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The Semantic Web’s need for machine understandable content has led researchers to attempt to auto-
matically acquire such content from a number of sources, including the web. To date, such research has
focused on “document-driven” systems that individually process a small set of documents, annotating
each with respect to a given ontology. This article introduces OntoSyphon, an alternative that strives to
more fully leverage existing ontological content while scaling to extract comparatively shallow content
from millions of documents. OntoSyphon operates in an “ontology-driven” manner: taking any ontology
as input, OntoSyphon uses the ontology to specify web searches that identify possible semantic instances,
relations, and taxonomic information. Redundancy in the web, together with information from the ontol-
ogy, is then used to automatically verify these candidate instances and relations, enabling OntoSyphon to
operate in a fully automated, unsupervised manner. A prototype of OntoSyphon is fully implemented and
we present experimental results that demonstrate substantial instance population in three domains based
on independently constructed ontologies. We show that using the whole web as a corpus for verification
yields the best results, but that using a much smaller web corpus can also yield strong performance. In
addition, we consider the problem of selecting the best class for each candidate instance that is discov-
ered, and the problem of ranking the final results. For both problems we introduce new solutions and
demonstrate that, for both the small and large corpora, they consistently improve upon previously known

techniques.

Published by Elsevier B.V.

1. Introduction

The success of the Semantic Web critically depends upon the
existence of a sufficient amount of high-quality, relevant semantic
content. But to date relatively little such content has emerged. In
response, researchers have investigated systems to assist users with
producing (or annotating) such content, as well as systems for auto-
matically extracting semantic content from existing unstructured
data sources such as web pages.

Most systems for automated content generation work as fol-
lows: the system sequentially processes a small to moderate size
set of mostly relevant documents. For each document, the sys-
tem tries to extract relevant information and encode it using
the predicates and classes of a given ontology. This extraction
might utilize a domain-specific wrapper, constructed by hand [30]
or via machine learning techniques [10]. More recent domain-
independent approaches have utilized a named entity recognizer
to identify interesting terms, then used web searches to try to
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determine the term'’s class [13]. In either case, these are d ocument-
driven systems whose workflow follows the documents.

This article describes OntoSyphon, an alternative o ntology-
driven information extraction (IE) system. Instead of sequentially
handling documents, OntoSyphon processes the ontology in some
order. For each ontological class or property, OntoSyphon searches a
large corpus for instances and relations that can be extracted. In the
simplest case, for instance, a Mammal class in the ontology causes
our system to search the web for phrases like “mammals such as” in
order to identify instances (and subclasses) of Mamma 1. We then use
redundancy in the web and information in the ontology to verify
the candidate instances, subclasses, and relations that were found.
In this article, we focus on learning instances to populate an input
ontology.

Compared to more traditional document-driven IE,
OntoSyphon’s ontology-driven IE extracts relatively shallow
information from a large corpus of documents, instead of per-
forming more exhaustive (and expensive) processing of a small
set of documents. Hence, the approaches are complementary, and
real world systems may profitably utilize both. We note, however,
several benefits of ontology-driven IE. First, driving the entire
IE process directly from the ontology facilitates the direct use
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Table 1

A summary of work that attempts to (semi-)automatically extract instance-like content from the web or other text corpora

Text-based

Ontology-based

Document-driven

Ontology-driven

Domain-specific Crystal [58], Citeseer, Opine [51]

Domain-independent MindNet [54], Snowball [1], Cederberg
et al. [8], Google sets [48], KnowlItAll
[24], Pantel et al. [47], Qualia learning
[16], Espresso [45], Pasca et al. [49],

Pronto [5]

WebKB [18], TAP [30], OntoMiner [20], OntoSophie [9]

Hahn and Schnattinger [31], S-CREAM [32], SemTag
[21], KIM [34], Armadillo [10], PANKOW [11], Li and
Bontcheva [37]

Cyc “web population” [39,56], van
Hage et al. [62], Geleijnse et al. [29]

OntoSyphon

There are many systems that produce output based on (in terms of) a given ontology, but little work has exploited the ontology to actually drive the extraction process. Note
that an ontology-based system almost always utilizes a domain-specific ontology, but may still be a domain-independent system if it can easily exploit input ontologies from

many different domains.

of multiple kinds of ontological data, e.g. utilizing class labels,
synonyms, and sample instances for broader searching. Second, a
search-based system enables us to consider a much larger set of
documents than could be handled via individual, document-driven
processing. Only a small fraction of the corpus will be used for
any one system execution, but much more potentially relevant
information is accessible. Finally, ontology-driven IE can be easily
focused on the desired results. Rather than processing all content
from some documents and then looking for the desired info, we
can instruct the system to search directly for relevant classes.

Our contributions are as follows. First, we describe the ontology-
driven paradigm for information extraction and explain its benefits
compared to complementary approaches. Second, we explain how
to apply this general paradigm to find instances from the web
and demonstrate successful instance population for three different,
independently created ontologies. Third, we propose new tech-
niques for the problem of selecting the most likely class for each
candidate instance that is found, and evaluate a large number
of such techniques. We show that a new technique, by explic-
itly exploiting the ontology in its calculations, yields substantially
improved precision. Fourth, we examine and evaluate several
different techniques for improving the ranking of the extracted
instances based upon automatic probability or confidence assess-
ment. In particular, we introduce two simple but highly effective
improvements to previously known assessment techniques for
such extractions. These improvements relate to adding or improv-
ing upon frequency-based normalization, and can be used even in
contexts without an explicit ontology. Fifth, we examine the impact
of varying the corpus that is searched for instances, and show that
its size affects different parts of a precision-recall curve in differ-
ent ways. Sixth, we consider the impact of using two different
verification corpora: the whole web (Corpus;) or a smaller 60-
million page subset (Corpuss). We show that using Corpus; yields
the best results on average, but that strong results can still be
obtained with Corpuss. In addition, we introduce improvements
to an existing assessment technique (PMI-Bayes) that is appropri-
ate for the larger corpus. Finally, we demonstrate that our other
new techniques for class picking and instance ranking work con-
sistently well across both corpora, but that the best metrics for
class picking are not the same as the best metrics for instance
ranking.

Our recent work [43] presented the general vision for
OntoSyphon and preliminary results. This article, however, is the
first to utilize the entire web as OntoSyphon’s verification corpus
(Section 5.1.3), to evaluate the overall impact of this choice com-
pared to a smaller corpus (Section 6.2), to measure the effect of
the size of the corpus that is searched for instances (Section 6.3),
and to separately consider and evaluate the effect of the class pick-

ing algorithm (Section 6.1). In addition, the enhancements to PMI
(Section 5.1.3), the development of class normalization for “Urns”
and “Strength” (Sections 5.1.1 and 5.1.2), and the structure-based
transformation of probabilities (Section 5.2) are new. Finally, results
in this article are based on a larger gold standard (Section 4), and
results for the first time are presented using both Learning Accuracy
and precision (Section 6).

The next section summarizes related work in this area. Section
3 summarizes OntoSyphon’s operation, while Section 4 describes
our methodology and evaluation measures. Section 5 describes the
existing and new techniques that we use for the key problem of
assessing candidate instances. Finally, Section 6 presents exper-
imental results, Section 7 discusses our findings, and Section 8
concludes.

2. Related work on information extraction from the Web

The general task we face is to extract information from some
textual source, such as the WWW, and encode that information
in a structured language such as RDF. Table 1 provides a general
interpretation of the most relevant other work in this area, as dis-
cussed below. Section 5 provides further discussion on related work
regarding the assessment of extracted knowledge.

The rows of Table 1 distinguish systems that are domain-
independent from those that rely on domain-specific techniques
or extraction patterns. The columns explain the extent to which
each system utilizes an explicit ontology. In the leftmost column
(“Text-based”) are IE systems that are not explicitly based on an
ontology. For instance, Citeseer automatically extracts metadata
about research publications, Opine [51] focuses on product reviews,
and Crystal [58] uses a domain-specific lexicon to learn text
extraction rules by example. Amongst more domain-independent
systems, MindNet [54] builds a semantic network based on dictio-
nary and encyclopedia entries, while Snowball [1] learns relations
(such as headquartersof) based on an initial set of examples.
KnowltAll [24] learns instances and other relations from the web,
and Pasca [48] identifies and categorizes arbitrary named entities
into logical sets. Pasca et al. [49] learn patterns to extract a large
number of person-birthYear pairs, using the distributional similar-
ity of each pair with respect to a dynamic set of seeds for validation.
Many such systems [8,24,47,16,45,5] learn hyponym or is-a relation-
ships based on searching for particular lexical patterns like “cities
such as .. .,” inspired by Hearst’s original use of such patterns [33].
Our work uses these same patterns as building blocks, but exploits
an ontology to guide the extraction and assessment, and to formally
structure the results.

Some of these text-based systems, such as MindNet, use their
input corpus to derive an ontology-like structured output. In con-
trast, we call a system ontology-based if it specifies its output in
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terms of a pre-existing, formal ontology.! These systems almost
always use a domain-specific ontology in their operation, but we
consider a system to be domain-independent if it can operate with-
out modification on ontologies covering a wide range of domains.

The majority of these ontology-based systems are d ocument-
driven: starting from a particular document (or set of documents),
they try to annotate all of the entities in that document relative
to the target ontology. For instance, TAP [30] exploits a variety of
wrappers to extract information about authors, actors, movies, etc.
from specifically identified websites such as Amazon.com. WebKB
[18] uses supervised techniques to extract information from com-
puter science department websites, and Armadillo [10] has been
applied to the same task. It uses a variety of structured and unstruc-
tured data sources, some particular to its department website
domain, but it can also be adapted to other tasks. Amongst more
strictly domain-independent systems, SemTag [21] and KIM [34]
scan documents looking for entities corresponding to instances in
their input ontology. Likewise, S-CREAM [32] uses machine learn-
ing techniques to annotate a particular document with respect to
its ontology, given a set of annotated examples. PANKOW [11,13]
annotates a specified document by extracting named entities from
the document and querying Google with ontology-based Hearst
phrases. For instance, if the entity “South Africa” is found in a doc-
ument, PANKOW would issue multiples queries like “South Africa
is a river” and use hit count results to determine which ontology
term (river, country, etc.) was the best match. These systems all
use an ontology to specify their output, but make limited use of
information that is contained in the ontology beyond the names of
classes and properties that may be relevant. A recent exception is
the system of Li and Bontcheva [37], which annotates documents
using a hierarchy of supervised classifiers that have been informed
by the structure of the ontology.

OntoSyphon offers a complementary approach of being
ontology-based and ontology-driven. Instead of trying to learn all
possible information about a particular document, we focus on par-
ticular parts of an ontology and try to learn all possible information
about those ontological concepts from the web. In addition, we seek
to use ontological data and structure to enhance our assessment of
the content that is found (see Section 5).

The only work of which we are aware that adopts a somewhat
similar approach is that of Matuszek et al. [39,56], van Hage et al.
[62], and Geleijnse et al. [29]. All three systems use an ontology to
generate web search terms, though none identifies this ontology-
driven approach or examines its merits. van Hage et al. use the
searches to find mappings between two given ontologies, whereas
Matuszek et al. use the searches to identify instances and relations
that could be inserted into the (large) Cyc ontology. Geleijnse et
al. use queries based on an initial set of instances to identify addi-
tional instances and relations to populate a hand-crafted ontology.
Matuszek et al. use more sophisticated natural language process-
ing than we do, and use the existing Cyc ontology to perform more
kinds of reasoning. Compared to OntoSyphon, however, these three
systems perform much less sophisticated verification of content
learned from the web, either assuming that a human will per-
form the final verification [39], assuming that all web candidates
are correct [62], or using an unnormalized threshold test to accept
instances [29]. In addition, van Hage et al. and Matuszek et al. only
discover information about instances or classes that are already
present in their ontology. Finally, all three systems are at least par-
tially domain-specific. Matuszek’s system, for instance, depends

1 This is a weaker definition than the ontology-oriented vs. ontology-based dis-
tinction recently proposed by Li and Bontcheva [37], but serves here to distinguish
systems that do not have an ontology in view.

upon manually generated search phrases for a few hundred care-
fully chosen properties, and Geleijnse’s system depends heavily
on domain-customized named entity recognition and search pat-
terns, though recent work has begun to address the latter limitation
[27]. van Hage describes some domain-independent approaches
and others that rely upon a domain-specific dictionary.

Ontology learning systems seek to learn or extend an ontol-
ogy based on examination of a particular relevant corpus
[12,38,2,15,63,53,44]. Some such systems [38,2,15,44] use Hearst-
like patterns to identify possible subclass relations, similar to
OntoSyphon’s use of such patterns to identify candidate instances.
Ontology learning systems, however, presume a particularly rel-
evant corpus and do not focus on learning instances (with some
limited document-driven exceptions, e.g., Text20nto [15]). In addi-
tion, the goal of producing a very accurate ontology leads to very
different verification techniques, usually including human guid-
ance and/or final verification. OntoSyphon instead operates in a
fully automatic, unsupervised manner, and uses the web rather
than require that a domain-specific corpus be identified. We note,
however, that OntoSyphon’s ability to operate in this unsupervised
manner depends upon the provision of a suitable starting ontology,
which ontology learning systems may not require.

This article demonstrates how a domain-independent,
ontology-driven system can reliably extract instances using a
few simple patterns. We focus particularly on describing existing
and new assessment techniques that improve reliability with these
patterns. Overall performance could be increased even more by
incorporating other techniques such as the automatic learning
of additional subclasses for the ontology [24] or the learning
of domain-specific extraction patterns [1,57,24,45,5]. Likewise,
non-pattern based techniques that instead classify or cluster terms
based on their common syntactic or document contexts could
assist with the verification of instances found by OntoSyphon
[31,38,2,12]. Cimiano et al. have considered how to combine
such heterogeneous sources of evidence for the classification of
ontological terms [14]. In addition, learning from more structured
sources such as HTML tables or formatted pages [36,26], Wikipedia
[55,59,50], or online dictionaries [54,66] can yield good results and
easier verification for some domains, though these sources often
cannot provide the broad and timely coverage of the general web.

This article focuses on learning instances (is-a relationships), not
learning more general relationships for the instances [65,52,59].
However, we’ve recently shown that our general approach of
exploiting web-based redundancy can also be applied to learn
textual relations [3], and will demonstrate its effectiveness for
semantic relations in future work.

Finally, OntoSyphon currently uses very lightweight natural lan-
guage processing (primarily a simple part-of-speech tagger) to
extract information. Other researchers have examined much more
sophisticated NLP processing (e.g., [19]), including Matuszek et al.
[39] and Li and Bontcheva [37] discussed above. These approaches
are somewhat complementary. Stronger NLP systems can extract
more complex information from each document, but their process-
ing time limits the number of documents that can be considered.
Our current focus is to determine how much information we can
leverage from web-scale, lightweight techniques, leveraging the
redundancy of the web and the precomputed indexes of popular
search engines to our advantage.

3. Overview of OntoSyphon’s operation
Fig. 1 gives pseudocode for OntoSyphon’s operation. The input to

OntoSyphon includes an ontology O, a root class R such as Animal,
and two corpora CorpusSearch and CorpusVerify (which may be the
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Algorithm (given an input ontology O and root class R)

Sample Qutput (of each step)

Initialization:
searchSet = {R} + O.subclassesOf(R)

Operation:
1. ¢ = PickAndRemoveClass (searchSet)

2. phrases = ApplyPatterns(c)

W

candidates += FindInstances (phrases, CorpusSearch)

'

. If MoreUseful Work(searchSet, candidates), goto Step 1

W

. rawStats = GetHitCounts (candidates, CorpusVerify)
(the notation (oriole, Bird, 20) describes a candidate instance
with 20 hits. For simplicity, example statistics are shown
aggregated across all patterns; some metrics (e.g., “PMI”’)
actually use per-pattern siatistics (see Section 5).)

(=}

. metrics = CalcMetrics (rawStats, candidates, Pp;ck —metric)
(computes scores or probabilities using one of the techniques
described in Section 5.1. Results at right show
probabilities computed with Pp;cx _metric = Urns.)

-

. candidates = PickBestClass (metrics, O, Pyick—method)
(picks best class for each instance using one of the techniques
from Section 5.2. Here Pyick —method = PICKMAX.)

oo

. metrics = CalcMetrics (rawStats, candidates, P, qnk —metric)
(recomputes metric values. Results at right show confidence
values computed with Py ok —metric = Str-INorm.)

O

. results = SortAndFilter (metrics, Prqnk—threshold)
(here Pronk—threshold = 0.0001. LA is the “Learning
Accuracy” of each pair (1.0 is fully correct, see Section 4).)

searchSet = { Animal, Amphibian, Bird, Fish, ...}

¢ = Bird

phrases = { “birds such as ...”, “birds including ...”, “birds

especially ...”, ... and other birds”, “... or other birds"}

candidates = { ..., (kookaburra, Bird), (oriole, Bird), ... }

rawStats = { (kookaburra, Bird, 20),
(kookaburra, Mammal, 1),
(wildebeest, Animal, 56),
(wildebeest, Mammal, 6),
(leather, Animal, 1),
(oriole, Bird, 37) }

metrics = { (kookaburra, Bird, 0.93),
(kookaburra, Mammal, 0.36),
(wildebeest, Animal, 0.91),
(wildebeest, Mammal, 0.85),
(leather, Animal, 0.01),
(oriole, Bird, 0.93) }

candidates = { (kookaburra, Bird),

(wildebeest, Animal),
(leather, Animal),
(oriole, Bird) }

metrics = { (kookaburra, Bird, 0.0342), LA: 1.00
(wildebeest, Animal, 0.0017), LA: 0.67
(leather, Animal, 0.000007), LA: 0.00
(oriole, Bird, 0.0077) } LA: 1.00
results = { (kookaburra, Bird, 0.0342), LA: 1.00
(oriole, Bird, 0.0077), LA: 1.00
(wildebeest, Animal, 0.0017) }, LA: 0.67

Fig. 1. OntoSyphon'’s algorithm for populating an ontology O with instances, along with partial sample output.

same) that are used to, respectively, identify an initial set of candi-
date instances and to verify those candidates. The last inputs are the
parameters Ppick—metric’ Ppick—methodv Prank—metric, and Prank_threshold
which control what techniques are used to select the most likely
class for each candidate term and to rank the final results. The out-
putisasetofinstances of R and its subclasses, along with associated
probabilities or confidence scores for each.

In summary, the algorithm proceeds as follows. The search
set is initialized to hold the root term R and all subclasses of R.
OntoSyphon then performs the following steps: pick a “promising”
class c from the ontology (step 1), instantiate several lexical phrases
to extract candidate instances of that class from CorpusSearch
(steps 2 and 3), then repeat until a termination condition is met
(step 4). Step 5 obtains raw statistics on each candidate instance
from CorpusVerify. OntoSyphon then uses these statistics and the
ontology O to pick the most likely class for each candidate term
(steps 6 and 7) and to then assess the probability of each candidate
instance (steps 8 and 9). Below we explain in more detail.

(1) Identify a promising class: OntoSyphon must decide where to
focus its limited resources. For this article’s experiments, we
pragmatically chose to completely explore all subclasses of the
user-provided root class. Future work should consider how best
to use OntoSyphon’s limited resources when broader explo-
rations are desired. For instance, we could chose the class that
we know the least about (fewest instances), or we could instead
focus attention on classes that are similar to those that yielded
good results in the past. Finally, note that some classes (e.g., zip
codes) may produce very large amounts of data that is accurate
but uninteresting.

(2) Generate phrases: Given a class c, we search for lexico-syntactic
phrases that indicate likely instances of c. For instance, phrases
like “birds such as” are likely to be followed by instances of the
class Bird. We use the 5 Hearst phrase templates [33] listed in
the sample output of Fig. 1. To instantiate the phrase, we must
convert the class c to some textual description. This is trivial
when the ontology provides a natural language string for each
class (e.g.,viardfs: label), but very difficult if the most distin-
guishing property is an automatically generated label such as
ae54b0123983 :a34bc124. Fortunately, ontology designers fre-
quently use meaningful and consistent notation for classes, and
we can use heuristic processing to convert IDs such as Sweet-
Dessertto the search label “sweet desserts.” In particular, we
split terms based on capitalization, spacing, and underscores,
then convert the last word found to plural form as needed. This
does limit OntoSyphon’s applicability to ontologies with lexi-
calized class names or labels. However, where present we also
exploit alternative class labels that can be inferred from the
ontology, e.g., through the definition of an equivalent class.

(3) Search and extract: Next, we search CorpusSearch for occur-
rences of these phrases and extract candidate instances.
CorpusSearch could be the entire web, where relevant pages
are identified with a search engine, downloaded, and processed
locally for extractions (as with KnowlItAll [24] and C-PANKOW
[13]). Alternatively, CorpusSearch could be a local subset of
the web, or any other collection of documents. For efficiency,
we use a 60-million page fragment of the web (henceforth,
Corpuss), and employ the Binding Engine (BE) [7] over this cor-
pus. BE accepts queries like “birds such as < NounPhrase >"
and returns all possible fillers for the < NounPhrase > term in
about a minute. The overall algorithm, however, could be used
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Table 2
The domains and ontologies used for our experiments

Domain Ontology used # Subs. Avg. Depth # Graded Sample subclasses
Animals sweet.jpl.nasa.gov/ontology/biosphere.owl 28 1.04 (max 2) 607 (10%) Arthropod, Bird, Reptile
Artists www.kanzaki.com/ns/music.rdf 39 2.63 (max 4) 952 (5%) Composer, Flutist, Singer
Food www.w3.org/TR/owl-guide/food.rdf 31 2.13 (max 3) 344 (10%) BlandFish, Meat, Pasta

The third column gives the number of subclasses of the chosen root term, followed by the average (and maximum) depth of these subclasses relative to the root term.

with any corpus that enables us to search for instances using
the pattern phrases.

(4) Repeat (for this article, until SearchSet is empty).

(5) Compute hit counts: To enable later steps to perform assessment,
step 5 queries CorpusVerify for hit count information about
each candidate instance (Section 5.1.4 examines the time/query
complexity of this step). In this work, we consider two repre-
sentative sizes for CorpusVerify: the smaller Corpuss (the 60
million page collection discussed above) and the larger Corpus;
(the whole web). For Corpuss, BE actually provides all of the
necessary statistics when instances are extracted in step 3, so
no additional work is needed. For Corpus;, we use the web API
of a popular commercial search engine to query for the needed
counts.

(6) Compute confidence metrics: Given the statistics from step 5,
OntoSyphon computes a confidence score or probability for
each candidate pair such as (tiger, Mammal) (see Section 5.1).

(7) Choose the best class for each instance: In many cases, more than
one candidate pair is found for a given instance i, e.g., (wilde-
beest, Animal) and (wildebeest, Mammal). In some cases, more
than one answer may indeed be fully correct, but for simplicity
and to avoid producing an ontology with redundant informa-
tion, this step chooses the single best class for each term (see
Section 5.2).

(8) Re-compute confidence metrics: Scores are re-computed in this
step, since the best metric for choosing the most likely class in
step 7 may not be ideal for the ranking and filtering of step 9.

(9) Rank and filter the final results: Since not all instances will be cor-
rect, providing the end user with some indication of the more
likely instances is critical. This step uses the scores from step
8 to sort the final results. If desired, it will also expunge any
instance pairs below a given confidence or probability value.

We focus in this article on basic instance learning, but this algo-
rithm naturally lends itself to several future enhancements. For
instance, in step 3, the candidate instances that are discovered will
also discover subclasses. Such subclasses might be added to the S
earchSet and/or might be used to extend the ontology itself. Our ini-
tial experiments have shown that, as is to be expected, such steps
will increase recall but at some cost of precision. The next section
discusses how we grade discovered subclasses for this work; future
work will more fully investigate the benefits of exploiting these can-
didate subclasses. This will also necessitate more work on picking
the best class to pursue (step 1), and deciding when to terminate
the extraction process (step 4).

4. Methodology

We ran OntoSyphon over the three ontologies shown in
Table 2. All three ontologies were created by individuals not
associated with OntoSyphon, and are freely available on the
web. For each, we selected a prominent class to be the “root
class,” thereby defining three different domains for evaluation:
Animals, Food, and Artists. Note that instances for the first
two domains are dominated by common nouns (dog, broccoli),

whereas the latter yields mostly proper nouns (Michelangelo).
These choices encompass different domains and ontology types.
For instance, the Animal ontology was fairly complete but shal-
low, while the Artist ontology covers artists in general but
most classes focus on musical artists. The Food ontology has
been used for demonstrating OWL concepts; it contains some
more complex constructions and classes such as NonSpicyRed-
Meat.

OntoSyphon operates in a totally unsupervised manner and out-
puts a ranked list of candidate instances for the ontology. Because
there is no accurate, authoritative source for determining the full,
correct set of instances for our three domains, we cannot report
recall as an absolute percentage, and instead report just the num-
ber of distinct, correct instances found (as done by systems such
as KnowlItAll [24]). In addition, we must evaluate correctness by
hand. To do this, we created a “gold standard” as follows: all system
configurations produce the same basic set of candidate instances
for a given ontology. A human evaluator (one of the authors) clas-
sified a random sample of 10% of this set (5% for Artists due to
the much larger number of candidates found, see Table 2). For the
random selection, each candidate was equally likely to be chosen,
regardless of how many times it was extracted from the corpus.
For each candidate, the evaluator chose the best, most specific
ontology class available, while allowing for multiple senses. So a
“Yo-Yo Ma” would be marked as a cellistrather than the less
specific Musician, while “Franz Liszt” would be marked as a com-
poser, Pianist,and Conductor. Two classes, ExoticSpecies and
IndigenousSpecies, were removed from Animals because they
were too subjective for a human to evaluate. To reduce bias, the
evaluator had no knowledge of what class OntoSyphon assigned
to each candidate nor OntoSyphon’s assigned probability for that
candidate.

Candidates with no correct class for that domain (e.g., “truck”)
were marked as incorrect, as were misspelled or incomplete terms
(e.g., the artist “John”). To decide whether a candidate was a proper
instance or a subclass, we assumed that the ontology was fairly
complete and tried to follow the intent of the ontology. Candidates
that could be properly classified as an instance of a leaf node in the
ontology were treated as instances. Candidates that were already
present in the ontology as a class or that seemed to be siblings of an
existing class (e.g., the discovered “fiddler” and the existing class
Pianist)were counted as incorrect. Finally, candidates that did not
fit the intent of the ontology were marked incorrect. For instance,
we considered the animal ontology to be about types of animals
(dogs and cats), so specific animals like “King Kong” or “Fido” were
incorrect. Clearly, a knowledge base intended to model a set of
specific animals would make different choices and instead treat
discovered terms such as “dog” and “cat” as subclasses of Mammal.
For simplicity of explication in this article, we adopt the complete-
ness and intent conventions described above, enabling us to focus
only on instances. Section 7 discusses this issue further.

This evaluation produced the function gold( ), where goldy(i) is
the set of classes assigned to candidate instance i by the evaluator
for ontology O. Then, given a candidate instance i and a class c, we
define the pair (i, c) to be:
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e correct if c € gold (i),
e sensible if 3¢’ € gold (i) s.t. ¢’ e subclasses(c),
e or incorrect otherwise.

For instance, if goldy(Yo — YoMa) = {Cellist}, then (Yo-Yo
Ma,Cellist) is correct, (Yo-Yo Ma,Musician) is sensible, and (Yo-Yo
Ma,Pianist) is incorrect. Later, we will also need the following
definition to identify instances for which there is a chance of
picking an appropriate class in the ontology:

¢ Aninstance i is plausible iff gold(i) # .

Let X be the output of the system for some experimental condi-
tion, where X consists of a set of pairs of the form (i, c), and where
each candidate instance i appears in only one pair.2 Then the recall
is the number of pairs in X that are correct, and the precision is the
fraction of pairs in X that are correct. These metrics are useful, but
count only instances that were assigned to the most correct class
possible, and thus do not fully reflect the informational content of
the output. Consequently, we primarily report our results using the
sensible-recall, which is the number of pairs in X that are sensible. In
addition, we follow the example of several others in using learning
accuracy (LA) in addition to exact precision. The LA measures how
close each candidate pair (i, c) was to the gold standard (i, gold(i)).
This measurement is averaged over all pairs to yield a precision-like
number ranging from zero to one where LA(X) = 1 indicates that
all candidate pairs were completely correct.

We follow the general definition of Learning Accuracy from
Cimiano et al. [13], which requires the least common superconcept
(Ics) of two classes a and b for ontology O 3:

Icso(a, b) = argmig(z?(a, ¢)+8(b, c) + &(top,c)) (1)

where 8(a, b) is the number of edges on the shortest path between a
and b. Given this definition, the taxonomic similarity Tsim between
two classes is

3(topf) +1
(topf)+1+35(d, )+ (e, f)
where f = Icsg(d, e). We then define the average Learning Accuracy
for ontology O of a set X of candidate pairs as

Tsimo(d, e) = 3 (2)

1 ) ,
LA(X) = x| Z max(0, max ¢ goiq(i) Tsimo(c, ¢')) 3
(i,c)eX

5. Assessing candidate instances

Extracting candidate instances from the web is a noisy process.
Incorrect instances may be extracted for many reasons includ-
ing noun phrase segmentation errors, incorrect or incomplete
sentence parsing, or factual errors in the web corpus. Because
OntoSyphon operates in an unsupervised manner, it is thus crit-
ical to be able to automatically assign a probability or confidence
value to the instances that are produced. These values can then be
used to expunge instances that are below some confidence thresh-
old and/or to provide reliability estimates to applications that later
make use of the output data.

2 OntoSyphon assigns only a single class to each instance, which is often sufficient
but restrictive for domains like Artists. Future work should consider more general
techniques.

3 Maynard et al. [40] criticized Learning Accuracy (as presented by Hahn and
Schnattinger [31]) in part because LA(a, b) does not in general equal LA(b, a). How-
ever, the revised formulation of Cimiano et al. [13], which we use, does not have this
limitation. We also adopt Cimiano et al.’s formulation in order to be able to compare
later with their results.

Table 3
Different metrics used for picking the best class and/or ranking candidate instances

Metric Type Description

Generic methods applied to either corpus

Strength Conf. Total number of pattern hits for
(i,c)

Str-INorm Conf. Strength normalized by
instance frequency (count(i))

Str-INorm-Thresh Conf. Like Str-INorm, but enforce
minimum on count(i)

Str-CNorm Conf. Strength normalized by class
frequency (count(c))

Str-ICNorm-Thresh Conf. Str-INorm-Thresh plus class

normalization

Methods applied only to Corpuss

Urns Prob. Balls and urns model learned
via Expectation Maximization

Urns-INorm Prob. Urns with z parameter
normalized by instance
frequency

Urns-CNorm Prob. Urns with z parameter
normalized by class frequency

Urns-ICNorm Prob. Urns with instance and class

normalization

Methods applied only to Corpus;
PMI-Base Prob. Naive Bayes combination of

binary PMI features, one model

per class

PMI-Base that constructs a

single model based on class

normalization

PMI-Unify with seed

re-sampling and threshold

averaging

PMI-Unify Prob.

PMI-Unify-Resample Prob.

The second column indicates whether the metric produces a probability or a confi-
dence value.

This section describes OntoSyphon’s approach to automatic
assessment. First, a confidence metric is computed for each candi-
date pair (i, ¢) using either Corpuss or Corpus; (Section 5.1). Second,
the confidence metrics are used to select the best class c for each
instance i where evidence for more than one class was found (Sec-
tion 5.2). Finally, a new confidence metric is computed (using a
technique from Section 5.1), and that metric is used to rank the
final pairs. While some of the metrics of Section 5.1 are appropri-
ate to both the class picking and instance ranking tasks, Section 6
shows that the best metrics are task-specific.

5.1. Computing confidence metrics

Below we describe the various assessment metrics that we con-
sider in this article (Table 3 provides a summary). Each is used to
assign a confidence score or probability to a candidate pair (i, ¢).
We divide them into three categories: (1) “generic” metrics that
are equally applicable with Corpuss or Corpus;, (2) metrics only
applicable with Corpuss, and (3) metrics only applicable when using
Corpus;. After explaining the metrics, Section 5.1.4 examines their
time/query complexity, and Section 5.1.5 discusses their novelty
and why some are useful only in relation to one of the corpora.

In what follows, count(i, ¢, p) is the number of hits for the pair
(i, ¢) in the corpus with pattern p, and count(y) is the number of
hits for the term y alone in the corpus.

5.1.1. Generic assessment metrics
The following metrics can be usefully computed using any size
corpus:

World Wide Web (2008), doi:10.1016/j.websem.2008.04.002

Please cite this article in press as: L.K. McDowell, M. Cafarella, Ontology-driven, unsupervised instance population, Web Semantics Sci Serv Agents



dx.doi.org/10.1016/j.websem.2008.04.002

G Model
WEBSEM-142; No.of Pages 19

L.K. McDowell, M. Cafarella / Web Semantics: Science, Services and Agents on the World Wide Web xxx (2008) Xxx—xXx 7

1. Strength: Intuitively, if the pair (dog, Mammal) is extracted many
times from our corpus, this redundancy gives more confidence
that that pair is correct. The Strength metric thus counts the
number of times a candidate pair was observed across all extrac-
tion patterns P:

Scoresiengin(i €)= » _count(i, ¢, p) (4)
peP

Many systems (e.g., [13,60,50]) are based on this simple metric,
though the counts are often obtained in a different manner. An
interesting variation is that of Ponzetto and Strube [50], which
contrasts the strength value with a parallel metric computed
from patterns which indicate that the is-arelationship does not
hold.

. Str-INorm: The Strength metric is biased towards instances that
appear very frequently in the corpus. To compensate, Str-INorm
normalizes the pattern count by the number of hits for the

instance alone:
Zcount(i, ¢, p)

peP

(5)

Scorestr_iNorm(i, €) = count(i)
Similar normalization techniques are found in many systems
(e.g., [24,14]).

. Str-INorm-Thresh: The normalization performed by Str-INorm
can be misleading when the candidate instance is a very rare
term or a misspelling. Consequently, we created a modified Str-
INorm where the normalization factor is constrained to have
at least some minimum value. We found that a variety of such
thresholds worked well. For this work we sort the instances by
count(i) and then select Count,s, the hit count that occurs at the

25th percentile:
Zcount(i, c,p)

peP
max(count(i), Countys)

ScoreStr—INorm—Thresh(ia C) = (6)
Pantel and Ravichandran [46] use, but do not separately evaluate,
a much more complex “discounting factor” to account for such
infrequent terms.

. Str-CNorm: The raw Strength metric for a pair (i, ¢) is also biased
towards pairs where the class ¢ is more common in the corpus.
To compensate, Str-CNorm normalizes the pattern count by the
number of hits for the class alone:

Zcount(i, ¢, p)

peP
count(c)

Scoresir_cnorm(i, €) = (7)
Such normalization has been infrequently used in related work.
One exception is Geleijnse et al. [28], who utilize a similar
class-based normalization with their “PCM” metric, but do not
specifically evaluate its performance.

. Str-ICNorm-Thresh: Finally, it is natural to combine normalization
for both the instance and the class together:

Zcount(i, ¢, D)

peP
" max(count(i), Count,s) - count(c)

(8)

Note that thresholding on count(c) is not as critical as with
count(i) because each class c is from the ontology, whereas each
instance i is extracted from a more general (and possibly noisy)
web document.

Scoresgr_icNorm—Thresh (i, €)

5.1.2. Metrics for use with Corpuss

This section describes metrics that we only use in conjunction

with the smaller Corpuss.

6. Urns: OntoSyphon, like some other systems, extracts candidate

facts by examining a large number of web pages (though we use
the aforementioned Binding Engine to perform this process very
efficiently over the smaller corpus). Prior work has developed
the Urns model to apply in such cases [22,6] and has shown it
to produce significantly more accurate probabilities than pre-
vious methods such as PMI (pointwise mutual information) or
noisy-or. The Urns model treats each extraction event as a draw
of a single labeled ball from one or more urns, with replacement.
Each urn contains both correct labels (from the set C), and incor-
rect labels (from the set E); where each label may be repeated on
a different number of balls. For instance, num(C) is the multi-set
giving the number of balls for each label i € C. Urns is designed
to answer the following question: given that a candidate i was
extracted k times in a set of n draws from the urn (i.e., in n extrac-
tions from the corpus), what is the probability that i is a correct
instance? For a single urn, if s is the total number of balls in the
urn, then this probability is computed as follows:

PR UONCE D)

renum(C)

> wa-wsrt

r’ e num(CUE)

P(i € C|NumExtractions;(n)=k)=

(9)

Urns operates in two phases. In the first phase, the set of
all candidate extractions is used to estimate the needed model
parameters (num(C) and num(C UE)), using expectation maxi-
mization (EM). In particular, num(C) is estimated by assuming
that the frequency of correct extractions is Zipf-distributed, and
then estimating the exponent z which parameterizes this dis-
tribution. In the second phase, a single pass is made over the
extractions and each is assigned a probability using the esti-
mated model parameters and an integral approximation to Eq.
(9)122].

Urns was designed to assign probabilities to a set of extrac-
tions that were targeting a single class, and the EM phase relies
upon having a sufficient number of samples (roughly 500) for
estimation. In our context, relatively few classes yield this many
extractions on their own. We experimented with using Urns on
these classes anyway, learning a separate model for each class
but using a prior on the Urns parameters when the number of
samples was low. We obtained better results, however, by learn-
ing a single model via combining the candidates from all of the
classes of a single ontology together for the EM estimation. This
approach yields more data to fit the model and ensures that any
outliers influence the parameters for all models equally.

. Urns-INorm: The Urns model, like Strength, does not exploit the

frequency with which a candidate appears in the corpus. Instead,
each instance is assumed to occur with equal probability any-
where along the aforementioned Zipf distribution. Introducing
an appropriate prior probability of an input candidate’s location
along this curve would improve accuracy, but would significantly
complicate the model and computation.

Fortunately, we can approximate the benefit of such a change
with a much simpler approach. We begin by sorting the input
data set X by count(i). We then run EM both on the “lower” half
of this data (which contains the less frequent terms), obtaining
parameter z; and on the whole data set, obtaining the aforemen-
tioned z. We then compute a parameter z; for each instance i as
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follows:

log(count(i'))

X| (10)

zi = max | z;, z + log(count(i)) — Z
(i",ceX

The probability for candidate (i, ¢) is then computed using z;.
Intuitively, the log functions increase z; when a candidate i is
more frequent than average, thus forcing i to have more pat-
tern matches to obtain a high probability. On the other hand,
the max function ensures that very infrequent words (particu-
larly misspellings) do not obtain an artificially high probability,
by insisting that the minimum z; is a value appropriate for the
“lower” half of the inputs (z;).

8. Urns-CNorm: For a pair (i, ¢), Urns-INorm compensates for the
frequency of i. We can adopt a similar strategy to compensate
for the frequency of c. In particular, we can compute a parameter
z. for each class c as follows:

log(count(c’))

X| (11)

ze = max | z;, z + log(count(c)) — Z
(i",c')eX

The probability for candidate (i, c¢) is then computed using z.
We use the same z; as above to ensure the final parameter is
reasonable, and average over all pairs in set X (rather than over
all classes) so that the average reflects the frequency of classes
actually seen by the EM process.
9. Urns-ICNorm: Finally, we can combine instance and class nor-
malization as follows:

Zjc = max | z, z + log(count(i)) + log(count(c))

Z log(count(i')) + log(count(c’)) (12)

X
(",c)eX &

The probability for candidate (i, ¢) is then computed using z; .

5.1.3. Metrics for use with Corpus;
This section describes metrics that we only use in conjunction
with Corpus; (the whole web via a search engine).

10. PMI-Base: We start with the PMI-Bayes approach of KnowlItAll
[24], which was derived from Turney’s PMI-IR algorithm [61].
Several papers [24,6] have found it to produce strong precision-
recall curves, even if the Naive Bayes assumption used leads to
polarized probability estimates. We summarize the algorithm
below; see Etzioni et al. [24] for more details.

Let ¢ be the event that instance i is an instance of class c. The
algorithm will compute P(¢) based on the value of k PMI scores,
which are based on k different discriminator phrases (we use the
same 5 patterns shown in Step 2 of Fig. 1). The jth score uses pattern
pj and is computed as follows:

count(i, ¢, pj)

PMI(i, ¢, pj) = count(i)

(13)

PMI(i, c, p;) is not a probability, but as with Strength, larger val-
ues should indicate that iisac is more likely. We treat each score
PMI(i, c, p;) as a feature f; that provides evidence for ¢. By assum-
ing independence of features, we can then compute the following

probability:
P)] [PGi9)
J

. fk) = (14)
P [P6iie) + P-d)] [P0 1)
J J

P(¢If1»f27 ..

Here P(¢) is an estimated prior probability, P(f;|¢) is the probability
of observing feature j given ¢ is true, and P(fj|~¢) is the probability
of observing feature j given that ¢ is false. The key challenges with
applying this formula are (1) estimating these probabilities from a
small set of labeled examples and (2) producing such labeled exam-
ples in this unsupervised setting. Fortunately, Etzioni et al. found
the general algorithm to be robust in the presence of some incorrect
examples.

First, to make the probability estimation tractable, the algo-
rithm transforms the continuous PMI scores into binary features,
where f; is true iff PMI(i, ¢, p;) > T; and Tj is a discriminator-specific
threshold. For each discriminator j, the algorithm selects the T; that
that best separates a set of 10 positive and 10 negative examples
(“seeds”). Then, it uses a second set of 10 positive and 10 nega-
tive seeds to estimate P(fj|¢) by counting the number of positive
seeds (plus a smoothing term) that are above the threshold. Like-
wise, counting the number of negative seeds yields P(fj|—¢). Given
these thresholds and conditional probabilities, Eq. (14) can be used
to directly estimate the desired probability thatiisac.

Second, to automatically identify the needed positive and nega-
tive seeds, the algorithm randomly selects 100 candidate instances
of class c. It ranks them by raw, average PMI score and selects
the best 20 as positive seeds. To obtain negative seeds, we run
OntoSyphon on all 3 ontologies simultaneously, and use the posi-
tive seeds of one domain as negative seeds for the others (Etzioni et
al. use a similar approach; we likewise found it to be effective). The
selected seeds are used to estimate P(f;|¢) and P(f;|—¢), then all 100
seeds are re-ranked using Eq. (14), and the best 20 seeds become
the positive seeds for the next round.

With PMI-Base, we perform two such rounds of seed selec-
tion and probability estimation. For each class, we train a separate
PMI model. In the original work by Etzioni et al., this bootstrap
process also selected the five best discriminators among a larger
set of choices. We found, however, that the discriminator selec-
tion was highly variable with some of the less frequent classes
and thus adopted a fixed set of five discriminators. In our actual
implementation, we adopt the suggestion of Etzioni et al. in using
two thresholds per discriminator; this yields three different condi-
tional probabilities for each feature and we found better handled
low-frequency instances.

PMI-Base assigns higher probabilities to instances that satisfy
(i.e., are above threshold for) more than one discriminator, and
those that satisfy more reliable discriminators (i.e., those where
P(fj19)/P(fj|—¢) is greater). In this sense, it is somewhat similar to
the instance ranking techniques used by Espresso [45] and Pronto
[5], which incorporate per-pattern confidence scores. These sys-
tems, however, require manually provided training seeds.

11. PMI-Unify: PMI, as originally developed by KnowlItAll, was
intended to be used for ranking named entities that all belonged
to the same class. In our multi-class context, this approach
presents several problems. First, PMI needs a significant num-
ber (e.g., 100) possible instances of each class for its training, but
many of the classes in our ontology do not produce that many.
Second, the Naive Bayes classifier used by PMI is well known for
producing very polarized probabilities (artificially close to zero
or one). This has little practical impact when the same model is
used to simply produce a relative ranking of entities, but may
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produce mistakes when we must compare the probabilities of
two different classes that were produced by two different PMI
models.

PMI-Unify partially addresses both of these challenges. First,
instead of training multiple models, it trains one model for the root
class of the ontology. Then, to estimate probabilities for a single
instance, we apply the model repeatedly, once for each class in the
ontology, but where the PMI scores used have been normalized by
the frequency with which each class/pattern combination appears
alone. More specifically,

count(i, c, p)
count(i) - count(x, c, p)

PMI'(i, c,p) = (15)
where count(x, ¢, p) represents the number of hits for class ¢ with
pattern p for any instance. This new normalization term is what
enables us to meaningfully apply a model learned for one class to
other classes as well (cf., the similar PMI normalization of Espresso
[45]). Using a single model provides more consistency across the
predictions for different classes, and eliminates the need to have
sufficient seeds from each class for training.

12. PMI-Unify-Resample: While PMI-Unify partially addresses the
challenges of applying PMI to a multi-class ontology, challenges
remain. In particular, PMI's bootstrap process is somewhat
problematic, because it specifically tries to identify the most
likely terms as seeds. This goal is important, since the proba-
bility learning requires meaningful seeds to operate. However,
this goal exacerbates the problem of biased probabilities, since
the final set of seeds tends to be terms that have evidence from
many different patterns, causing the model to sharply reduce
the probability of any tested term that does not have such strong
evidence, even if it is in fact correct.

PMI-Unify-Resample addresses this challenge with two
enhancements. First, we add a third and fourth bootstrapping
round. During these rounds, instead of always picking the N most
probable terms as the next seeds, the process chooses N/2 seeds
from amongst the top ranked terms, and the remaining seeds
from among the terms with estimated probabilities in the range of
0.5-0.7. In this way, general parameters are established in rounds
one and two, but rounds three and four ensure that the final
probability estimates are based on a more realistic distribution of
instances.

Second, we found that even with these changes PMI was very
sensitive to the particular set of seeds that were used. Since PMI
uses thresholds to enable tractable learning, small changes in the
threshold can cause the probability of particular instances to fluc-
tuate substantially. To address this problem, PMI-Unify-Resample
also modifies all rounds of the bootstrap phase so that, after each
discriminator estimates its optimal threshold value, the algorithm
replaces each threshold with the average threshold across all dis-
criminators. Essentially, this change limits the power of the model
in order to reduce the impact of the particular set of seeds on the
final results.

5.1.4. Time/query complexity

The dominant cost for all of the above metrics is the time to
query the corpus for the raw statistics, e.g., count(i, c, p). To analyze
this cost, we assume below that there are N; instances found, N¢
classes in the ontology, Np patterns used (in this article, Np = 5),
and Np documents in the corpus.

The statistics can be computed in two different manners. First,
we can make a single pass over the entire corpus, in time O(Np ). We

use this approach for all Corpuss-based metrics, and with the afore-
mentioned Binding Engine [7] this process requires about a minute.
Second, the statistics can be computed by querying a search engine
for each instantiated pattern string, and obtaining the resulting
counts. This is our approach for all Corpus;-based metrics, and it
requires O(N;NcNk) queries.

Many optimizations, however, are possible for reducing the
actual number of queries needed. For instance, for Strength
(but not for PMI), per-pattern statistics are not needed (only
Zpepcount(i, ¢, p)), so multiple queries for the same (i, c) pair
can be combined with a boolean OR query. Second, many queries
can be eliminated by observing that the query “pianists such as
Beethoven” is redundant if the queries “pianists such as” or “such
as Beethoven” return no hits. Thus with minimal effort, we reduced
the actual number of queries needed for PMI with our ontologies
to about 60-70 queries per instance, with further gains possible.
This represents an improvement over the 140-195 queries that
were theoretically required, but remains a substantial cost. The cost
is especially an issue because commercial search engines impose
hard limits on the number of queries that can be programmatically
issued per day. More drastic reductions could be obtained by issu-
ing generic queries like “such as Beethoven,” then examining the
limited number of search snippets returned to find possible classes
for “Beethoven” (similar to C-PANKOW [13]). We instead compute
the full statistics in order to gauge the potential improvement of
using the larger Corpus; vs. Corpuss. Some related work [6,4] has
also considered the relative impact of learning structured data from
a larger corpus.

5.1.5. Discussion

Urns, Strength, Str-INorm, and (at least parts of) Str-CNorm
have been used in some form in other work, though Urns required
some adaptation for our multi-class problem. However, Str-INorm-
Thresh, Urns-INorm, and Urns-CNorm are novel contributions of
this work that we found to be very effective compared to their sim-
pler variants (e.g., vs. Strength and Urns, see Section 6), and that
should also provide significant improvements in other systems.
Likewise, PMI-Base has been used extensively by KnowlItAll, but
later sections will show that our enhancements with PMI-Unify
and PMI-Unify-Resample can substantially improve performance
for the more challenging multi-class problem that we face.

Not all metrics are profitable to use with either Corpuss or
Corpus; . For instance, we could also apply PMI to Corpuss. However,
to work well PMI requires that true instances have strong (above
threshold) evidence from multiple patterns. We found that even
with Corpus; this was a challenge, because many correct instances
appear predominantly in just one or two of the considered patterns.
Using a smaller corpus would greatly exacerbate this problem and
make training the classifier probabilities much less reliable. Hence,
we only evaluated PMI with the larger corpus.

Likewise, we experimentally verified that applying Urns to our
results, with counts computed from Corpus;, produced very poor
results. The problem with this approach is that it violates a key
assumption used by the Urns EM process to learn the model. In
particular, the EM process assumes that its input is the set of a 1l
candidates that were found in n extraction events. This requirement
is satisfied when the input statistics are computed by repeatedly
issuing web queries that return instances of a particular class (e.g.,
query for “animals such as . ..”,as in the original application of Urns
[22]), or by extracting all such matches from a set of documents (as
we do for Corpuss). However, this requirement is not satisfied by
finding new counts for an existing set of candidates (e.g., count-
ing hits for “animals such as tigers”). The problem with the latter
approach is that the resulting input to Urns does not accurately
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reflect the distribution of instances in the larger corpus. In par-
ticular, true but infrequent instances are very underrepresented.
Consequently, the probabilities produced by Urns heavily penalize
any instance that does not have many hits, resulting in many false
negatives. In theory, a model learned over Corpuss could, with suit-
able parameter adjustments, be applied over Corpus;. We found
that straight-forward parameter adjustments did not work well,
but believe this is a tractable direction for future research.

5.2. Picking the best class

Given a set X of candidate instances, and a metric value com-
puted for each via one of the metrics described above, OntoSyphon
must next select the best class c for each instance i for which evi-
dence for more than one class was found. This is shown in step 7
of Fig. 1. That example includes the following evidence (where we
start to substitute i for the instance wildebeest):

Score(wildebeest, Animal) = Score(i, Animal) = 0.91
Score(wildebeest, Mammal) = Score(i, Mammal) = 0.85

Recall that OntoSyphon always chooses a single class for each
instance i. We consider several techniques for making this choice:

(1) PickMax: The simplest case is to pick the class with the maximal
confidence score:

Classpicknax(i) = argmax. c oScore(i, c) (16)

In the above example, this selects Animal—a “sensible” choice,
but not fully correct (the LA is 0.67). This approach has been the
most commonly used in previous work [11,13,60,28].

(2) TREEASCENT: Given a new concept t and scores representing how
similar t is to each concept in a hierarchy, Maedche et al. [38]
previously proposed the use of the TREEASCENT algorithm for
ontology learning. Adapted to instance classification, this algo-
rithm would compute, for every class c, the sum of the instance’s
score with respect to every class ¢/, weighted by the taxonomic
similarity (see Section 4) between c and c’:

Classtreepscent(i) = argmaxc ¢ o ZSCore(i, cTsimp(c,c’)  (17)
c'e0

The idea is that significant evidence in the classes “nearby”
class ¢ might argue for choosing c, even if another class had
a higher raw score. Frommbholz [25] utilized a very similar idea,
but where estimated class subsumption probabilities were used
instead of taxonomic similarity, with some limited success.

In the above example, the TREEASCENT metric would
still choose Animal for wildebeest. Suppose, however,
that there was also the (in this case incorrect) evidence
Score(wildebeest, Human) = 0.52. This new evidence for
Human (as a subclass of Mammal) would provide enough
evidence such that TREEASCENT would choose Mammal (an LA
of 1.0). Such a technique may not maximize precision overall,
but aims to maximize the LA of the final result.

(3) PiIckMAX-STRUCTADJUST: In the first example, PICKMAX’s naive
choice of the maximal score produced a sub-optimal result.
However, the structure of the ontology (in particular, the sub-
class hierarchy) suggests a better approach. To simplify the
discussion, let us introduce the events A and M as follows:

Score(i, Animal) = P(iisa Animal) = P(A) = 0.91
Score(i, Mammal) = P(iisa Mammal) = P(M) = 0.85

The ontology, however, states that Mammal c Animal, which
implies that event A must be true if event M is true. Thus, to

pick the best, most specific class, we really must compare P(M)
vs. P(A A —=M). This can be computed as follows:

P(A) = P(AAM)+ P(AA-M),
P(A) = P(M) + P(A A =M),
P(A A =M) = P(A) — P(M),
P(A A —=M) = 0.91 — 0.85,
P(A A —M) = 0.06

Since P(AA-M)=0.06 < P(M)=0.85, we should choose
Mammal as the most specific class for this instance. Intuitively,
since the probabilities for Animal and M ammal are very close,
it is probable that the subclass (M ammal) is the most correct
choice. We can generalize the above approach to compute a
modified score for any class ¢ with a single child c¢’:

Score'(i, c) = P(iisac A =(iisac’)) (18)
Score/(i, ¢) = Score(i, c) — Score(i, c') (19)

Moreover, if we assume that siblings in the subclass hierarchy
are disjoint classes, then similar algebra can be used to general-
ize this approach to deal with situations where there is evidence
for more than one child of c:

Score”(i, c) = P(iisac A —(iisac’|c’ e child(c))) (20)
Score”(i, ¢) = Score(i, ¢) — Z Score(i, ) (21)
¢’ e child(c)

This equation, however, has several practical flaws. First, if
the sum of the children’s scores is greater than Score(i, c) (either
because the estimated scores are biased or because the children
are not in fact disjoint), then Score”(i, ¢) will be less than zero.
Second, while in theory it should hold P(i, ¢’) < P(i, c) if ¢ is a
child of c, this will not always be true for the estimated scores,
leading to incorrect conclusions. For instance, consider the fol-
lowing evidence, where each class is a child of the one above
it:

Score(black widow spider, Animal) = 0.97,
Score(black widow spider, Arthropod) = 0.01,
Score(black widow spider, Arachnid) = 0.95

Using Eq. (21) on this data would yield adjusted probabili-
ties of (0.96, —0.94, and 0.95) respectively. Even if the scores
are constrained to be positive, clearly the probability related
to Animal needs to be adjusted based not just on the score
at Arthropod, but with the score for Arachnid (a descendant of
Animal, but not a child).

We thus introduce the notion of “structure adjusted” scores,
which can be computed as follows:

M(i, c) = max (Score(i, €), MaXe ¢ chitd(cyM(i, c’)) (22)

Scoresgyceadjust (i, €)=max | 0, Score(i, c)—Z M(i,c) | (23)
¢’ e child(c)

The first equation adjusts for children that may have higher
scores than their parents, while the second equation performs
the basic transformation of Eq. (21) while pragmatically adjust-
ing negative probabilities that can arise in practice. Note that
the first equation requires traversing the tree in postfix order
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Table 4
Class picking results for Animals domain

Basic method

PickMAx

TREEASCENT

Without STRUCTADJUST

With STRUCTADJUST

Without STRUCTADJUST

With STRUCTADJUST

LA Prec LA Prec LA Prec LA Prec
Sml-Strength 0.85 57.9% 0.89 69.4% 0.85 59.5% 0.88 67.8%
Sml-Str-CNorm 0.91 76.0% 0.91 76.9% 0.91 76.0% 0.91 76.9%
Sml-Urns 0.85 57.9% 0.91 76.9% 0.83 52.9% 0.89 71.9%
Sml-Urns-INorm 0.85 57.9% 0.90 73.6% 0.83 52.9% 0.89 70.2%
Sml-Urns-CNorm 0.92 80.2% 0.92 80.2% 0.89 72.7% 0.90 75.2%
Lrg-Strength 0.85 60.3% 0.86 65.3% 0.85 58.7% 0.86 64.5%
Lrg-Str-CNorm 0.89 72.7% 0.89 75.2% 0.89 73.6% 0.89 75.2%
Lrg-PMI-Base 0.85 60.3% 0.86 62.0% 0.81 47.9% 0.85 57.0%
Lrg-PMI-Unify 0.85 58.7% 0.91 77.7% 0.80 43.0% 0.88 67.8%
Lrg-PMI-Unify-Resample 0.84 54.5% 0.93 81.8% 0.79 42.1% 0.89 71.1%

(children before parents). Using these formulas, the preceding
example would yield adjusted scores of (0.02, 0.00, and 0.95)
respectively. This is to be interpreted as “the estimated proba-
bility that i is an Animal and not an A rthropod or Arachnid is
0.02.” Picking the maximal such score yields Arachnid, the most
correct choice of the three.

Thus we arrive at the final form for PickMax-STRUCTADJUST:

Class(i) = argmaxceoscoreStructAdjust(iv c) (24)

(4) TREEASCENT-STRUCTADJUST: To optimize LA instead of precision,
it makes sense to utilize the above-mentioned adjusted proba-
bilities with TREEASCENT:

Classtreeascent—structad just( i)

= argmaxcco ZscoreStructAdjust(i’ c")Tsimp(c, ') (25)
ce0

In hindsight, the transformation of probabilities based on
STRUCTADJUST seems to be a clear advantage provided that (1) the
probabilities are not too biased and (2) the sibling classes are mostly
disjoint. However, we are not aware of any previous system that has
employed such an approach for instance or concept classification.
In fact, many systems that classify entities of some kind into a class
hierarchy actually treat the possible classes as a flat set for clas-
sification purposes [11,17,60]. Among systems that do attempt to
use the hierarchical structure for classification, many systems (e.g.,
Dumais and Chen [23], the “tree descent” of Maedche et al. [38]) fol-
low the early example of Koller and Sahami [35] and use a top-down
approach that only classifies entities into “leaf” classes. Such an
approach is not appropriate for many domains, including the ones
we investigate, where the best class for a particular instance may be

Table 5
Class picking results for Food domain

an internal node. One recent exception is that of Li and Bontcheva
[37], which extends the Hieron algorithm to classify terms into an
ontology. Notably, Hieron does not make decisions based on per-
class prototypes, but on the difference between the prototype of a
node and its parent. While this technique is motivated very differ-
ently, it resembles some of the parent/child adjustments made by
STRUCTADJUST.

Note that even when the disjointness assumption is violated,
STRUCTADjusTmay nonetheless work well in practice. Furthermore,
while we have derived STRUCTADJUST with probabilities, the deriva-
tion of Eq. (21) and hence the use of STRUCTADJUST applies equally
well to linear confidence scores. Section 6.1 evaluates these issues
experimentally.

6. Experimental evaluation

In this section we experimentally evaluate OntoSyphon. We first
consider the impact of the class picking technique, then evaluate
instance ranking. Finally, we evaluate the impact of using a smaller
search corpus.

6.1. Instance classification results

After extracting candidate instances, OntoSyphon should pick
the best class for each candidate. For instance, should the final
output include (tiger, Animal) or (tiger, Mammal)?

Tables 4-6 contain the results for our three ontologies. The val-
ues in each cell report the LA and the exact precision for the set
produced by some instance classification technique. Each row cor-
responds to a different confidence metric, with the Corpuss-based

Basic method PIcKMAX

TREEASCENT

Without STRUCTADJUST

With STRUCTADJUST

Without STRUCTADJUST With STRUCTADJUST

LA Prec LA Prec LA Prec LA Prec
Sml-Strength 0.86 55.1% 0.87 55.1% 0.86 55.1% 0.88 57.1%
Sml-Str-CNorm 0.89 63.3% 0.89 63.3% 0.89 63.3% 0.89 63.3%
Sml-Urns 0.86 55.1% 0.87 571% 0.86 53.1% 0.87 59.2%
Sml-Urns-INorm 0.86 55.1% 0.87 59.2% 0.86 55.1% 0.87 59.2%
Sml-Urns-CNorm 0.88 57.1% 0.87 59.2% 0.87 55.1% 0.88 61.2%
Lrg-Strength 0.86 55.1% 0.86 55.1% 0.86 55.1% 0.86 55.1%
Lrg-Str-CNorm 0.84 49.0% 0.80 38.8% 0.84 49.0% 0.81 40.8%
Lrg-PMI-Base 0.85 571% 0.83 51.0% 0.85 571% 0.83 51.0%
Lrg-PMI-Unify 0.85 55.1% 0.81 44.9% 0.84 51.0% 0.81 44.9%
Lrg-PMI-Unify-Resample 0.84 55.1% 0.82 51.0% 0.85 55.1% 0.84 53.1%
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Class picking results for Artists domain
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Basic method PicKMAX

TREEASCENT

Without STRUCTADJUST

With STRUCTADJUST

Without STRUCTADJUST With STRUCTADJUST

LA Prec LA Prec LA Prec LA Prec
Sml-Strength 0.73 30.2% 0.74 30.7% 0.73 30.2% 0.73 30.2%
Sml-Str-CNorm 0.75 33.3% 0.75 33.3% 0.75 32.8% 0.75 33.3%
Sml-Urns 0.73 30.2% 0.76 35.4% 0.74 30.2% 0.76 35.9%
Sml-Urns-INorm 0.72 29.2% 0.74 30.7% 0.73 29.7% 0.74 30.7%
Sml-Urns-CNorm 0.75 32.3% 0.76 34.9% 0.75 31.3% 0.76 34.9%
Lrg-Strength 0.73 30.7% 0.74 33.3% 0.74 30.7% 0.74 33.9%
Lrg-Str-CNorm 0.79 43.8% 0.80 46.9% 0.79 43.8% 0.80 46.9%
Lrg-PMI-Base 0.73 31.8% 0.78 44.3% 0.75 28.6% 0.79 43.8%
Lrg-PMI-Unify 0.73 31.3% 0.80 50.5% 0.75 27.1% 0.81 49.5%
Lrg-PMI-Unify-Resample 0.73 31.3% 0.79 49.5% 0.74 25.5% 0.81 51.0%
metrics up top and the Corpus;-based metrics below.* Each col- Corpus;. In general, for Food using Corpuss is superior to using
umn corresponds to a different strategy for selecting the best class Corpus; (see Section 7), and in this latter case the transformation
based upon that metric. The first two columns use PicKkMAX, with is less useful.
and without STRUCTADJUST, while the last two columns likewise In contrast, the choice of PiIcKkMAX vs. TREEASCENT mattered
use variants of TREEASCENT. For instance, for Animals when the less. In general, using PickMAx almost always improved pre-
best class is selected via PIckMAX over structure-adjusted Sml-Urns cision, without decreasing LA. This effect is to be expected,
statistics, the resulting set has an LA of 0.91 and a precision of 76.9% though notably in some cases precision improves by as
(e.g.,76.9% of the instances are assigned the same class as in the gold much as 10 points. Averaging across all rows of Table 7,
standard). Bold entries show results where the precision was within using PickMaximproved over TREEASCENTby 2.7 points when
1% of the maximum found within the same Corpuss or Corpus; parts STRUCTADJUST was not used but by just 1.0 points when
of the table. Note that class picking techniques are written in small STRUCTADJUST was applied.
caps (e.g., PIckMaAX), while metric types are written in a regular font 2. Class normalization showed a small but highly consistent gain.
(e.g., Str-INorm). For instance, averaging across the columns of Table 7, Sml-
In order to show the differences more clearly, the results in Str-CNorm outperforms Sml-Strength by 7.8 points, Sml-Urns-
this section evaluate only those instances that are plausible (see CNorm outperforms Sml-Urns by 4.9 points, Lrg-Str-CNorm
Section 4) and where there was some ambiguity regarding which outperforms Lrg-Strength by 4.8 points, and Lrg-PMI-Unify out-
class to pick, i.e., where considering all metrics across both cor- performs Lrg-PMI-Base by 0.8 points. These gains are consistent
pora, there was evidence for more than one class for a particular with our intuition: when trying to pick the best class, it pays to
instance. This represents 20% of the total candidates found for Food normalize by the class frequency. Table 7 shows one exception
and Artists, and 14% for Food (a large fraction of candidates are not to these results: with PMI and non-STRUCTADJUST, class normal-
plausible because even a single incorrect extraction produces a can- ization decreases precision by 1.4 points with PickMAX and 4.2
didate thatis considered). The next section instead evaluates overall points with TREEASCENT. However, when STRUCTADjuUsT s applied,
performance. Thus, this section examines the important problem normalization instead increases precision by 5.3 points with
of maximizing the precision of plausible candidates (our ultimate PickMAx and 3.5 points with TREEASCENT. This illustrates the
goal for instance population), while the next section considers all general pattern that STRUCTADJUST and class normalization are
candidate results together in order to evaluate overall accuracy. synergistic: normalization yields more representative per-class
Table 7 shows the results averaged across the three domains. scores, which STRUCTADjUST then uses to more accurately pick
This table highlights four general results: the most precise class. Indeed, for each domain using normaliza-
tion and transformation together almost always yields maximal
1. Using STRUCTADJUSTWas almost always helpful. Averaging across results o mpared tovusmg neither or just one (again, Food with
. S 2. Corpus; is an exception).
all rows of Table 7, this transformation improves precision by . .
. ; 3. The proposed enhancements to PMI demonstrated gains, especially
4.9 percentage points for PickMAxand 6.5 points for TREEASCENT. . . .
. . ] when combined with STRUCTADJUST. In that case, normalization
For Animals and Artists, STRUCTADJjUSTalways improves upon or . e - .
. 5 with PMI-Unify improves precision vs. PMI-Base, as discussed
equals the performance of not using STRUCTADJUST.” In some L .
. . above. Furthermore, the addition of seed re-sampling and
cases, STRUCTADJUST has a large impact. For instance, Lrg-PMI- . . . .

. . . o et threshold averaging with PMI-Unify-Resample further improves
Unify-Resample with PIcKMAX improves from 54.5% precision to average precision by 3.1 points for PickMax and 4.4 points f
81.8% for Animals and from 31.3% to 49.5% for Artists. Large gains g€ b y 3.1 b > for and 2.4 points for

. . . . TREEASCENT. These two enhancements show consistent improve-
are also found with Urns. Likewise, Food with Corpuss shows con- . . . . .
. . L . ment for Animals and Artists, with gains as large as 19.8 points
sistent but small gains. The only exception is for Food when using . . .
and 7.2 points, respectively. For Food, PMI-Unify somewhat
decreases performance compared to PMI-Base (since class nor-
malization was not helpful for Food with Corpus;), though the
4 We omit results for Str-INorm and variants because, while instance normaliza- enhancements of PMI-Unify-Resample recovers most of the
tion affects other results, it has no effect on the relative strength-based scores of losses.
different classes for the same instance i. 4. For every domain there is substantial opportunity to improve pre-

5 Note that this is true for Artists even though this domain does not strictly satisfy
the sibling class disjointness assumption. This is likely due both to the practical
adjustments of Eqs. (22) and (23) to handle imperfect probabilities, as well as the
fact that we seek to identify just the single best class, not all appropriate ones.

cision over the less sophisticated methods. The best technique
depends upon the domain, but to gauge the magnitude of the
possible improvement, we compare the precision of the best
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Table 7

Class picking results averaged over the three domains
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Basic method PicKMAX

TREEASCENT

Without STRUCTADJUST

With STRUCTADJUST

Without STRUCTADJUST

With STRUCTADJUST

LA Prec LA Prec LA Prec LA Prec
Sml-Strength 0.81 47.7% 0.83 51.8% 0.82 48.3% 0.83 51.7%
Sml-Str-CNorm 0.85 57.5% 0.85 57.8% 0.85 57.4% 0.85 57.8%
Sml-Urns 0.81 47.7% 0.84 56.5% 0.81 45.4% 0.84 55.7%
Sml-Urns-INorm 0.81 47.4% 0.84 54.5% 0.81 45.9% 0.83 53.4%
Sml-Urns-CNorm 0.85 56.5% 0.85 58.1% 0.84 53.0% 0.85 57.1%
Lrg-Strength 0.81 48.7% 0.82 51.2% 0.81 48.2% 0.82 51.1%
Lrg-Str-CNorm 0.84 55.2% 0.83 53.6% 0.84 55.4% 0.84 54.3%
Lrg-PMI-Base 0.81 49.7% 0.83 52.4% 0.80 44.6% 0.82 50.6%
Lrg-PMI-Unify 0.81 48.3% 0.84 57.7% 0.80 40.4% 0.83 54.0%
Lrg-PMI-Unify-Resample 0.80 47.0% 0.85 60.8% 0.79 40.9% 0.84 58.4%

simple technique (one that does no class normalization and does
not use STRUCTADJUST) vs. the best method enabled by the new
techniques described in this article (using class normalization
and STRUCTADjUST). We measure the statistical significance of the
gain using a one-tailed Chi-square test, as also used in Maed-
che et al.’s [38] original examination of TREEASCENT, at the 5%
significance level. Both Animals and Artists show statistically
significant gains: for Animals, 60.3% vs. 81.8% (a gain of 21.5
points, p = 0.0002) and for Artists, 31.8% vs. 49.5% (a gain of 17.7
points, p = 0.0004). For Food, there are also gains, but they are
not statistically significant: 57.1% vs. 63.3% (a gain of 6.2 points,
p = 0.535). Averaging all of the “simpler” techniques across the 3
domains vs. the average of the techniques with class normaliza-
tion and STRUCTADJUST shows a gain from 47.5% to 57.2% precision
and from 0.811 to 0.844 LA. These results demonstrate that dif-
ferent class picking strategies have very different performance,
particularly if precision is the primary concern.

Since OntoSyphon is an unsupervised system, we would ide-
ally like to identify a single class selection strategy that will
perform well across many domains. Considering the average
results, Sml-Urns-CNorm with PICKMAX+STRUCTADjUST performed
best amongst the Corpuss-based statistics, and always had rea-
sonable performance (Sml-Str-CNorm would also be a strong
choice). Amongst the Corpus;-based methods, Lrg-PMI-Unify-
Resample with PIcKMAX+STRUCTADJUST performed the best on
average and was also fairly consistent. Thus, in the remainder
of this article we report results using these two class selection
algorithms.

6.2. Instance ranking results

Fig. 2(a)-(f) shows the results of executing OntoSyphon on our
sample ontologies. The left column of figures show results using
Corpuss-based metrics, while the right column show results using
Corpus;-based metrics. Class picking used PICKMAX+STRUCTADJUST
with Sml-Urns-CNorm for the figures on the left and Lrg-PMI-Unify-
Resample for figures on the right.® Each line represents one output

6 Tomake the figures more readable we omit results that combine a ranking metric
from one corpus with a class picking metric from another. We found that switch-
ing between the best class picking methods from each corpus had minimal effect
on the overall Learning Accuracy (recall that for most instances there is no class
picking decision to be made), but a small impact on precision for Food and Artists.
For instance, for Lrg-Str-INorm-Thresh, changing to the Corpuss-based class picking
reduced precision, at 50% recall, from 41% to 36% for Artists and increased preci-
sion from 44% to 48% for Food (consistent with the trends in the previous section).
Likewise, we omit results for Strength and Urns with class normalization. Results

of the system using a particular assessment technique. To create
one point on the line, we chose a threshold and then removed from
the output set all candidate pairs whose assigned confidence values
were below that threshold. The x-axis measures the sensible-recall
of this modified set, and the y-axis shows the LA of this set. Varying
the threshold thus produces a line with properties similar to a clas-
sical precision/recall tradeoff curve. For comparison, Fig. 3 shows
similar graphs but where the y-axis is exact precision.

The data demonstrates that OntoSyphon was able to find a
substantial number of sensible instances for all three domains. In
addition, the data shows that some of our tested assessment tech-
niques are quite effective at identifying the more reliable instances.
In particular, the techniques that perform instance normalization
(Str-INorm, Str-INorm-Thresh, and Urns-INorm) show consistent
improvements over the techniques that do not (Strength and Urns).
Consider, for instance, the “50% recall” point, where each technique
has a sensible-recall equal to half of the maximum achieved under
any situation (e.g., where sensible-recall equals 950 for Animals).
At this point, Sml-Urns-INorm and Sml-Str-INorm-Thresh increase
LA compared to the no-normalization techniques by 0.18-0.25
(41-59%) for Animals, 0.20-0.21 (47-48%) for Food, and 0.06-0.07
(15-17%) for Artists. Lrg-Str-INorm-Thresh shows similar gains vs.
Lrg-Strength.

Overall, both Urns-INorm and Str-INorm-Thresh perform consis-
tently well. Str-INorm also performs well, except that it has many
false positives at low recall. With both corpora, it gets fooled by
many incorrect terms that are very infrequent on the web, and
thus have a high score after normalization, even though they were
extracted only once or a few times. For instance, Str-INorm incor-
rectly gives a high score to the misspelled terms “mosquities” for
Animals, “Andrea Cotez” for Artists, and “pototato” for Food.

For Animals and Food, the results were similar, with some-
what higher LA for Animals, particularly with Corpus;. For Artists,
OntoSyphon found substantially more instances. However, our
assessment techniques worked least well on this domain, showing
a fairly flat curve. One reason is that the assessment techniques are
fooled by alarge number of spurious candidates that come from one
ambiguous class, Players. This class (intended for musical instru-
ment players) finds mostly sports team participants (e.g. “Greg
Maddux”) and a few digital music software products (“WinAmp”).
Fig. 2(g) and (h) shows the results if this class is removed from
OntoSyphon’s search process (Section 7 describes how this could
be done automatically). With Str-INorm-Thresh, LA increases at 50%

showed that, while class normalization is a very significant factor for choosing the
best class for a single instance, it had minimal impact on the results when used for
ranking multiple instances.
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Fig. 2. Results (Learning Accuracy) for each domain. (a and b) Animal domain, (¢ and d) Food domain, (e and f) Music domain, and (g and h) Music (without pPlayer).
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recall from 0.49 to 0.64 with Corpuss and from 0.54 to 0.71 with
Corpus;.

A more fundamental problem is the smaller amount of redun-
dancy in the web for the Artists domain. For instance, with Corpuss a
sensible instance for Animals is extracted by OntoSyphon’s patterns
on average 13.7 times vs. 2.3 times for an incorrect instance (16.3
vs. 3.7 hits for Food). However, Artists, even with Player removed,
averages only 2.7 hits for sensible instances vs. 2.2 hits for incorrect
instances. This smaller split yields a much more difficult assess-
ment task, and additional work is needed to more fully exploit the
potential of such domains.

The PMI-based metrics perform surprisingly poorly. In general,
PMI-Base does better at low recall/high precision (since its mul-
tiple thresholds provide the most discriminative power), while
PMI-Unify-Resample does better at moderate recall. At high recall,
however, both PMI-based metrics perform very poorly. Examina-
tion of the results revealed that this poor performance resulted
from PMTI’s inability to handle low-frequency instances. In partic-
ular, many such instances passed the threshold for only one or
no discriminators, yielding many instances at a small number of
probability levels. This was often adequate for picking the best
class within a single instance, but not very helpful for separating
out the most likely instances. Additional thresholds or discarding
thresholds entirely in favor of continuous functions could provide
additional fidelity but present significant training challenges. Alter-
natively, we could exploit the observation of Etzioni et al. [24] that
an incorrect instance is much less likely to pass a discriminator test
based on a particular class and a discriminator test based on a syn-
onym of that class (e.g. “town” and “city”). They used hand-selected
synonyms; for our more automated system future work is needed
to learn synonymous words or phrases for the classes of an arbitrary
ontology.

Finally, we compare Corpuss-based metrics vs. Corpus;-based
metrics. The relative performance of Strength vs. Str-INorm vs. Str-
INorm-Thresh is remarkably consistent across the two corpora. In
both cases, Str-INorm-Thresh is a top overall performer. For Food
and Artists, using Corpus; improves LA, e.g. by 0.15 for Animals
and 0.05 for Artists at 50% recall. With Food, using Corpus; slightly
decreases LA by 0.04, consistent with the trends in the previous
section.

6.3. Results with varying corpus size

The previous section considered results where candidate
instances were extracted by searching Corpuss and then ranked
using either that same corpus or a much larger web corpus
(Corpusy). This section examines how such results vary with the
size of the search corpus.

Fig. 4 displays the results for each domain, using Str-INorm-
Thresh, a top performer from the previous section. A single line
represents the results for a particular choice of the search cor-
pus size. In each case, the same corpus is used for searching and
for instance ranking; results that instead used Corpus; for instance
ranking showed very similar trends. The corpus size is varied from
about 60 million pages (the size of Corpuss in the previous exper-
iments) down to 10 million pages. In all cases the results show
that OntoSyphon is able to find a substantial number of sensible
instances for even the smallest corpus size.

For the high recall end of the curves, using a larger corpus
improves the results, though the effect of diminishing returns can
be seen from the smaller difference between the 10 and 20 million
page corpora vs. between the 50 and 60 million page corpora. Thus,
we anticipate that, for a sufficiently large corpus, adding additional
pages to the corpus will begin to have negligible effect. Using sim-
ilar measurements, for instance, Cafarella et al. [6] estimated that

a corpus of 400 million web pages would be sufficient to approxi-
mate the performance of a lengthy run of the KnowItAll system that
searched for CEO-company pairs using the entire web as a corpus.

For the low recall end of the curves, the effect of corpus size is
less clear. Interestingly, for the Animal and Food domains, decreas-
ing the corpus size has little impact on the LA at low recall. Manual
inspection of the results revealed that, for these domains, there
is a substantial overlap of the highest-ranked instances (i.e., those
included in the low recall results), independent of the corpus size
used. This overlap occurs because the highest-ranked instances
tend to occur very frequently, and thus can already be identified
with confidence even from the smallest corpus considered. For the
music domain, instances tend to be less frequent, and hence this
effect is less pronounced. Thus overall we find that using a larger
corpus is generally helpful, but that useful instances can still be
found with a much smaller corpus, and that using a larger corpus
may not improve results at low recall.

7. Discussion and future work

Overall, we conclude that OntoSyphon was highly effective at
extracting instances from a web corpus, and that some of our
new assessment techniques (especially STRUCTADjUST, Str-INorm-
Thresh, and Urns-INorm) significantly improved the accuracy of
the results. In particular, using Str-INorm-Thresh with Corpuss,
OntoSyphon was able to achieve an LA of about 0.6 while extract-
ing 1550 sensible Animal instances (80% of the total found), 950
Food instances (88% of the total), and (after removing Player) 7500
Artist instances (87% of the total). Even higher accuracy may be
obtained at a cost of reduced recall.

A Learning Accuracy of 0.6 is on par with the results surveyed by
Cimiano et al. [13]. They report LA of between 0.44 and 0.76 (with
an average of 0.61 for independent systems) and recall ranging from
0.17 to 0.31 (with an average of 0.24). These results are not directly
comparable with ours, since these systems perform a different task
(annotating individual documents rather than populating a ontol-
ogy from many documents), use different ontologies, and in some
cases evaluate LA using only those terms marked by the evaluator as
valid for some class.” Also, these systems generally define recall as
the percentage of results from the complete gold standard that was
found by the system. For our open-web system, however, recall is
reported as a raw number or as a percentage of the set of all answers
found by any execution of the system (as with [24]). Nonetheless,
the magnitude of these previous results demonstrate that an LA of
0.6 is reasonable, and our results show that OntoSyphon can find
many instances at this accuracy level.

Regarding the relative strengths of the class picking and instance
classification techniques, four results stand out:

(1) Explicitly leveraging the ontology’s subclass hierarchy via
STRUCTADJUSTWaS a consistent and very strong factor in improving
the precision of class picking. This method formalizes the notion
that a subclass may be a better class choice than its parent, even
if there is more raw evidence for the parent.

7 For instance, C-PANKOW [13] appears to compute LA using only instances that
were assigned a class by both the system and an evaluator. For our system (see Eq.(3))
it seemed more accurate to instead assign a value of zero to a pair (i, c) produced
by the system but for which goldo(i) = ¢ (e.g. for (t ruck, Animal)). If we likewise
ignored instances with no valid class per the evaluator, our LA at 50% recall with
Str-INorm-Thresh on Corpuss would increase from 0.69 to 0.92 for Animals, 0.64 to
0.81 for Artists, and 0.63 to 0.94 for Food. Thus, our LA results may be conservative in
comparison, though note that document-driven systems that perform more careful
parsing and/or use more reliable input documents (eliminating more implausible
instances) may not be as strongly affected by this measurement decision.
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Fig. 4. Results for varying search corpus size. (a) Animal domain, (b) Food domain, (c) Music domain, and (d) Music (without Player).

(2) The best metrics for class picking were not the best techniques for
instance ranking. In particular, class normalization, as well as
variants of PMI, performed well for class picking but either had
no impact (class normalization) or poor performance (PMI) for
instance ranking.

(3) Normalization was a common theme in the best techniques. Class
normalization gave small but consistent improvements for
class picking. Instance normalization, however, was essential
to achieving the best results for instance ranking.

(4) Our two base metrics that performed instance normalization, Str-
INorm-Thresh and Urns-INorm, both performed well and about
comparably. These findings are consistent with earlier, non-
normalized findings: while Urns was found to be greatly
superior to many other techniques in terms of producing
accurate probabilities [22], simple Strength-like measures per-
formed almost as well if only a relative confidence ranking,
not a probability was required [6]. Because Urns and Urns-
INorm are more complex to compute, many situations may
thus call for using the simpler Str-INorm-Thresh. On the other
hand, users of the final, populated ontology may find actual
probabilities very helpful for further processing, in which case
Urns-INorm may be best. Further work is needed, however,
to empirically demonstrate that Urns-INorm maintains Urns’
accuracy with probability assignment while also improving the
tradeoff curves shown in Figs. 2 and 3.

The results listed above were highly consistent across the two
corpora. In general, using the larger corpus yields more hits per
instance, and thus should be expected to yield better discrimina-
tive power between true and false instances. The results confirmed

this effect for Animals and Artists, but not for Food. Understanding
these results requires closer examination of the corpus processing
techniques. While Corpus; is larger, it is searched via public search
engines that match any occurrence of the appropriate textual pat-
tern. With Corpuss, however, we used the Binding Engine, which
reduces some errors by performing part-of-speech (POS) tagging
before matching. For instance, Corpus; finds strong evidence for
“finger” as a kind of food, probably because of many matches for
“Vienna fingers,” a kind of cookie. BE also finds this candidate,
but its POS tagging results in a much smaller amount of evidence
for the candidate. Thus, using a larger corpus provides more evi-
dence, but of a slightly less reliable nature. This unreliability has a
proportionally larger effect on the Food domain, where there are
more multi-word instances that are prone to be misinterpreted.
In general, systems must consider this tradeoff of corpus size vs.
processing time available per page, while also factoring in the limi-
tations imposed by commercial services vs. the costs of maintaining
a private corpus search engine. Finally, OntoSyphon in its present
form is clearly not suited for populating every kind of ontology.
For instance, ontologies describing things or events that are men-
tioned only a handful of times on the web are not well suited to
our current strategy of using simple pattern-based extractions fol-
lowed by redundancy-based assessment. Likewise, classes that are
either complex (NonBlandFish) or ambiguous (Player) will not
yield good results. We intend to develop techniques to address
these issues. For instance, ambiguous classes can be recognized by
the small degree of overlap between a class and its parent (as is
the case with Player and Artist, cf. [64]). Moreover, ambiguity
may be reduced by adding additional search terms to disambiguate
such classes during extraction (e.g., “music”), or by also searching
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for instances based on synonyms of a class and favoring instances
that thus have more than one source of evidence [24]. Such terms
and synonyms could be automatically learned or provided in the
ontology. Lastly, deciding whether a term such as “dog” should be a
subclass or an instance can be challenging even for human ontolo-
gists. More work is needed to help OntoSyphon honor the intent of
an ontology, e.g., by considering subclasses and instances already
present in that ontology.

8. Conclusion

The Semantic Web critically needs a base of structured content
to power its applications. Because of the great variety of infor-
mation, no one approach will provide everything that is needed.
Instead, there are multiple complementary approaches that each
tackle different knowledge situations. Much content can only be
created by human annotators, and incentives are needed to moti-
vate this work [42,41]. Other data is contained in documents that
can be effectively leveraged via the document-driven approaches
described in Section 2. This article has focused on an alternative
ontology-driven method to extract large amounts of comparatively
shallow information from millions of web pages. This approach lets
us leverage the existing work of skilled ontology designers, extract
information from a very large corpus, and focus extraction efforts
where it is most valuable and relevant.

While additional work is needed to demonstrate that
OntoSyphon is robust across an even wider range of ontolo-
gies and can extract non-instance information, our results have
demonstrated the feasibility of OntoSyphon’s ontology-driven,
unsupervised, domain-independent approach. We successfully
extracted a large number of instances from a variety of inde-
pendently created ontologies. We developed novel techniques for
selecting the best class for a candidate instance, and showed
that the best techniques explicitly utilized the ontology struc-
ture to make this decision. In addition, we demonstrated how
different instance ranking techniques affect the accuracy of the
output, and introduced simple improvements to existing assess-
ment techniques that significantly improved upon these results.
Because these new techniques, STRucTADpjusTfor class picking and
Str-INorm-Thresh and Urns-INorm for instance ranking, are easy
to implement modifications to techniques that have been used
for other tasks, our improvements should carry over easily to
many other systems (e.g.[13,24,6,39,47,62,60,50]). Future work will
examine the many promising directions for further improvements
in this area.
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