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Abstract

This paper investigates how the vision of the Semantic Web can be carried over to the
realm of email. We introduce a general notion of semantic email, in which an email mes-
sage consists of a structured query or update coupled with corresponding explanatory text.
Semantic email opens the door to a wide range of automated, email-mediated applications
with formally guaranteed properties. In particular, this paper introduces a broad class of se-
mantic email processes. For example, consider the process of sending an email to a program
committee, asking who will attend the PC dinner, automatically collecting the responses,
and tallying them up. We define both logical and decision-theoretic models where an email
process is modeled as a set of updates to a data set on which we specify goals via cer-
tain constraints or utilities. We then describe a set of inference problems that arise while
trying to satisfy these goals and analyze their computational tractability. In particular, we
show that for the logical model it is possible to automatically infer which email responses
are acceptable w.r.t. a set of constraints in polynomial time, and for the decision-theoretic
model it is possible to compute the optimal message-handling policy in polynomial time.
In addition, we show how to automatically generate explanations for a process’s actions,
and identify cases where such explanations can be generated in polynomial time. Finally,
we discuss our publicly available implementation of semantic email and outline research
challenges in this realm. 1
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1 Introduction

The Semantic Web envisions a portion of the World-Wide Web (WWW) in which
the underlying data is machine understandable and can thus be exploited for im-
proved querying, aggregation, and interaction [4]. However, despite the great po-
tential of this vision and numerous efforts, the growth of the Semantic Web has
been stymied by the lack of incentive to create content, and the high cost of doing
so. Content owners are not motivated to create the structured representations nec-
essary to contribute to the Semantic Web without seeing the immediate benefit of
their significant efforts. In fact, this problem is not unique to the Semantic Web —
the Database and Knowledge Base communities have long recognized that users
shy away from their tools because the perceived benefits are outweighed by the
conceptual difficulty and overhead of structuring data. Instead, users often resort to
spreadsheets, structured files or just plain text. Ironically, in many cases the resul-
tant lack of data management facilities, and reasoning capabilities, ultimately leads
to more work for users down the road.

This paper explores this problem by identifying a pain point where the cost/benefit
equation associated with structuring data can be changed dramatically. While the
WWW is a rich information space in which we spend significant amounts of time,
many of us spend as much or more time on email. With the exception of the generic
header fields associated with each message, email messages typically do not have
semantic features. While the majority of email will remain this way, this paper
argues that adding semantic features to email offers opportunities for improved
productivity while performing some very common tasks. We establish the theoret-
ical foundations for Semantic Email and address some of the practical challenges
associated with it via a completely implemented system.

To illustrate the promise of Semantic Email, consider several examples:

• Information Dissemination: In the simplest case, suppose you send a talk an-
nouncement via email. With suitable semantics attached to the email, sending
the announcement can also result in automatically (1) posting the announce-
ment to a web calendar, and (2) sending reminders a day before the talk.

• Event Planning: Imagine you are organizing a program committee meeting
and you want to know which PC members will stay for dinner after the meet-
ing. Currently, you must send out the question and compile the replies manu-
ally, leafing through emails one by one. With semantic email, the PC mem-
bers can provide the reply in a way that can be automatically interpreted and
compiled, enabling such planning to scale to much larger numbers of people.
In addition, after a few days, unresponsive PC members can be automatically
reminded to respond, and those who have said they’re not coming to the PC
meeting need not be bothered with this query at all. Alternatively, suppose that
you are organizing a balanced potluck, where people should bring either an
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appetizer, entree, or dessert, and you want to ensure that the meal is balanced.
Here semantic email can help ensure that the potluck is indeed balanced by
examining the replies and requesting changes where necessary.

• Report Generation: Suppose you need to collect projected budget numbers
from a large set of managers. With semantic email, you could send a single
email request and have the system automatically tabulate the responses, possi-
bly requiring the values to satisfy certain individual or aggregate constraints.
The system could then easily generate a spreadsheet report or integrate this
data with other sources (e.g., prior budgets).

• Auction/Giveaway: Imagine you want to give away concert tickets that you
cannot use. You would like to send out an announcement and have the semantic
email system give out (or auction) the tickets to the first respondents. When the
tickets are gone, the system should respond politely to later requests.

These examples are of course illustrative rather than exhaustive. In general, there
are at least three ways in which semantics can be used to streamline aspects of our
email habitat:

(1) Update: We can use an email message to add data to some source (e.g., a web
page, as in our first example).

(2) Query: Email messages can be used to query other users for information.
Semantics associated with such queries can then be used to automatically an-
swer common questions (e.g., seeking my phone number or directions to my
office).

(3) Process: We can use semantic email to manage simple but tedious processes
that we currently handle manually.

Because email is not set up to handle these tasks effectively, accomplishing them
by hand can be tedious, time-consuming, and error-prone. The techniques needed
to support the first two uses of semantic email depend on whether the message is
written in text by the user or formally generated by a program on the sender’s end.
In the user-generated case, we would need sophisticated methods for extracting the
precise update or query from the text (e.g., [15,31]). In both cases, we require some
methods to ensure that the sender and receiver share terminologies in a consistent
fashion.

This paper focuses on the third use of semantic email to streamline processes, as
we believe it has the greatest promise for increasing productivity and is where users
currently feel the most pain. These processes support the common case of asking
people a set of questions, collecting their responses, and ensuring that the results
satisfy some set of goals. Some hardcoded email processes, such as the meeting
request feature in Outlook, invitation management via Evite, and contact manage-
ment via GoodContacts, have made it into popular use. Each of these commercial
applications is limited in its scope, but validates our claim about user pain. Our goal
in this paper is to sketch a general infrastructure for semantic email processes, and
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to analyze the inference problems it needs to solve to manage processes effectively
and guarantee their outcome.

Collaboration systems such as Lotus Notes/Domino and Zaplets offer scripting ca-
pabilities and some graphical tools that could be used to implement sophisticated
email processes. However, these systems (as with typical workflow systems [44])
lack support for reasoning about data collected from a number of participants (e.g.,
as required to balance a potluck or ensure that a collected budget satisfies aggre-
gate constraints). In addition, such processes are constructed from arbitrary pieces
of code, and thus lack the formal properties that our declarative model provides. We
describe these properties and the limitations of existing systems in more detail in
Sections 3 and 5. Finally, messages in such systems lack the structured content (i.e.,
in RDF [32]) of semantic email, precluding automated processing by the recipient
(e.g., to decline invitations for unavailable times).

Our work is the first to articulate and implement a general model of semantic email
processes (SEPs). Our technical contributions are the following. Section 2 intro-
duces a formalization for semantic email processes. The formalization specifies the
meaning of semantic email processes and exposes several fundamental reasoning
problems that can be used by the semantic email manager to facilitate SEP creation
and execution. In particular, a key challenge is to decide when and how the manager
should direct the process toward an outcome that meets the originator’s goals. We
address this challenge with two different formal models. First, Section 3 addresses
this challenge by describing a model of logical SEPs (L-SEPs) and demonstrat-
ing that it is possible to automatically infer which email responses are acceptable
with respect to a set of ultimately desired constraints in polynomial time. For this
model, Section 4 also describes how to automatically generate explanations for
the manager’s interventions, and identifies cases where such explanations can be
computed in polynomial time. Second, Section 5 describes a model of decision-
theoretic SEPs (D-SEPs) that alleviates several shortcomings of the logical model,
and presents results for the complexity of computing optimal policies for D-SEPs.
Finally, Section 6 discusses implementation issues that arise for semantic email and
how we have addressed these in our system, and Section 7 contrasts our approach
with related work. The appendices provides proofs for all of the theorems given in
the body of this paper.

2 Semantic Email Processes

Our formalization of SEPs serves several goals. First, the formalization captures
the exact meaning of semantic email and the processes that it defines. Second, it
clarifies the limitations of SEPs, thereby providing the basis for the study of varia-
tions with different expressive powers. Finally, given the formalization, we can pose
several reasoning problems that can help guide the creation of semantic email pro-
cesses as well as manage their life cycle. We emphasize that the users of SEPs are
not expected to understand a formalization or write specifications using it. Generic
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Fig. 1. The invocation and execution of a SEP. The originator is typically a person, but also
could be an automated program. The originator invokes a SEP via a simple web interface,
and thus need not be trained in the details of SEPs or even understand RDF.

SEPs are written by trained authors (who create simple constraints or utility func-
tions to represent the goal of a process) and invoked by untrained users. The seman-
tic email system then coordinates the process to provide the formal guarantees we
describe later.

Figure 1 illustrates the three primary components of a SEP:

• Originator: A SEP is initiated by the originator, who is typically a person,
but could be an automated program or agent.

• Manager: The originator invokes a new SEP by sending a message to the se-
mantic email manager. The manager sends email messages to the participants,
handles responses, and requests changes as necessary to meet the originator’s
goals. The manager stores all data related to the process in an RDF supporting
data set, which may be configured to allow queries by external services (or
other managers). To accomplish its tasks, the manager may also utilize exter-
nal services such as inference engines, ontology matchers, and other Semantic
Web applications, as described further below. The manager may be a shared
server or a program run directly by the originator.

• Participants: The participants respond to messages received about the pro-
cess. A participant may be a person, a standalone program (e.g., to represent
a resource such as a conference room), or a software agent that acts on behalf
of a person (e.g., to automatically respond to requests where possible, defer-
ring others to the person). We assume that email addresses uniquely determine
individuals or sets of potential participants in the process.

Informally speaking, the execution of a process is achieved by the supporting data
set and the set of data updates that email recipients make as they respond. In the
model we describe, data is represented as a set of relations (i.e., the relational
database model). However, as the application domains get more complex, we ex-
pect to use a richer representation language. To enable these future extensions as
well as interactions with other Semantic Web applications, our system implements
this representation using the Jena RDF storage system [37].
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We illustrate our formalization with the running example of a “balanced potluck.”
The originator invokes a process to announce the potluck and ask everyone whether
they are bringing an appetizer, entree, or dessert. The originator also expresses a set
of goals for the potluck. For example, he may specify that the number of appetizers,
entrees, or desserts should differ by at most two. Note that, while this particular
problem has a number of other uses (e.g., distributing N persons evenly among
K committees or time slots), it is just an example. Both our formalization and
implementation of SEPs support a much broader range of uses.

The manager seeks to expedite the execution of this process and to achieve the
originator’s goals. There are a number of ways in which reasoning can enhance the
manager’s operation:

• Predicting responses: The manager may be able to infer the likely response
of some participants even before sending any requests. For instance, the man-
ager could employ another semantic web application or data source to detect
that a suggested meeting time is unacceptable for a certain participant, based
on information from calendars, course schedules, or other processes. The man-
ager could use this information either to warn the originator as the process is
being created, or to serve as a surrogate response until a definitive answer is
received. Also, the manager could add a helpful annotation to the request sent
to the participant, indicating what time is likely to be a conflict and why. As
suggested above, this same reasoning could also be profitably employed on the
participant’s end, where an agent may have additional information about the
participant’s schedule.

• Interpreting responses: Typically, the originator will provide the partici-
pants with a finite set of choices (e.g., Appetizer, Entree, Dessert).
However, suitable reasoning could enable substantially more flexibility. For
instance, we could allow a potluck participant to respond with any value (ei-
ther in plain text or in some formal language). Then, the manager could use
a combination of information extraction or wrapper techniques (e.g., [15,31])
and/or ontology matching algorithms (e.g., [14,13]) to map the participant’s
response into the potluck’s ontology. There are several interesting outcomes
to this mapping. First, the response may directly map to one of the original
potluck choices (e.g., “Cake” is an instance of Dessert). Second, the re-
sponse may map to multiple choices in our ontology (e.g., “Jello salad” may
be both an Appetizer and a Dessert). In this case, the manager might
consider the response to be half of an appetizer and a dessert, or postpone the
decision to a later time and classify it as is most convenient. 2 Third, the re-
sponse may not map to any given choice, but may still be a subclass of Food
(e.g., a “Sorbet” is a Palette Cleanser); here the manager might accept
the response but exclude it from the goal calculations. Fourth, the response

2 This a very simple form of semantic negotiation; more complex techniques could also be
useful [55].
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may map to a known ontology element that is not Food (e.g., “A hat”). Fi-
nally, the response may not map to any known element. In these latter two
cases, the manager may either reject the response or notify the originator.

• Recommending interventions: Reasoning can also assist the manager with
directing the process towards outcomes consistent with the originator’s goals.
For instance, if the manager detects that a potluck process is becoming unbal-
anced, it could refuse to accept certain responses, request changes from some
participants, or warn the originator that further action is needed. In this case
reasoning is needed to deduce the likely outcome of a process from the current
state, and the likely effects of possible interventions.

In this work we focus on using reasoning for recommending interventions, leav-
ing the other two items for future work. Specifically, we provide two different ap-
proaches for modeling the originator’s goals and when to intervene. In the logical
model (Sections 3 and 4), the originator specifies a set of constraints over the data
set that should be satisfied by any process outcome, while in the decision-theoretic
model (Section 5) the originator provides a function representing the utility of pos-
sible process outcomes. Below we consider each in turn, discuss possible variants,
and present results for fundamental reasoning tasks that can determine how and
when the manager should intervene.

3 Logical Model of SEPs

We now introduce our model of a logical semantic email process (L-SEP) and
analyze important inference problems for this model.

3.1 Definition of L-SEPs

A L-SEP is a 5-tuple Λ(P, D, R, M, CD) with parts as follows:

Participants P : the set of participants in the process. Note that P may include the
originator.

Supporting data set D: the set of relations that holds all data related to the process.
The initial contents of D are specified by the originator (usually to be a set of
default values for the columns). With each relation in D we associate a schema that
includes:

• a relation name and names, data types, and range constraints for the attributes.
A special data type is emailAddress, whose values are elements of the set P .
Attributes may have default values.
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• possibly a distinguished from attribute, of type emailAddress, which means
that rows in the relation whose from value is p can only result from messages
from the participant p. The from attribute may be declared unique, in which
case every participant can only affect a single row in the table.

Responses R: the set of possible responses to the originator’s email. R is specified
as follows:

• Attributes: the set of attributes in D that are affected by responses from partic-
ipants. This set of attributes cannot include any from attributes.

• Insert or Update: a parameter specifying whether participants can only add
tuples, only modify tuples, or both. Recall that if there is a from field then all
changes from p pertain only to a particular set of tuples.

• Single or Many: a parameter specifying whether participants can send a single
response or more than one. As we explain in the next section, some responses
may be rejected by the system. By single, we mean one non-rejected message.

Messages M: the set of messages that the manager may use to direct the process,
e.g., to remind the participants to respond or to reject a participant’s response.

Constraints CD: the set of constraints for every relation in D. These constraints
CD are specified in a language that includes conjunction and disjunction of atomic
predicates. Atomic predicates compare two terms, or a term with a set. We allow
comparison predicates (=, 6=, <,≤), LIKE, and ∈, 6∈ between a constant and an
enumerated finite set. A term may be a constant, an attribute variable (the value of a
specific attribute in a row), an expression combining two terms with any arithmetic
operator, or an aggregate applied to a column of a relation (or to a subset of the
rows that satisfy an (in)equality predicate).

Example: In our example, D contains one table named Potluck with two columns:
email, a from attribute of type emailAddress and declared to be unique, and
bringing, with the range constraint Potluck.bringing ∈ { not-coming, ap-
petizer, entree, dessert, NULL }. The set of possible responses R is
{ not-coming, appetizer, entree, dessert }. In addition, CD con-
tains a few constraint formulas similar to the abstract one below, specifying that the
potluck should be balanced:

(COUNT(*) WHERE bringing = ’dessert’) ≤
(COUNT(*) WHERE bringing = ’appetizer’) + 2

Finally, the set of messages in our example includes (1) the initial message an-
nouncing the potluck and asking what each person is bringing, (2) messages in-
forming each responder whether their response was accepted or not, (3) a reminder
to those who have not responded 2 days before the potluck, (4) regular messages
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to the originator reporting the status of the responses, and (5) a message to the
originator in the event that everyone has responded.

3.2 Inference for L-SEPs

Given the formal model for an L-SEP we can now pose a wide variety of inference
problems, whose results can serve to assist in the manager’s operation. This section
describes the first such inference problem, which has different variations.

The core problem we want to address is determining whether an L-SEP will termi-
nate in an acceptable state, i.e., a state that satisfies CD. The input to the inference
problem includes the constraints CD and possibly the current state of D along with
a response r from a participant. The output of the inference problem is a condition
that we will check on D and r to determine whether to accept r. In our discussion,
we assume that r is a legal response, i.e., the values it inserts into D satisfy the
range constraints on the columns of D; if not, the manager can respond with error
messages until a legal response is received. Our goal is to automatically determine
whether to accept r given the current state and CD.

The space of possible inference problems is defined by several dimensions:

• Necessity vs. possibility: As in modal logics for reasoning about future states
of a system [48,18], one can either look for conditions that guarantee that any
sequence of responses ends in a desired state (the 2 operator), or that it is
possible that some sequence ends in a desired state (the 3 operator).

• Assumptions about the participants: In addition to assuming that all re-
sponses are legal, we can consider other assumptions, such as: (1) all the par-
ticipants will respond to the message or (2) the participants are flexible, i.e., if
asked to change their response, they will cooperate.

• The type of output condition: At one extreme, we may want a constraint Cr

that the manager checks on D when a response r arrives, where Cr is specified
in the same language used to specify CD. At another extreme, we may produce
an arbitrary procedure with inputs D and r that determines whether to accept
r. We note that a constraint Cr will inevitably be weaker than an arbitrary
algorithm, because it can only inspect the state of D in very particular ways.
As intermediate points, we may consider constraints Cr in more expressive
constraint languages. Note that in cases where we can successfully derive Cr,
we can use database triggers to implement modifications to D or to indicate
that r should be rejected.

As a very simple example, consider the case where we want all response sequences
to end in an acceptable state, we make no assumptions on the participants except
that we can elicit a legal response from them, and we are interested in deriving a
constraint Cr that will be checked when a response arrives. If the initial state of D is
an acceptable state, then simply setting Cr to be CD provides a sufficient condition;
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i.e., we only let the data set D be in states that satisfy CD. In the example of the
balanced potluck, we would not accept a response with a dessert if that would lead
to having 3 more desserts than entrees or appetizers. For a giveaway process, we
would not accept a request that caused the total number of tickets claimed to be
more than the number that is available.

In many cases, such a conservative strategy will be overly restrictive. For example,
we may want to continue accepting desserts so long as it is still possible to achieve
a balanced potluck. Furthermore, this approach is usable only when the constraints
are initially satisfied, even before any responses are received, and thus greatly limits
the types of goals that can be expressed. This leads us to the following inference
problem.

3.3 Ultimate Satisfiability

We now describe our central result concerning inference for L-SEPs. Our goal is to
find necessary and sufficient conditions for accepting a response from a participant.
To do that, we cut across the above dimensions as follows. Suppose we are given
the data set D after 0 or more responses have been accepted, and a new response r.
Note that D does not necessarily satisfy CD, either before or after accepting r. The
manager will accept r if it is possible that it will lead to a state satisfying CD (i.e.,
considering the 3 temporal operator). We do not require that the acceptance condi-
tion be expressed in our constraint language, but we are concerned about whether
it can be efficiently verified on D and r. We assume that D defines some constant
number of attributes (e.g., emailAddress, bringing). Furthermore, we as-
sume that participants can only update their (single) row, and only do so once.

Definition 3.1 (ultimate satisfiability) Given a data set D, a set of constraints CD

on D, and a response r ∈ R , we say that D is ultimately satisfiable w.r.t. r if there
exists a sequence of responses from the participants, beginning with r, that will put
D in a state that satisfies CD. 2

In what follows, let C be our constraint language where we allow both conjunction
and disjunction of atomic predicates. A term in a predicate of CD may select a group
of rows in an attribute A, and aggregate the value of the corresponding values in an
attribute B. We consider the aggregation functions COUNT, MIN, MAX, SUM, and
AVERAGE. In addition, we define the following:

Definition 3.2 (bounded constraints) Given a data set D and a set of constraints
CD on D, we say that CD is bounded iff one of the following holds:

• Domain-bounded: the predicates of CD only refer to attributes whose domain
size is at most some constant L.

• Constant-bounded: the predicates of CD refer to at most K distinct constants,
and the only aggregate used by CD is COUNT. 2
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All of the examples in this paper may be described by constraints that satisfy the
constant-bounded, COUNT-only condition above, while the domain-bounded case
may be useful for SEPs that require more complex interactions. Using this defini-
tion, we can show that ultimate satisfiability is difficult in general, but much more
tractable if the constraints are bounded:

Theorem 1 Let Λ be an L-SEP with N participants and constraints CD. If CD may
be any set of constraints permitted by the language C, then ultimate satisfiability
is NP-complete in N . If CD is bounded, then determining ultimate satisfiability is
polynomial time in N and |CD|.

As an example of applying this theorem to the balanced potluck, suppose a new
dessert response arrives. At that point, the inference procedure will (1) determine
the maximal number of people who may come to the potluck (i.e., the number of
participants minus the number of people who replied not-coming), (2) check
that even if the dessert response is accepted, then there are still enough people who
have not answered such that the ultimate set of dishes could be balanced. Similar
reasoning applies to other processes, e.g., to ensure that at least one person will
sign up for each spot in a colloquium series.

The theorem is proved by enumerating representative states of the data set, each
of which corresponds to a number of potential states that are all equivalent with
respect to the constraints. The key is to express the constraints in terms of variables
representing aggregates on the number of participants with each response. See the
appendices for the complete proof.

In comparison to related work, the challenge here is reasoning about the possi-
ble relationships between aggregate values (current and future), given a particular
state of D. Reasoning about aggregation has received significant attention in the
query optimization literature [50,33,11,20] and some in the description logic liter-
ature (e.g., [3]). This body of work considered the problem of optimizing queries
with aggregation by moving predicates across query blocks, and reasoning about
query containment and satisfiability for queries involving grouping and aggrega-
tion. In contrast, our result involves considering the current state of the database to
determine whether it can be brought into a state that satisfies a set of constraints.
Furthermore, since CD may involve several grouping columns and aggregations,
they cannot be translated into single-block SQL queries, and hence the contain-
ment algorithms will not carry over to our context.

To the best of our knowledge, formalisms for reasoning about workflow [44,43]
or about temporal properties of necessity and possibility have not considered rea-
soning about aggregation. For instance, Abiteboul et al. [1] define a notion of
goal reachability for relational transducers that is similar to our ultimate satisfi-
ability (see also [22] for extensions to this model and a survey of other related
work). Various restrictions on the model allow decidability of goal reachability in
P, NP, or NEXPTIME, but none of these restrictions permit goals involving aggre-
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gation. Likewise, workflow formalisms have generally been restricted to reasoning
about temporal and causality constraints. Such formalisms could potentially con-
vert aggregation constraints to temporal constraints by enumerating all possible
data combinations, but this may result in an exponential number of states. One ex-
ception is the recent work of Senkul et al. [52], who extend workflows to include
resource constraints based on aggregation. Each such constraint, however, is re-
stricted to performing a single aggregation with no grouping (and thus could not
express the potluck constraint given in the earlier example). In addition, their so-
lution is based on general constraint solving and thus will take exponential time in
the worst case. We have shown, however, that in our domain L-SEPs can easily
express more complex aggregation constraints while maintaining polynomial-time
inference complexity for bounded constraints.

4 Explanation Generation for L-SEPs

While executing, an L-SEP utilizes rejections to influence the eventual outcome.
However, the success of these interventions depends on the extent to which they are
understood by the participants. For instance, the rejection “Sorry, the only dates left
are May 7 and May 14” is much more likely to elicit cooperation from a participant
in a seminar scheduling SEP than the simpler rejection “Sorry, try again.” For a
particular set of constraints, the author of a SEP could manually specify how to
create such explanations, but this task can be very difficult when constraints inter-
act or depend on considering possible future responses. Thus, below we consider
techniques for automatically generating explanations based on what responses are
acceptable now and why the participant’s original response was not acceptable.

We begin by defining more precisely a number of relevant terms. Given an L-
SEP, the current state D is the state of the supporting data set given all of the
responses that have been received so far. We assume that the number of participants
is known and that each will eventually respond. Following the earlier discussion
regarding necessity vs. possibility, we allow constraint satisfaction to be defined in
two different ways:

Definition 4.1 (MustConstraint) A MustConstraint C is a constraint that is
satisfied in state D iff evaluating C over D yields True. 2

Definition 4.2 (PossiblyConstraint) A PossiblyConstraint C is a con-
straint that is ultimately satisfiable in state D if there exists a sequence of responses
from the remaining participants that leads to a state D′ so that evaluating C over
D′ yields True. 2

For simplicity, we assume that the constraints CD are either all MustCon-
straints or all PossiblyConstraints, though our results for Possi-
blyConstraints also hold when CD contains both types.
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4.1 Acceptable Responses

Often the most practical information to provide to a participant whose response
led to an intervention is the set of responses that would be “acceptable” (e.g., “An
Appetizer or Dessert would be welcome” or “Sorry, I can only accept requests
for 2 tickets or fewer now”). This section briefly considers how to calculate this
acceptable set.

Definition 4.3 (acceptable set) Let Λ be an L-SEP with current state D and con-
straints CD on D. Then, the acceptable set A of Λ is the set of legal responses r

such that D would still be satisfiable w.r.t. CD after accepting r. 2

For a MustConstraint, this satisfiability testing is easy to do and we can com-
pute the acceptable set by testing some small set of representative responses. For a
PossiblyConstraint, the situation is more complex:

Theorem 2 Let Λ be an L-SEP with N participants and current state D. If the
constraints CD may be any set of constraints permitted by the language C, then
computing the acceptable set A of Λ is NP-hard in N . If CD is bounded, then this
problem is polynomial time in N , |A|, and |CD|.

In this case we can again compute the acceptable set by testing satisfiability over
some small set of representative values; this testing is polynomial iff CD is bounded
(Theorem 1). In addition, if we represent A via a set of ranges of acceptable values,
instead of explicitly listing every acceptable value, then the total time is polynomial
in only N and |CD|.

4.2 Explaining Interventions

In some cases, the acceptable set alone may not be enough to construct a useful
explanation. For instance, suppose an L-SEP invites 4 professors and 20 students
to a meeting that at least 3 professors and a quorum of 10 persons (professors or
students) must attend. When requesting a change from a professor, explaining why
the change is needed (e.g., “We need you to reach the required 3 professors”) is
much more effective than simply informing them what response is desired (e.g.,
“Please change to Yes”). A clear explanation both motivates the request and rules
out alternative reasons for the request (e.g., “We need your help reaching quorum”)
that may be less persuasive (e.g., because many students could also help reach quo-
rum). This section discusses how to generate explanations for an intervention based
on identifying the constraint(s) that led to the intervention. We do not discuss the
additional problem of translating these constraints into a natural language suitable
for sending to a participant, but note that even fairly simple explanations (e.g., “Too
many Appetizers (10) vs. Desserts (3)”) are much better than no explanation.
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Conceptually, an L-SEP decides to reject a response based on constructing a proof
tree that shows that some response r would prevent constraint satisfaction. How-
ever, this proof tree may be much too large and complex to serve as an explana-
tion for a participant. This problem has been investigated before for expert sys-
tems [45,54], constraint programming [26], description logic reasoning [40], and
more recently in the context of the Semantic Web [41]. These systems assumed
proof trees of arbitrary complexity and handled a wide variety of possible deduc-
tion steps. To generate useful explanations, key techniques included abstracting
multiple steps into one using rewrite rules [40,41], describing how general princi-
ples were applied in specific situations [54], and customizing explanations based
on previous utterances [10].

In our context, the proof trees have a much simpler structure that we can exploit.
In particular, proofs are based only on constraint satisfiability (over one state or
all possible future states), and each child node adds one additional response to the
parent’s state in a very regular way. Consequently, we will be able to summarize
the proof tree with a very simple type of explanation. These proof trees are defined
as follows:

Definition 4.4 (proof tree) Given an L-SEP Λ, current state D, constraints CD,
and a response r, we say that P is a proof tree for rejecting r on D iff:
• P is a tree where the root is the initial state D.
• The root has exactly one child Dr, representing the state of D after adding r.
• If CD is all MustConstraints, then Dr is the only non-root node.
• If CD is all PossiblyConstraints, then for every node n that is Dr or

one of its descendants, n has all children that can be formed by adding a single
additional response to the state of n. Thus, the leaf nodes are only and all those
possible final states (e.g., where every participant has responded) reachable
from Dr.

• For every leaf node l, evaluating CD over the state of l yields False. 2

Figure 2A illustrates a proof tree for MustConstraints. Because accepting r

leads to a state where some constraint (e.g., CT ) is not satisfied, r must be rejected.
Likewise, Figure 2B shows a proof tree for PossiblyConstraints, where CP

and CQ represent the professor and quorum constraints from the example described
above. Since we are trying to prove that there is no way for the constraints to be
ultimately satisfied (by any outcome), this tree must be fully expanded. For this tree,
every leaf (final outcome) does not satisfy some constraint, so r must be rejected.

We now define a simpler explanation based upon the proof tree:

Definition 4.5 (sufficient explanation) Given an L-SEP Λ, current state D, con-
straints CD, and a response r such that a proof tree P exists for rejecting r on D,
then we say that E is a sufficient explanation for rejecting r iff,
• E is a conjunction of constraints that appear in CD, and
• for every leaf node l in P , evaluating E over the state of l yields False. 2

14
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Fig. 2. Examples of proof trees for rejecting response r. Each node is a possible state of
the data set, and node labels are constraints that are not satisfied in that state. In both cases,
response r must be rejected because every leaf node (shaded above) does not satisfy some
constraint.

Intuitively, a sufficient explanation E justifies rejecting r because E covers every
leaf node in the proof tree, and thus precludes ever satisfying CD. Note that while
the proof tree for rejecting r is unique (modulo the ordering of child nodes), an
explanation is not. For instance, an explanation based on Figure 2A could be CS ,
CT , or CS∧CT . Likewise, a valid explanation for Figure 2B is CP∧CQ (e.g., no way
satisfy both the professor and quorum constraints) but a more precise explanation
is just CP (e.g., no way to satisfy the professor constraint). The smaller explanation
is often more compelling, as we argued for the meeting example, and thus to be
preferred [12]. In general, we wish to find an explanation of minimum size (i.e.,
with the fewest conjuncts):

Theorem 3 Given an L-SEP Λ with N participants, current state D, constraints
CD, and a response r, if CD consists of MustConstraints, then finding a min-
imum sufficient explanation E for rejecting r is polynomial time in N and |CD|.
If CD consists of PossiblyConstraints, then this problem is NP-hard in N

and NP-hard in |CD|.

Thus, computing a minimum explanation is feasible for MustConstraints but
likely to be intractable for PossiblyConstraints. For the latter, the difficulty
arises from two sources. First, checking if any particular E is a sufficient explana-
tion is NP-hard in N (based on a reduction from ultimate satisfiability); this makes
scaling SEPs to large numbers of participants difficult. Second, finding a mini-
mum such explanation is NP-hard in the number of constraints (by reduction from
SET-COVER [23]); this makes explanation generation for complex goals challeng-
ing. Fortunately, in many common cases we can simplify this problem to permit a
polynomial time solution:

Theorem 4 Given an L-SEP Λ with N participants, current state D, constraints
CD, and a response r, if CD is bounded and the size of a minimum explanation
is no more than some constant J , then computing a minimum explanation E is
polynomial time in N and |CD|.
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This theorem holds because a candidate explanation E can be checked in polyno-
mial time when the constraints are bounded, and restricting E to at most size J

means that the total number of explanations that must be considered is polynomial
in the number of constraints. Both of these restrictions are quite reasonable. As
previously mentioned, bounded constraints permit a wide range of functionality.
Likewise, SEP explanations are most useful to the participants when they contain
only a small number of constraints, and this is adequate for many SEPs (as in the
meeting example above). If no sufficient explanation of size J exists, the system
could either choose the best explanation of size J (to maintain a simple explana-
tion), approximate the minimum explanation with a greedy algorithm, or fall back
on just providing the participant with the acceptable set described in the previous
section.

5 Decision-theoretic model

The logical model of SEPs described above supports a number of useful inferences
that have both theoretical and practical applications. This model, however, has a
number of shortcomings. First, L-SEPs, like logical theories in general, make no
distinctions among unsatisfied outcomes. In our example, there is no way for L-
SEPs to strive for a “nearly-balanced” potluck, since all unbalanced potlucks are
equivalently undesirable. Second, an L-SEP ignores the cost of the actions taken
in pursuit of its goals. For instance, a potluck L-SEP will always reject a response
that results in unsatisfiable constraints, even if rejecting that response (e.g., from
an important official) may produce far worse effects than a slightly unbalanced
potluck. Finally, L-SEPs make a very strong assumption that participants are al-
ways willing to change their responses if rejected. For instance, participants in a
meeting scheduling process may be somewhat accommodating, but may refuse to
modify a rejected response due to other commitments.

To address these limitations, we offer a decision-theoretic approach. We describe
the goal of a decision-theoretic SEP (D-SEP) by a utility function over the out-
come of the process that takes into consideration the cost of all actions required
to achieve that outcome. In addition, instead of rejecting responses, the decision-
theoretic model sometimes suggests that participants modify their choices. For in-
stance, the balanced potluck uses a utility function that measures the extent to which
the final meal selection is balanced, minus the costs (social or otherwise) of asking
some participants to switch their responses. Below we formalize this model and
then examine the tractability of finding optimal policies for it.
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5.1 Definition of D-SEPs

A decision-theoretic SEP is a 6-tuple, δ(P, S, V, A, U, T ). Note that the first five
components of this tuple correspond roughly to the five components in our model
for L-SEPs.

• Participants P : the set of participants, of size N .
• States S: the set of possible states of the system. The state describes both

the current responses received and the outgoing change requests sent by the
system.

• Values V : the set of possible values for participants to choose from (e.g., V =
{appetizer, entree, dessert}).

• Actions A: the set of actions available to the system after sending out the initial
message. Actions we consider are NoOp (do nothing until the next message
arrives), SWv (ask a participant to switch their response from v to something
else), or Halt (enter a terminal state, typically only permitted when a message
has been received from every participant). Other variants of actions are also
useful (e.g., ask a participant to switch from v to a particular value w); such
additions do not fundamentally change the model or our complexity results.

• Utilities U(s, a): the utility from executing action a in state s. For the potluck
example, U(s, SWv) is the (negative) utility from making a change suggestion,
while U(s, Halt) is the utility based on the final potluck balance.

• Transitions T (s, a, s′): the probability that the system will transition to state
s′ after performing action a in state s. However, rather than having to specify a
probability for each transition, these are computed from a smaller set of build-
ing blocks. For instance, ρv is the probability that a participant will originally
respond with the value v; ρvw is the probability that, when asked to switch
from the choice v, a participant will change their response to w (ρvv is the
probability that a participant refuses to switch).

The execution of the process proceeds in discrete steps, where at each step the
manager decides upon an action to take (possibly NoOp). The outcome of this
action, however, is uncertain since the manager is never sure of how participants
will respond. The transition function T () models this uncertainty.

A policy π describes what action the manager will take in any state, while π(s)
denotes the action that the manager will take in a particular state s. An optimal
policy π? is a policy that maximizes the expected utility U(δ) of the process, where

U(δ) = U(s1, a1) + U(s2, a2) + ... + U(sj , aj)

for the sequence of states and actions {(s1, a1), ..., (sj, Halt)}.

D-SEPs are a special case of Markov Decision Processes (MDPs), a well-studied
formalism for situations where the outcome of performing an action is governed
by a stochastic function and costs are associated with state transitions [49]. Conse-

17



quently, we could find the optimal policy for a D-SEP by converting it to an MDP
and using known MDP policy solvers. 3 However, this would not exploit the special
characteristics of D-SEPs that permit more efficient solutions, which we consider
below.

5.2 Variations of D-SEPs

As with our logical model, the space of possible D-SEPs is defined by several
dimensions:

• Restrictions on making suggestions: Most generally, the manager may be
allowed to suggest changes to the participants at any time, and to do so repeat-
edly. To be more user-friendly, we may allow the manager to make suggestions
anytime, but only once per participant. Alternatively, if users may be expected
to make additional commitments soon after sending their response (e.g., pur-
chasing ingredients for their selected dish), then we may require the manager
to respond with any suggestion immediately after receiving a message, before
any additional messages are processed.

• Assumptions about the participants: In addition to the assumed probabili-
ties governing participant behavior, we may also wish to assume that all par-
ticipants will eventually respond to each message they receive. Furthermore,
we might assume that participants will respond immediately to any suggestions
that they receive (particularly if the manager also responds immediately to their
original message), or instead that they can respond to suggestions anytime.

• The type of utility functions: At one extreme, we might allow complex utility
functions based upon the individual responses of the participants (e.g., “+97 if
Jay is bringing dessert”). Often, however, such precision is unnecessary. For
instance, all potluck outcomes with 8 desserts and 1 entree have the same low
utility, regardless of who is bringing what dish.

Below we consider the impact of these variations on the complexity of computing
the optimal policy.

5.3 Computing the Optimal Policy

In this section we examine the time complexity of computing the optimal policy π?

for a D-SEP. We begin by considering a D-SEP with an arbitrary utility function
and then examine how restrictions to the utility function and the permitted quantity

3 Specifically, D-SEPs are “Stochastic Shortest-Path” MDPs where the terminal state is
reachable from every state, so an optimal policy is guaranteed to exist [5]. Incorporating
additional features from temporal MDPs [9] would enable a richer model for D-SEPs
(e.g., scheduling a meeting should be completed before the day of the meeting). However,
existing solution techniques for TMDPs do not scale to the number of participants required
for semantic email.
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and timing of suggestions make computing π? more tractable. In all cases we as-
sume that the participants will eventually respond to each message and suggestion
that they receive. (We can relax this assumption by representing in the model the
probability that a participant will not respond to a message.) The following theorem
is proved by reduction from QBF (quantified boolean formula) and the EXPTIME-
hard game G4 [53,34]:

Theorem 5 Let δ be a D-SEP with N participants where the utility U(s, a) is any
deterministic function over the state s and the current action a. If the manager
can send only a bounded number of suggestions to each participant, then deter-
mining π? is PSPACE-hard in N . If the manager can send an unlimited number of
suggestions, then this problem is EXPTIME-hard in N . The corresponding prob-
lems of determining if the expected utility of π? for δ exceeds some constant θ are
PSPACE-complete and EXPTIME-complete, respectively.2

Thus, for the case of arbitrary utility functions determining π? for a D-SEP is
impractical for large values of N . (Conversion to an MDP offers little help, since
the MDP would require a number of states exponential in N .) Note that this is
a significant limitation, since for many D-SEPs it is natural to wish to scale to
large numbers of participants (e.g., for large meetings or company-wide surveys).
Below, we begin to make the calculation of π? more tractable by restricting the type
of utility function:

Definition 5.1 (K-Partitionable) The utility function U(s, a) of a D-SEP is K-
partitionable if it can be expressed solely in terms of the variables a, C1, ..., CK

where a is the current action chosen by the manager and each Ci is the number of
participants who have responded with value Vi in state s. 2

Intuitively, a utility function is K-partitionable if what matters is the number of par-
ticipants that belong to each of a fixed number of K groups, rather than the specific
participants in each of these groups. For instance, the utility function of our exam-
ple potluck is 4-partitionable, because all that matters for evaluating current and
future utilities is the current number of participants that have responded Appe-
tizer, Entree, Dessert, and Not-Coming. In this case a simple utility
function might be:

U(s, Halt) =−α(|CA − CE|
2 + |CA − CD|

2 + |CE − CD|
2)

U(s, SWv)=−1

where α is a scaling constant and CA, CE, and CD are the numbers of appetizers,
entrees, and desserts, respectively. Note that the maximum utility here is zero.

A K-partitionable utility function is analogous to the COUNT-only constraint lan-
guage of Theorem 1. As with Theorem 1, we could allow more complex utility
functions (e.g., with variables representing the MAX, SUM, etc. of the underlying
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responses); with suitable restrictions, such functions yield polynomial time results
similar to those described below. Note, however, that the simpler K-partitionable
definition is still flexible enough to support all of the SEPs discussed in this paper.
In particular, a K-partitionable utility function may still distinguish among differ-
ent types of people by counting responses differently based on some division of
the participants. This technique increases the effective value of K, but only by a
constant factor. For instance, the utility function for a meeting scheduling process
that desires to have the number of faculty members attending (Cyes,F ) be at least
three and the number of students attending (Cyes,S) be as close as possible to five,
while strongly avoiding asking faculty members to switch, might be:

U(s, Halt) =−α[max(3 − Cyes,F , 0)]2 − β|Cyes,S − 5|2

U(s, SWno,F ) =−10

U(s, SWno,S) =−1

A D-SEP that may make an unlimited number of suggestions but that has a K-
partitionable utility function can be represented as an “infinite-horizon” MDP with
just O(N2K) reachable states. Consequently, the D-SEP may be solved in time
polynomial in N with the use of linear programming (LP), though alternative meth-
ods (e.g., policy iteration, simplex-based LP solvers) that do not guarantee polyno-
mial time may actually be faster in practice due to the large polynomial degree of
the former approach [35].

Furthermore, if we also restrict the system to send only one suggestion to any par-
ticipant (likely a desirable property in any case), then computing the optimal policy
becomes even more tractable:

Theorem 6 Let δ be a D-SEP with N participants where U(s, a) is K-
partitionable for some constant K and where the system is permitted to send at
most one suggestion to any participant. Then π? for δ can be determined in O(N 3K)
time. (If the system can send at most L suggestions to any participant, then the total
time needed is O(N (2L+1)K).) 2

Table 1 summarizes the results presented above as well as a few other interest-
ing cases (“Immediate” and “Synchronous”). These results rely on two key opti-
mizations. First, we can dramatically reduce the number of distinct states via K-
partitioning 4 ; this permits π? to be found in polynomial time. Second, we can
ensure that the state transition graph is acyclic (a useful property for MDPs also
noted in other contexts [6]) by bounding the number of suggestions sent to each
participant; this enables us to find π? with simple graph search algorithms instead
of with policy iteration or linear programming. Furthermore, this approach enables
the use of existing heuristic search algorithms where an exact computation remains

4 See Boutilier et al. [8] for an alternative (though not guaranteed) use of domain structure
to reduce the effective number of states.
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Restrictions Description of Restrictions Complexity with
arbitrary utility

function

Complexity when
K-partitionable

AnyUnlimited Manager may suggest changes at any time,
and may send an unlimited number of sugges-
tions to any participant.

EXPTIME-hard MDP with O(N 2K)
states

AnyOnce Manager may suggest changes at any time,
but only once per participant.

PSPACE-hard O(N 3K) time

Immediate Manager may suggest changes only immedi-
ately after receiving a response, once per par-
ticipant.

PSPACE-hard O(N 2K) time

Synchronous Same as “Immediate”, but each participant is
assumed to respond to any suggestion before
the manager receives any other message.

PSPACE-hard O(NK) time

Table 1
Summary of theoretical results for D-SEPs. The last two columns show the time complex-
ity of finding the optimal policy for a D-SEP with N participants. In general, this problem
is EXPTIME-hard but if the utility function is K-partitionable then the problem is polyno-
mial time in N . (An MDP can be solved in time guaranteed to be polynomial in the number
of states, though the polynomial has high degree). Adding restrictions on how often the
manager may send suggestions makes the problem even more tractable. Note that the size
of the optimal policy is finite and must be computed only once, even though the execution
of a SEP may be infinite (e.g., with “AnyUnlimited”).

infeasible. Consequently, with appropriate restrictions many useful D-SEPs can be
efficiently solved in polynomial time.

5.4 Explanation Generation for D-SEPs

As with L-SEPs, we would like to be able to automatically generate explanations
for the manager’s interventions. Below we briefly consider this problem in the con-
text of D-SEPs.

Compared to L-SEPs, it is more difficult for a D-SEP to single out specific terms
that are responsible for a manager’s suggestion, because every term contributes to
the process utility to some extent, either positively or negatively. Note, though, that
if the manager decides to make a suggestion, then the expected improvement must
outweigh the certain cost of this action. Thus, for non-zero costs, there must be
a significant difference in the utility of the state where the manager requested a
switch (Ssw) vs. where the manager did not (S0).

We seek to identify the terms that explain most of this difference. In particular,
given a n-term utility function
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U(s) = u1(s) + ... + un(s)

we define the change δu in each utility term as

δu = u(Ssw) − u(S0).

We wish to identify a set E ⊆ {u1, .., ..un} such that:

∑

u∈E

δu ≥ β[U(Ssw) − U(S0)]

i.e., so that the terms in E explain at least β of the change. Note that, if we can
compute the optimal policy in polynomial time, then we can also compute each δu

in polynomial time.

When generating an explanation, we are primarily interested in terms indicating
that a switch is beneficial, i.e., where δu > 0. If we only consider such terms, then a
greedy algorithm suffices to identify the explanation E of guaranteed minimal size:
set E to ∅, then incrementally add to E the term with the largest δu until E explains
at least β of the total change. If we wish to consider utility terms with both positive
and negative changes, then this problem becomes more challenging (cf., Klein and
Shortliffe [29]).

5.5 Discussion

Compared to L-SEPs, the primary advantages of D-SEPs are their ability to bal-
ance the utility of the process’s goals vs. the cost of additional communication with
the participants, and their graceful degradation when goals cannot be completely
satisfied. On the other hand, the need to determine suitable utilities and proba-
bilities is an inherent drawback of any decision-theoretic framework. Below we
consider techniques to approximate these parameters.

First, the π? for a D-SEP depends upon the relative value of positive utilities (e.g.,
having a well-balanced potluck) vs. negative utilities (e.g., the cost of making a sug-
gestion). Our discussion above exhibited a number of simple but reasonable utility
functions. In practice, we expect that D-SEPs will provide default utility functions
based on their functionality, but would allow users to modify these functions by
adjusting parameters or by answering a series of utility elicitation questions [7].

Second, D-SEPs also require probabilistic information about how participants are
likely to respond to original requests and suggestions. This information can be de-
termined in a number of ways:
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• User-provided: The process originator may be able to provide reliable esti-
mates of what responses are likely, based on some outside information or past
experience.

• History-based: Alternatively, the system itself can estimate probabilities by
examining the history of past processes.

• Dynamically-adjusted: Instead of or in addition to the above methods, the
system could dynamically adjust its probability estimates based on the actual
responses received. If the number of participants is large relative to the number
of choices, then the system should be able to stabilize its probability estimates
well before the majority of responses are received.

Thus, although the need to provide utility and probability estimates is a drawback
of D-SEPs compared to L-SEPs, simple techniques can produce reasonable ap-
proximations for both. In practice, the choice of whether to use a D-SEP or L-
SEP will depend on the target usage and the feasibility of parameter estimation.
In our implementation, we allow the originator to make this choice. For D-SEPs,
we currently elicit some very basic utility information from the originator (e.g.,
see Figure 4), and use some probabilities provided by the SEP author for expected
participant behavior. Extending our implementation to support history-based and
dynamically-adjusted probabilities is future work.

6 Implementation and Usability

We have implemented a complete semantic email system and deployed it in several
applications. In doing so, we faced several challenges. This section describes the
desiderata for a usable semantic email system, highlights the challenges to achiev-
ing these desiderata, and discusses our particular implementation choices.

6.1 Desiderata

To be successful, we argue that any semantic email system (both SEP-based and
otherwise) should fulfill the following desiderata:

• Instant Gratification: Most importantly, semantic email must provide an im-
mediate, tangible benefit to users. Users must not be expected to annotate out-
going or incoming mail with semantic content for some vague future benefit.
Instead, a semantic email system must provide users with existing services that
yield immediately obvious benefits. In fact, the notion of instant gratification
is key to getting people to invest in structuring their data, and has been the
motivation behind our MANGROVE semantic web system [38].
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Fig. 3. The creation of a semantic email process (SEP). Initially, an “Author” authors a
SEP template and this template is used to generate an associated web form. Later, this
web form is used by the “Originator” to instantiate the template. Typically, a template is
authored once and then instantiated many times.

• Gradual Adoption: At first, semantic email will be initiated by only a small
number of “early adopters.” If semantic email could be profitably exchanged
only among these users, it would have very limited applicability. Thus, to suc-
ceed, semantic email must be usable even when some or all of the participants
have no experience with or software installed for it.

• Ease of use: Semantic email must be simple enough for a non-technical per-
son to use. It should not expect such users to understand RDF, disrupt nor-
mal email processing, or require email senders or recipients to use a particular
email client.

Below we elaborate on the challenges in implementing a system that achieves these
goals.

6.2 Process Creation and Execution

Translating SEP theory to real problems: Applying our SEP theory to real prob-
lems requires enabling an originator to easily create an L-SEP or D-SEP model
that corresponds to his goals. One option is to build a GUI tool that guides the orig-
inator through constructing the appropriate choices, messages, and constraints or
utilities for the process. Practically, however, a tool that is general enough to build
an arbitrary process is likely to be too complex for untrained users.

Instead, our system is based on the construction of reusable templates for specific
classes of SEPs. Figure 3 demonstrates this approach. Initially, someone who is as-
sumed to have some knowledge of RDF and semantic email authors a new template
using an editor (most likely by modifying an existing template). We call this per-
son the SEP author. The template is written in OWL [57] based on a SEP ontology
that describes the possible queries, constraints, and messages for a process. For in-
stance, the “balanced potluck” template defines the general balance constraints for
the process, but has placeholders for parameters such as the participants’ addresses,
the specific choices to offer, and how much imbalance to permit.

To enable an originator to provide these parameters later, we associate with each
template a simple web form that prompts the originator for each parameter. For in-
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Fig. 4. A web form used to initiate a “balanced collection” process, such as our balanced
potluck example. For convenience, clicking submit converts the form to text and sends the
result to the server and a copy to the originator. The originator may later initiate a similar
process by editing this copy and mailing it directly to the server.

stance, Figure 4 shows such a form for the balanced potluck. Note that the bottom
of this form allows users to choose between executing an L-SEP (the “strictly” and
“flexibly” options) or a D-SEP (the “tradeoff-based” option). In addition, origi-
nators may specify either individuals or mailing lists as participants; for the latter
case, the form also asks the originator for an estimate of the total number of people
that will respond (not shown in Figure 4).

Our implementation provides a simple tool that can automatically generate such
web forms from some additional OWL information in the template. This same tool
could also be used to generate a service description for the template, e.g., in WSDL
or OWL-S [2]. Then, a program could also serve as an originator by utilizing the
service description and template to automatically invoke the process directly.

An untrained originator finds a SEP from a public library of SEP templates and
instantiates the template by filling out the corresponding web form, yielding a SEP
declaration (also in OWL). The originator then invokes the process by forwarding
this declaration to the manager. Given the formal declaration, the manager then
executes the process, using appropriate L-SEP and D-SEP algorithms to decide
how to direct the process via appropriate message rejections and suggestions
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Facilitating responses: Another key challenge is enabling participants to respond
to messages in a way that is convenient but that can be automatically interpreted by
the manager. A number of different solutions are possible:

• Client software: We could provide a custom email client that would present
the participant with an interface for constructing legal responses, or automati-
cally respond to messages it knows how to handle (e.g., “Decline all invitations
for Friday evenings”). This client-based approach, however, requires all partic-
ipants in a process to install additional software (conflicting with our gradual
adoption goal) and is complicated by the variety of mail clients currently in
use.

• Information extraction: We could allow participants to respond in a natural
language (e.g., “I’ll bring a dessert”). We could then use wrappers or infor-
mation extraction techniques to attempt to convert this response to one of the
offered choices. This approach is promising but risks having the wrapper fail
to extract the correct information.

• Email or web forms: We could provide participants with a text-encoded form
to fill out, or we could send them a link to a suitable web-based form to use for
their response. Embedded HTML forms are also attractive, but unfortunately
are not handled uniformly by existing email clients.

While web forms have some advantages, we chose to use email text forms instead
because we feel they fit more naturally with how people typically handle incom-
ing messages. In addition, text forms offer a simple solution that works for any
participant. Participants respond by replying to the process message and editing
the original form. If the manager sends a rejection or suggestion to a participant,
the message includes an explanation of the intervention along with a copy of the
original form so that the participant can modify their response.

Our earlier discussion generally assumed that participants would send a single
acceptable response. However, our implementation does permit participants to
“change their mind” by sending additional responses. For the logical model, this
response is accepted if changing the participant’s original response to the new
value still permits the constraints to be satisfied (or if the response must always
be accepted, e.g., for Not-Coming). For the decision-theoretic model, the new
response is always accepted but may lead to a change suggestion based on the
modified state of the process.

Manager deployment: Potentially, the manager could be a program run on the
originator’s personal computer, perhaps as part of his mail client. This permits an
easy transition between authoring traditional mails and invoking SEPs, and can also
benefit from direct access to the originator’s personal information (e.g., calendar,
contacts). However, as with providing client software for participants, this approach
requires software installation and must deal with the wide variety of existing mail
clients.

Our implementation instead deploys the manager as a shared server. The server
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Procedural approach Declarative approach Size Reduction
SEP name (number of lines) (number of lines) for Declarative

Balanced Potluck 1680 170 90%

First-come, First-served 536 99 82%

Meeting Coordination 743 82 89%

Request Approval 1058 109 90%

Auction 503 98 81%
Table 2
Comparison of the size of a SEP specification in our original procedural prototype [17]

(using Java/HTML) vs. in the declarative format described in this paper (using RDF).
Overall, the declarative approach is about 80-90% more concise. These values include the
HTML/RDF needed for acquiring parameters from the originator.

receives invocations from the originator and sends out an initial message to the par-
ticipants. Participants reply via mail directly to the server, rather than to the origina-
tor, and the originator receives status and summary messages from the server when
appropriate. The originator can query or alter the process via additional messages
or a web interface.

Discussion: Our server-based approach is easy to implement and meets our gradual
adoption and ease-of-use goals since it requires no software installation, works
for all email clients, and does not require users (as originators) to read or write
RDF. In addition, this method supports our instant gratification goal by providing
untrained users with existing, useful SEPs that can be immediately invoked and
yield a tangible output (in the form of messages sent and processed on the users’
behalf). Finally, we believe that divorcing the processing of semantic email (in
the server) from the standard email flow (in the client) will facilitate adoption by
ameliorating user concerns about privacy 5 and about placing potentially buggy
code in their email client.

In addition, specifying SEP templates and declarations in OWL has a number of
advantages. First, unlike the original version of semantic email [17] (which used
process-specific procedures), a SEP is described entirely by its OWL declaration.
This greatly simplifies the deployment of a new SEP, both because no program-
ming is required and because authors need not run their own server (since shared
servers can accept and execute OWL declarations from anyone, something they are
unlikely to do for arbitrary code). In addition, these declarations are much simpler
and more concise than corresponding specifications written in a procedural lan-
guage (see Table 2). Furthermore, authoring SEPs in OWL enables the use of a
variety of automated tools to ensure that a SEP declaration is valid. Finally, OWL

5 Only semantic email goes through the server, personal email is untouched. Of course,
when the semantic email also contains sensitive information, the security of the server
becomes significant.
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Fig. 5. A message sent to participants in a “balanced potluck” process. The bold text in the
middle is a form used for human recipients to respond, while the bold text at the bottom is
a RDQL query that maps their textual response to RDF.

specifications could enable future work that automatically composes several SEPs
to accomplish more complex goals.

6.3 Human/Machine Interoperability

The previous section highlighted how semantic email messages can be handled by
either a human or by a program operating on their behalf. Thus, an important re-
quirement is that every message must contain both a human-understandable portion
(e.g., “You’re invited to the potluck on Oct 5...”) and a corresponding machine-
understandable portion. For messages sent to a participant, this approach supports
gradual adoption by permitting the originator to send the same message to all par-
ticipants without any knowledge of their capabilities. For responses, a machine-
understandable portion enables the manager to evaluate the message against the
process constraints/utilities and take further action. The human-readable compo-
nent provides a simple record of the response if needed for later review.

In our implementation, we meet this interoperability requirement with a combina-
tion of techniques. For responses, a human can fill out the included text form (see
Figure 5), which is then converted into RDF at the server with a simple mapping
from each field to an unbound variable in a RDQL query associated with the mes-
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sage. Alternatively, a machine can respond to the message simply by answering the
query in RDF, then applying the inverse mapping in order to correctly fill out the
human-readable text form.

For messages to the participants, the challenge is to enable the manager to construct
these textual and RDF/RDQL portions directly from the SEP declaration. Here
there is a tension between the amount of RDF content that must be provided by the
SEP author (in the template) vs. that provided by the SEP originator (when instan-
tiating the template). Very specific SEP templates (e.g., to balance N people among
appetizer, entree, and dessert choices) are the easiest to instantiate, because the au-
thor can specify the RDF terms needed in advance. General SEP templates (e.g., to
balance N people among K arbitrary choices) are much more reusable, but require
substantially more work to instantiate (and may require understanding RDF). Al-
ternatively, authors may provide very general templates but make the specification
of RDF terms for the choices optional; this enables easy template reuse but fails to
provide semantic content for automated processing by the participants.

In our current system, we offer both highly specialized SEPs (e.g., for meeting
scheduling) and more general SEPs (e.g., to give away some type of item). En-
abling originators to easily customize general SEPs with precise semantic terms,
perhaps from a set of offered ontologies, is an important area of future work.

6.4 Integrating with Non-Semantic Messages

Despite the advantages of semantic email, we do not want to create a strict di-
chotomy in our email habitat. In our potluck example, suppose that one of the
participants wants to know whether there is organized transportation to the potluck
(and this information affects his decision on what to bring). What should he do?
Compose a separate non-semantic email to the originator and respond to the se-
mantic one only later? A better (and easier to use) solution would be to treat both
kinds of emails uniformly, and enable the participant to ask the question in reply-
ing to the semantic email, ultimately providing the semantic response later on in
the thread.

Our implementation supports this behavior by supplying an additional Remarks
field in each response form, where a participant may include a question or comment
to be forwarded to the originator. For a question, the originator can reply, enabling
the participant to respond to the original semantic question with the included form
or pose another question.

6.5 Experience

Our semantic email system is deployed and may be freely used by anyone with-
out any software installation; the source code for deploying other instances of the
server is also available. So far we have developed simple processes for functions
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like collecting RSVPs (i.e., confirming or declining an invitation), giving tickets
away, scheduling meetings, and balancing a potluck. Our system uses standard on-
tologies where possible (e.g., RDF Calendar [56]), augmented as needed with a
local semantic email schema.

Despite very limited publicity, our semantic email server has seen growing interest
over the short time that it has been available. For instance, a DARPA working group
has adopted semantic email for all of its meeting scheduling and RSVP needs, stu-
dents have used semantic email to schedule seminars and Ph. D. exams, and seman-
tic email has been used to organize our annual database group and departmental-
wide potlucks. Furthermore, a number of other institutions have expressed interest
in deploying copies of semantic email locally at their sites. These are merely anec-
dotes but lend credence to our claim that semantic email is both useful and practical.

Our semantic email system is integrated within our larger MANGROVE [38] se-
mantic web system. This provides us with an RDF-based infrastructure for man-
aging email data and integrating with web-based data sources and services. For in-
stance, the MANGROVE web calendar accepts event information via email or from
a web page. In addition, MANGROVE provides semantic email with an RDF data
source about courses, people, etc. that could be used to support the prediction of
likely responses by the manager discussed in Section 2. Likewise, a semantic email
client could utilize data from MANGROVE to answer common questions. When
previously unknown questions are answered manually by the user, these responses
could be stored for future use, thus enabling the automatic acquisition of semantic
knowledge over time. Future work will consider additional ways to synergistically
leverage data from both the web and email worlds in MANGROVE.

7 Related Work

Information Lens [36] used forms to enable a user to generate a single email mes-
sage with semi-structured content that might assist recipients with filtering and pri-
oritizing that message. Our SEPs generalize this earlier work by enabling users to
create an email process consisting of a set of interrelated messages, and by extend-
ing Information Lens’s rule-based message processing to support more complex
constraint and utility reasoning based on information from the entire set of mes-
sages. Consequently, SEPs support a much broader range of possible applications.
More recently, Kalyanpur et al. [27] proposed having users semantically annotate
messages to improve mail search, sorting, and filtering. This approach can poten-
tially result in rich semantic content, but requires users to invest significant anno-
tation effort for some potential future benefit (e.g., in improved searching for an
old email) or primarily for the benefit of the recipient. SEPs instead generate both
the semantic content and the text of the email message directly from simple forms,
and provide instant gratification by immediately utilizing this content for simple
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but time-saving email processes.

Our vision for semantic email was initially described in Etzioni et al. [17] and Mc-
Dowell et al. [39]. Possible uses of semantic email are similar to those of some
existing semantic web systems (e.g., [47,30,42], cf., RDF Calendar group discus-
sions [56]). The key differentiating aspects of our work are its generality to many
different tasks, its ability to interoperate freely with naive participants, and its poly-
nomial time reasoning for recommending interventions. For instance, Rcal [47]
uses messages between participants to agree upon meeting times and McIlraith
et al. [42] describe an agent that makes travel arrangements by invoking various
web services (which could be modeled as participants in a SEP). These systems,
however, enable full interaction only between two parties that are both executing
domain-specific software. For instance, though Rcal provides a web interface to
let anyone schedule an appointment with an installed Rcal user, an Rcal user can-
not use the system to request an appointment with a non-“Rcal-enabled” person.
Likewise, McIlraith et al.’s agent is designed only to communicate with specific
web services, not with humans (such as human travel agents) that could offer the
same functionality. Our system instead permits processes to include any user, re-
gardless of their capabilities. An additional, though less critical, distinction is our
use of email instead of HTTP or a custom protocol (cf., Everyware [19]). Email
provides a convenient transport mechanism because the vast majority of users al-
ready have well-known addresses (no additional directories are needed), messages
can be sent regardless of whether the recipient has performed any configuration,
and existing email clients provide a useful record of messages exchanged. Finally,
our framework enables the automated pursuit of a wide variety of goals through
reasoning in guaranteed polynomial time, a result not provided by the other sys-
tems discussed above. The combination of these factors makes semantic email a
lightweight, general approach for automating many tasks that would be impractical
with other systems.

Recent work on the Inference Web [41] has focused on the need to explain a Se-
mantic Web system’s conclusions in terms of base data and reasoning procedures.
In contrast, we deal with explaining the SEP’s actions in terms of existing re-
sponses and the expected impact on the constraints. In this sense our work is sim-
ilar to prior research that sought to explain decision-theoretic advice (cf., Horvitz
et al. [21]). For instance, Klein and Shortliffe [29] describe the VIRTUS system
that can present users with an explanation for why one action is provided over an-
other. Note that this work focuses on explaining the relative impact of multiple
factors on the choice of some action, whereas we seek the simplest possible reason
why some action could not be chosen (i.e., accepted). Other relevant work includes
Druzdzel [16], which addresses the problem of translating uncertain reasoning into
qualitative verbal explanations.

For constraint satisfaction problems (CSPs), a nogood [51] is a reason that no cur-
rent variable assignment can satisfy all constraints. In contrast, our explanation
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for a PossiblyConstraint is a reason that no future assignment can satisfy
the constraints, given the set of possible future responses. Potentially, our problem
could be reduced to nogood calculation, though a direct conversion would produce
a problem that might take time that is exponential in N , the number of participants.
However, for bounded constraints, we could create a CSP with variables based
on the aggregates of the responses, rather than their specific values, as described in
Section 3. Using this simpler CSP, we could then exploit existing, efficient nogood-
based solvers (e.g., [25,28,24]) to find candidate explanations in time polynomial
in N . Note though that most applications of nogoods have focused on their use for
developing improved constraint solving algorithms [51,28] or for debugging con-
straint programs [46], rather than on creating explanations for average users. One
exception is Jussien and Ouis [26], who describe how to generate user-friendly
nogood explanations, though they require that a designer explicitly model a user’s
perception of the problem as nodes in some constraint hierarchy.

8 Conclusions

This paper generalizes the original vision of the semantic web to also encompass
email. We have introduced a paradigm for semantic email and described a broad
class of semantic email processes. These automated processes offer tangible pro-
ductivity gains on email-mediated tasks that are currently performed manually in a
tedious, time-consuming, and error-prone manner. Moreover, semantic email opens
the way to scaling similar tasks to large numbers of people in a manner that is infea-
sible today. For example, large organizations could carry out surveys, auctions, and
complex meeting coordination via semantic email with guarantees on the behavior
of these processes.

Our technical contributions are as follows. We presented a formalization that teases
out the issues involved, and used this formalization to explore several central infer-
ence questions. We then defined and explored two useful models for specifying the
goals of a process and formalizing when and how the manager of the process should
intervene. For our logical model we showed how the problem of deciding whether
a response was ultimately acceptable relative to the constraints could be solved in
polynomial time for bounded constraints. With our decision-theoretic model we
addressed several shortcomings of the logical model and demonstrated how appro-
priate restrictions could enable the optimal policy for this model to be computed
in polynomial time. In both cases we identified restrictions that greatly improved
the tractability of the key reasoning problems while still enabling a large number of
useful processes to be represented. In addition, we described how to automatically
generate explanations for the manager’s interventions and identified cases where
these explanations can be computed in polynomial time. Finally, we described our
publicly available semantic email system and how it satisfies the implementation
desiderata of instant gratification, gradual adoption, and ease of use.
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There are a number of interesting directions for future work. First, we want to con-
sider interactions between semantic email and other semantic web applications to
support more sophisticated reasoning techniques (e.g., check calendars and other
resources to help constrain the number of messages and responses from some par-
ticipants). We also plan to incorporate our recent work on schema and ontology
mapping [14] to support more flexibility in responding to a semantic email mes-
sage. In addition, our deployed system for semantic email offers the potential for a
number of interesting user studies. For instance, it would be interesting to examine
how originators make use of SEPs and which types are the most popular, the impact
SEPs have on the efficiency of tasks compared to traditional email management,
and how users react to interventions. Finally, we identified specific cases where our
reasoning is tractable, but there are many opportunities for studying other cases
within the framework we provided for modeling SEPs.
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A Proof Sketches for Logical SEPs

This section provides more details on the proofs for each of this paper’s theorems
related to L-SEPs. We assume throughout that an L-SEP Λ has N participants, a
current state D, and constraints CD, and that CD refers to at most some constant H

number of attributes.

A.1 Proof of Theorem 1

We first show that ultimate satisfiability is NP-complete in the general case. We
then show how this problem can be solved in polynomial time when the constraints
are either domain-bounded or constant-bounded.

NP-complete for arbitrary constraints: First, observe that ultimate satisfiability
is in NP – given an L-SEP Λ and a response r, we can guess a possible outcome of
D that is consistent with r, then verify that the outcome satisfies the constraints.
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Second, we show that ultimate satisfiability is NP-hard via a reduction from 3-SAT.
Assume we are given a boolean formula φ of the form φ = L1∧L2∧ ...∧Lm where
Li = (wi1 ∨ wi2 ∨ wi3) for 1 ≤ i ≤ m, and each wij equals some variable xk or
xk for 1 ≤ k ≤ n. The 3-SAT problem is to determine if φ is satisfiable for some
assignment to the variables of w.

Given φ, we construct an L-SEP Λ where:
• Participants P = {p0, p1, p2, ..., pn}
• Data set D is a single table with one attribute value
• Responses R = {nil, r1, r2, ...rn}
• Constraints CD = φ, with vij substituted for each wij where

if wij = xk, then we set vij = [(COUNT(*) WHERE value = rk) > 0]
otherwise wij = xk, and vij = [(COUNT(*) WHERE value = rk) = 0]

This construction is polynomial in the size of φ. In the resulting Λ, there are n + 1
participants that may each respond with one of n + 1 values.

Given this constructed Λ, we now show that the 3-SAT formula φ is satisfiable iff
an initially empty D for Λ is ultimately satisfiable w.r.t. CD given response nil.
First, given an assignment x1, ..., xn that satisfies φ, a final state of D that satisfies
CD is as follows: p0 responds nil, pk responds rk if xk is true, otherwise pk responds
nil. This will set the corresponding xk’s in CD to true, and since φ is satisfied, CD

will be satisfied in the resultant state, demonstrating that D is ultimately satisfiable
given an initial response nil. Alternatively, if D is ultimately satisfiable given ini-
tial response nil, we can take a final state of D that satisfies CD and construct an
assignment x1, ..., xk that satisfies φ as follows: if any participant has responded
with value rk, then xk is true; otherwise, xk is false. Thus, any 3-SAT problem with
N variables can be solved by reduction to ultimate satisfiability with N + 1 partic-
ipants. Since 3-SAT is NP-complete in N , ultimate-satisfiability must be NP-hard
in N .

Polynomial-time when constraints are domain-bounded: In this case, the con-
straints refer to attributes whose domain size is at most some constant L. Since
there are most H attributes, there are thus a total of LH possible responses.

We evaluate the constraints over D′, a data set that distinguishes only representative
states that are different with respect to the constraints. In particular, all that matters
for D′ is the number of each type of response that has been received (i.e., aggregates
of the responses). The number of possible states of D′ is thus the number of ways
of dividing N participants among LH + 1 possible responses (LH choices plus a
“no response” option):

|D′| =

(

N + LH

LH

)

= O(NLH)

To determine ultimate satisfiability of D given r, we construct a data set Dr that is
D augmented with the given response r. We then iterate over all possible values d
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of D′. For each value, if d is inconsistent with Dr (i.e., for some response type Ri,
Dr shows more such responses than d does), we discard d. Otherwise, we evaluate
CD over d – this requires time linear in N and |CD| given a particular d. Given
this procedure, D is ultimately satisfiable for r iff some d is consistent with Dr and
satisfies CD. Each step requires linear time, and there are a polynomial number of
iterations (O(NLH)), so the total time is polynomial in N and |CD|.

Polynomial-time when constraints are constant-bounded: This case uses a sim-
ilar algorithm as when the constraints are domain-bounded. However, since each
attribute may have a potentially infinite domain, we must keep track of the possible
states differently. Here, we allow only COUNT aggregations, which may be of the
form: COUNT(*) WHERE value = vi or an inequality like COUNT(*) WHERE
value > vi.

If CD is constant-bounded, then there are most K constants v1, ..., vk used in these
aggregations. These constants divide the domain of each attribute into at most K+1
regions. Thus, there are K+1 possibilities for each of the H attributes of a response,
yielding a total of O(KH) possible responses. As with the analysis above, the
number of possible states in the representative data set D′ is thus O(NKH), and the
time to evaluate each state is linear. Since H and K are assumed to be constants,
then the total time to check ultimate satisfiability is polynomial in both N and |CD|.

A.2 Proof of Theorem 2

For this theorem we are given an L-SEP Λ, current state D, and some Possibly-
Constraints CD, and wish to compute the acceptable set A of Λ. We consider
the two cases where CD is and is not bounded:

Polynomial time for bounded constraints: We can determine whether any partic-
ular response r is in A via testing ultimate satisfiability: r is in A iff D is ultimately
satisfiable w.r.t. CD for r. Since CD is bounded, Theorem 1 states that this satis-
fiability testing can be done in time polynomial in N and the |CD|. In addition,
since CD is bounded, either there are only a small number of possible responses (if
CD is domain-bounded), or there are only a bounded number of responses that are
distinguishable w.r.t. the constraints (if CD is constant-bounded, as discussed in the
proof of Theorem 1)). In either case, there are only a constant number of different
responses r that must be tested. Thus, by testing each representative response, we
can determine the entire acceptable set (representing it as ranges of acceptable val-
ues) in time polynomial in N and |CD|. If we actually construct the entire set A (as
described in the theorem), then there is an additional polynomial time dependence
on |A|.
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NP-hard for arbitrary constraints: For this case we show that computing the
acceptable set is NP-hard by a reduction from ultimate satisfiability: given an L-
SEP Λ with N participants, data set D, constraints CD, and a possible response r, Λ
is ultimately satisfiable for r iff r is in the acceptable set A for Λ. This relationship
follows directly from the definition of the acceptable set, and the reduction is clearly
polynomial time. Since ultimate satisfiability is NP-complete in N for arbitrary
constraints, computing the acceptable set must be NP-hard in N .

A.3 Proof of Theorem 3

Here we are given an L-SEP Λ, current state D, constraints CD, and a response
r, and wish to compute the minimum sufficient explanation E for rejecting r. This
theorem has different results depending on whether CD consists of MustCon-
straints or PossiblyConstraints:

Polynomial time for MustConstraints: For a MustConstraint, the size of the
minimum sufficient explanation is always one. We can compute this explanation by
adding r to D and then testing each constraint to see if it is unsatisfied in this new
state; any such constraint is a minimum explanation. Testing each constraint on a
given state is polynomial in N , and there are at most O(|CD|) constraints, for total
time polynomial in N and |CD|.

NP-hard for PossiblyConstraints: In this case computing a minimum explana-
tion is NP-hard in two different ways. First, a reduction from ultimate satisfiability:
given an L-SEP Λ, D, CD, and r, D is ultimately satisfiable for r iff the min-
imum explanation for rejecting r on D does not exist. This relationship follows
from the definition of an explanation, since if an explanation exists it rules out any
way of satisfying the constraints, and the reduction is clearly polynomial. Thus,
since determining ultimately satisfiability is NP-complete in N (Theorem 1), then
computing the minimum explanation is NP-hard in N .

Second, a reduction from SET-COVER, which is defined as follows: We are given
a set X = {1, 2, ..., N} and family of subsets of F = {S1, S2, ..., SM} such that
every Si ⊂ X and every element of X is contained in some Si. A cover for this
problem is a set F ′ ⊂ F such that the union of all Si ∈ F ′ contains every element
of X . The problem is to determine whether there exists a cover of size J or smaller
for X .

We construct the following L-SEP Λ with:
• Participants: P = {p0, p1, p2, ..., pN}.
• Data set: D is a single table with one boolean attribute R.
• Constraints: a set of PossiblyConstraintsCD = C0∧C1∧C2∧...∧CM
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where

C0 = (Ryes = 0)

Ci =
∧

j∈Si

(Rtrue 6= j) for 1 ≤ i ≤ M

Ryes = (COUNT (∗) WHERE value = True)

Constructing this L-SEP is clearly polynomial time in the size of the SET-COVER
problem.

Given this construction for Λ, we now show that a set cover for X of size J exists
iff the minimum explanation E for rejecting a response r of False for Λ with
an initially empty state D contains J + 1 constraints. First, given an explanation
E with J + 1 constraints, a minimum cover F ′ is the set of all Si such that Ci is
present in E, for i 6= 0. (Every sufficient explanation E contains C0; it is a special
case included just to handle the situation where all participants respond No. Hence,
F ′ will be of size J .) To see why this works, consider an example set S7 = {3, 5}.
This set is mapped to the constraint C7 = (Rtrue 6= 3) ∧ (Rtrue 6= 5). A sufficient
explanation for rejecting r must cover every possible outcome of the L-SEP, and
two such outcomes are for either 3 or 5 participants to respond True. Thus, if
response r is to be rejected, the explanation E must cover these two cases, either
by choosing C7, or by choosing some other constraint(s) that also covers the cases
of 3 or 5 True responses. This follows exactly the same rules as a solution to
SET-COVER. Likewise, given a cover F ′ for X of size J , a minimum explanation
for rejecting an initial False response is the conjunction of C0 together with all
constraints Ci where Si is in F ′, for a total size of J +1. Thus, any input to the SET-
COVER problem can be reduced to solving the minimum explanation problem.
Since the former problem is NP-complete in the number of sets (M), the latter
problem must also be NP-hard in number of constraints (|CD|). Combining this
with the previous result, we see that computing the minimum sufficient explanation
for PossiblyConstraints is NP-hard in N and NP-hard in |CD|.

A.4 Proof of Theorem 4

We are given an L-SEP Λ with N participants, current state D, constraints CD, and
a response r and wish to find the minimum sufficient explanation E for rejecting
r, assuming that CD is bounded and that the size of a minimum E is no more than
some constant J . If CD consists of MustConstraints, then we already know
that this problem is polynomial time in N and |CD| from Theorem 3.

If CD is made up of PossiblyConstraints, then we can test if any particular
explanation E is a sufficient explanation via ultimate satisfiability: E is a sufficient
explanation iff E ⊆ CD and D is not ultimately satisfiable w.r.t. E for r. Since the
constraints are bounded, Theorem 1 states that this testing can be performed in time
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polynomial in N and |CD|. In addition, since any minimum explanation E contains
only terms from CD, restricting E to at most size J means that the total number of
explanations that must be considered is polynomial in |CD|. Thus, we can compute
the minimal explanation by testing the sufficiency of every possible explanation of
size J or less and picking the smallest sufficient explanation. This algorithm runs
in total time polynomial in N and |CD|.

B Proof Sketches for Decision-theoretic SEPs

This section provides proofs regarding the complexity of computing the optimal
policy for a given D-SEP δ with N participants. We assume that each participant
will eventually send an original response, then only sends further messages if they
receive a suggestion (which they will also eventually respond to). For convenience,
we define the following notation: OPTPOLICY(δ) is the problem of determining
the optimal policy π? for a given D-SEP δ. OPTUTILITY(δ,θ) is the problem of
determining if the expected total utility of π? for δ exceeds some constant θ.

B.1 Proof of Theorem 5 – bounded suggestions

For this first case, we assume that the manager can send at most some constant L

messages to each participant. Below we prove that in this case OPTUTILITY(δ,θ)
is PSPACE-complete, then use this result to prove that OPTPOLICY(δ) is PSPACE-
hard.

OPTUTILITY(δ,θ) is PSPACE-complete: First, we show that OPTUTILITY(δ,θ)
is in PSPACE. Given δ, consider the tree representing all possible executions, where
the root of the tree is the initial state and each leaf represents a possible halted
state. From any state in the tree, the next state may result either from the manager
making a suggestion or from receiving a response from some participant. Hence,
the branching factor of the tree is O(N). In addition, since the manager may make
at most LN suggestions and each participant may send up to L + 1 responses, the
tree is acyclic and has total height O(LN). Consequently, we can determine the
expected utility of the optimal policy via a suitable depth-first search of the tree.
Since the utility of a child node can be discarded once the expected utility of its
parent is known, the total space needed is just O(LN). Thus, OPTUTILITY(δ,θ) is
in PSPACE.

Second, we show that OPTUTILITY(δ,θ) is PSPACE-hard by a reduction from QBF
(quantified boolean formula). A QBF problem specifies a formula ϕ of the form:

ϕ = ∃x1∀y1...∃xk∀yk φ

where φ is a 3-CNF boolean formula over the xi’s and yi’s. The computational
problem is to determine if ϕ is true.
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Given ϕ, we construct a corresponding D-SEP δ as follows:
• Participants: P = {A1, ..., Ak, B1, ..., Bk}, for a total of N = 2k participants.
• States: A state s = (a1, ..., ak, b1, ..., bk) where the ai’s and bi’s indicate each

participant’s current response (True, False, or NoneY et). The ai’s and bi’s
correspond directly to the xi’s and yi’s in the formula φ. Thus, we say “φ
is satisfied in s” if no ai or bi has the value NoneY et and evaluating φ by
substituting corresponding values for the xi’s and yi’s yields true.

• Values: V = {True, False}.
• Actions: A = {NoOp, Halt, SWp,true, SWp,false}, where p ∈ P .
• Transitions: We construct T () so that the following steps will occur in order:

(1) Choice: In the initial state the manager may either perform NoOp (to wait
for responses) or Halt (if it has no winning strategy).

(2) A-Turn: A1 sends a False response. The manager may choose either to
execute NoOp (thus accepting a1 = False) or to suggest a change to A1,
in which case A1 immediately agrees (so a1 = True).

(3) B-Turn: The manager performs NoOp, and receives an random original
response (either True or False) from B1. B1 refuses any suggestions.

(4) Repeat: Repeat A-Turn and B-Turn for (A2, B2) ... (Ak, Bk), then Halt.
• Utilities: the only non-zero utilities are as follows:

U(s0, Halt) = 1 (quitting from the initial state)

U(s, Halt) = 1 + ε if s 6= s0 and φ(s) = True

where ε represents an infinitesimally small, positive value. Note that this use of
ε does not introduce any serious computational difficulties. The expected utility
of each state may be maintained in the form (c+dε) – addition, multiplication,
and comparison (over a total order) are easily defined for such values. In addi-
tion, since ε appears only in the utility function, higher-order values such as ε2

do not arise.
The size of this D-SEP is polynomial in N and the whole reduction can be done
in polynomial time. In particular, while an explicit representation of the transition
and utility functions for every possible state would be exponential in N , the rules
above allow all of the necessary functionality to be encoded concisely in terms of
the current responses. For instance, the utility function representing one possibility
for a B-turn (where bi changes from NoneY et to True) is:

T ( s , NoOp, s′) = 0.5 where

s= {a1, ..., ai, Nonei+1, ..., Nonek, b1, ..., bi−1,Nonei, Nonei+1..., Nonek}

s′ = {a1, ..., ai, Nonei+1, ..., Nonek, b1, ..., bi−1,True, Nonei+1, ..., Nonek}

Note also that in several steps above we made statements like “The manager per-
forms action NoOp,” when really at each step the manager has a choice to make.
However, since we can construct the transition function in any desired fashion, we
can “force” the manager into any needed behavior by setting the transition proba-
bility for executing any other action to zero. The same control over the probabilities
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permits us to ensure that participants behave in certain ways and that messages ar-
rive in a certain order.

We now demonstrate an additional result needed to complete the proof:

Definition B.1 (guaranteed satisfying policy) Given a D-SEP δ constructed from
ϕ as above, a guaranteed satisfying policy is a policy that, if followed by the man-
ager, guarantees that the SEP will terminate in a state that satisfies φ. 2

Claim: A guaranteed satisfying policy for δ exists iff the expected utility of the
optimal policy π? for δ is greater than 1 (e.g., OPTUTILITY(δ,θ = 1) is true).

Proof: Clearly, the expected utility of a guaranteed satisfying policy for δ is 1 + ε,
so any optimal policy must have utility at least this large, which is greater than 1. In
the other direction, by examining the utility function we see that the only way for
π? to obtain a utility greater than 1 is for the SEP to halt with φ satisfied, yielding
reward 1 + ε. If this outcome occurs with any probability Pφ < 1 for π?, then the
total expected utility will be less than 1. Thus, if the expected utility of π? is greater
than 1, some guaranteed satisfying policy must exist. 2

Finally, we show that the QBF formula ϕ is true iff a guaranteed satisfying policy
for δ exists. In the D-SEP, the manager can choose whether to set each ai true or
false by making a suggestion or not when Ai sends its response. This corresponds
to the “exists” quantifications in ϕ – when trying to prove the formula true, we can
choose any desired value for xi. On the other hand, the manager cannot influence
the values of bi – these are chosen at random. Thus, the manager will have a guaran-
teed satisfying policy iff it’s policy can handle all possible choices of the bi’s. This
corresponds exactly to the “for all” quantifications of the yi’s. Note that we don’t
depend on the precise values of the probabilities – all that matters is that both true
and false can occur for each bi with some positive probability. Thus, a guaranteed
satisfying policy for δ exists iff the QBF formula is true. Since the latter problem is
PSPACE-complete, then the problem of determining if δ has a guaranteed satisfy-
ing policy is PSPACE-hard, and hence (by the above claim) OPTUTILITY(δ,θ) for
a bounded number of suggestions must also be PSPACE-hard.

OPTPOLICY(δ) is PSPACE-hard: We show that OPTPOLICY(δ) is PSPACE-hard
by reducing from OPTUTILITY(δ,θ). Given a D-SEP δ, we construct δ’ to be the
same as δ except that it has a new initial state s′0. From s′0, the manager may choose
Halt in order to end the process and gain utility θ + ε, or may choose NoOp, in
which case the process transitions to the original initial state s0. This construction
is easy to do and runs in polynomial time. The original D-SEP δ has an expected
utility for π? that exceeds θ iff the optimal policy for δ’ specifies that the manager
should perform the initial action NoOp. This follows since if the expected utility
of δ is θ or less, the optimal decision is to Halt immediately, taking the utility
θ + ε. Thus, since OPTUTILITY(δ,θ) is PSPACE-complete for a bounded number
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of suggestions, the corresponding problem of OPTPOLICY(δ) must be PSPACE-
hard.

B.2 Proof of Theorem 5 – unlimited suggestions

For this second case, we assume that the manager may make an unlimited
number of suggestions to any participant. Below we prove that in this case
OPTUTILITY(δ,θ) is EXPTIME-complete, then use this result to prove that
OPTPOLICY(δ) is EXPTIME-hard.

OPTUTILITY(δ,θ) is EXPTIME-complete : First, we show that
OPTUTILITY(δ,θ) is in EXPTIME. Given a D-SEP δ, we can convert δ into
a Markov Decision Process (MDP) with O(N) possible actions and one state
for each state in δ. The MDP can be then solved with techniques such as linear
programming that run in time polynomial in the number of states [35]. For δ, the
number of states is exponential in N , so the total time is exponential. Then the
expected utility of π? for δ exceeds θ iff the optimal value of the initial state of the
MDP exceeds θ.

Second, we show that OPTUTILITY(δ,θ) is EXPTIME-hard by a reduction from
the game G4 [53]. This game operates as follows (description from [34]): The
“board” is a 13-DNF (disjunctive normal form) formula ϕ with a set of assign-
ments to its 2k boolean variables. One set of variables x1, ..., xk belong to player 1
and the rest y1, ..., yk to player 2. Players take turns flipping the assignment of one
of their variables. The game is over when the 13-DNF formula evaluates to true
with the winner being the player whose move caused this to happen. The computa-
tional problem is to determine whether there is a winning strategy for player 1 for
a given formula from a given initial assignment of the variables. Without loss of
generality, below we assume that the original formula has been transformed so that
the corresponding initial assignment sets all variables to false.

Given an instance of the game G4 over some 13-DNF formula ϕ, we construct a
corresponding D-SEP δ as follows:
• Participants: P = {A1, ..., Ak, B1, ..., Bk}, for a total of N = 2k participants.
• States: A state s = (a1, ..., ak, b1, ..., bk, P end, Last) where the ai’s and

bi’s indicate each participant’s current response (True, False, or NoneY et),
Pend is the set of participants that the manager has made a suggestion to that
has not been responded to yet, and Last indicates whether the last message
that changed a value was from some A or some B. The ai’s and bi’s corre-
spond directly to the xi’s and yi’s in the formula ϕ. Thus, we say “ϕ is satisfied
in s” if no ai or bi has the value NoneY et and evaluating ϕ by substituting
corresponding values for the xi’s and yi’s yields true.

• Values: V = {True, False}.
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• Actions: A = {NoOp, Halt, SWp,true, SWp,false} where p ∈ P .
• Transitions: We construct T () so that the following steps will occur in order:

(1) Choice: In the initial state the manager may either perform NoOp (to wait
for responses) or Halt (if it has no winning strategy).

(2) Startup: Every participant sends in a response False. The manager then
suggests a change to every Bi, who do not immediately respond.

(3) A-Turn: The manager chooses some Ai to suggest a change to. Ai im-
mediately agrees, flipping the current value of ai. If ϕ is now satisfied,
Halt.

(4) B-Turn: The manager performs NoOp, and receives a response to a pre-
vious suggestion from some random Bi, flipping the value of bi. The man-
ager immediately sends another suggestion back to the same Bi, who does
not yet respond. If ϕ is now satisfied, Halt. Otherwise, go back to A-Turn.

• Utilities: the only non-zero utilities are as follows:
U(s0, Halt) = 1 (quitting from the initial state)

U(s, Halt) = 1 + ε if s 6= s0, s.Last = A, and ϕ(s) = True

The size of this D-SEP is polynomial in N and the whole reduction can be done in
polynomial time. As with the bounded suggestions case, the explicit transition and
utility functions are exponential in N , but the rules above allow all of the necessary
cases to be represented concisely in terms of the current responses, Pend, and
Last. Likewise, we can “force” the needed manager and participant behavior by
appropriate setting of the transition function.

We now demonstrate an additional result needed to complete the proof:

Definition B.2 (guaranteed A-Win policy) Given a D-SEP δ constructed from ϕ

as above, a guaranteed A-Win policy is a policy that, if followed by the manager,
guarantees that the SEP will terminate in a state that satisfies ϕ and where the last
step was an “A-Turn.” 2

Claim: A guaranteed A-Win policy for δ exists iff the expected utility of the opti-
mal policy π? for δ is greater than 1 (e.g., OPTUTILITY(δ,θ = 1) is true).

Proof: Analogous to the claim previously given for a guaranteed satisfying policy
in the bounded suggestions case.2

Finally, we show that a winning strategy exists for player 1 in G4 iff a guaranteed
A-Win policy exist for δ. We consider the possible actions for the SEP manager,
who represents player 1. In the initial “Choice” step, if the manager does not have
a guaranteed A-Win policy, it is best to Halt immediately and settle for a utility of
1. If the manager decides to play, then it also has a choice in Step 3 of which Ai

to suggest a change to – this corresponds to choosing which xi for Player 1 to flip.
Step 4 corresponds to Player 2’s flip of some yi, and the manager has no choice
to make. Thus, given a winning strategy for Player 1 in G4, it is easy to construct
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a guaranteed A-Win policy for δ (mapping xi flips to Ai change suggestions), and
vice versa. Since the problem of determining if Player 1 has such a winning strat-
egy for G4 is EXPTIME-hard, the problem of determining if δ has a guaranteed
A-Win policy is EXPTIME-hard, and hence (by the above claim) the problem of
OPTUTILITY(δ,θ) must also be EXPTIME-hard.

OPTPOLICY(δ)is EXPTIME-hard: This proof follows exactly the same form
as the proof of OPTPOLICY(δ) for the bounded suggestions case. Since
OPTUTILITY(δ,θ) is EXPTIME-complete for an unlimited number of suggestions,
the corresponding problem of OPTPOLICY(δ) must be EXPTIME-hard.

B.3 Proof of Theorem 6

Here we show how to compute the optimal policy π? in time polynomial in N ,
assuming a K-partitionable utility function and that the manager sends at most one
suggestion to any participant. Although the formalisms are very different, the key
observation underlying this proof is similar to that of Theorem 1. Here we also
create a state space that only models the number of participants in each group,
rather than their specific members.

We define a summary state function S = {C̄, D̄, Ē} where

• C̄ = (C1, ..., CK) where Ci is the number of responses Vi that were received
that do not have a suggestion pending.

• D̄ = (D1, ..., DK) where Di is the number of responses Vi that were received
that do have a suggestion pending.

• Ē = (E1, ..., EK) where Ei is the number of responses Vi that were received
as a response to a suggestion.

In what follows, the notation C̄ − v indicates “subtract one from the variable in C̄

specified by value v.” Given S, we can define the following transitions (omitting
details for states where everyone has already responded):

T ({C̄, D̄, Ē}, SW v, {C̄−v,D̄+v,Ē }) = 1

T ({C̄, D̄, Ē}, NoOp,{C̄+v,D̄, Ē }) = ρo(C̄, D̄, Ē)·ρv

T ({C̄, D̄, Ē}, NoOp,{C̄, D̄−v,Ē+w}) = ρsv(C̄, D̄, Ē)·ρvw

The first equation represents the manager requesting that some respondent switch
their response from the value v; the state is updated to note that a suggestion has
been made (with probability 1). The next two equations handle the uncertainty
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when the manager decides to wait for the next message to arrive. Specifically, the
second equation handles the case when the next message is an original response
from a previously unheard from participant (probability ρo(C̄, D̄, Ē)), while the
third equation handles the case where the next message is a response to a previously
made suggestion to switch from value v (probability ρsv(C̄, D̄, Ē)).

At any time each participant’s response is either counted once among the K vari-
ables of each of C̄, D̄, or Ē, or has not yet been received. The number of possible
states is thus the number of ways of dividing N participants among 3K +1 groups,
which is:

|S| =

(

N + 3K

3K

)

= O(N3K)

Because of the restriction to send at most one suggestion to each participant, the
graph formed by the transition function over these states is acyclic. Thus, the op-
timal policy may be computed via a depth-first search over the graph in total time
O(N3K).
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