages 85–88, 2009.

[9] Doug Downey, Oren Etzioni, and Stephen
Soderland. A probabilistic model of redundancy in
information extraction. In IJCAI ’05: Proceedings
of the 20th international joint conference on
Artifical intelligence, pages 1034–1041, 2005.

[10] Oren Etzioni, Michele Banko, and Michael J.
Cafarella. Machine reading. In AAAI’06:
Proceedings of the 21st national conference on
Artificial intelligence, pages 1517–1519, 2006.

[11] Sanda Harabagiu, Dan Moldovan, Marius Paşca,
Rada Mihalcea, Mihai Surdeanu, Rǎzvan
Bunescu, Roxana Gı̂rju, Vasile Rus, and Paul
Morǎrescu. The role of lexico-semantic feedback
in open-domain textual question-answering. In
ACL ’01: Proceedings of the 39th Annual Meeting
on Association for Computational Linguistics,
pages 282–289, 2001.

[12] Richard Johansson and Pierre Nugues. The effect
of syntactic representation on semantic role
labeling. In COLING ’08: Proceedings of the 22nd
International Conference on Computational
Linguistics, pages 393–400, 2008.

[13] Paul Kingsbury Martha and Martha Palmer.
From treebank to propbank. In LREC ’02:
Proceedings of the Third International Conference
on Language Resources and Evaluation, 2002.

[14] Alessandro Moschitti, Daniele Pighin, and
Roberto Basili. Tree kernels for semantic role
labeling. Computational Linguistics,
34(2):193–224, 2008.

[15] V. Punyakanok, D. Roth, and W. Yih. The
importance of syntactic parsing and inference in
semantic role labeling. Computational Linguistics,
34(2), 2008.

[16] Yusuke Shinyama and Satoshi Sekine. Preemptive
information extraction using unrestricted relation
discovery. In NAACL ’06: Proceedings of Human
Language Technologies: The Annual Conference
of the North American Chapter of the Association
for Computational Linguistics, pages 304–311,
2006.

[17] Stephen Soderland. Learning information
extraction rules for semi-structured and free text.
Machine Learning, 34(1-3):233–272, 1999.

[18] Kristina Toutanova, Aria Haghighi, and
Christopher D. Manning. A global joint model for
semantic role labeling. Computational Linguistics,
34(2):161–191, 2008.

[19] Benjamin Van Durme and Lenhart Schubert.
Open knowledge extraction through
compositional language processing. In STEP ’08:
Proceedings of the 2008 Conference on Semantics
in Text Processing, pages 239–254, 2008.

[20] Daniel S. Weld, Raphael Hoffmann, and Fei Wu.
Using wikipedia to bootstrap open information
extraction. SIGMOD Rec., 37(4):62–68, 2008.

[21] Fei Wu and Daniel S. Weld. Open information
extraction using wikipedia. In ACL ’10:
Proceedings of the 48th Annual Meeting on
Association for Computational Linguistics, 2010.

