
Meaning for the Masses: Theory and Applications

for Semantic Web and Semantic Email Systems

Luke K. McDowell

A dissertation submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

University of Washington

2004

Program Authorized to Offer Degree: Department of Computer Science & Engineering

University of Washington

Graduate School

This is to certify that I have examined this copy of a doctoral dissertation by

Luke K. McDowell

and have found that it is complete and satisfactory in all respects,

and that any and all revisions required by the final

examining committee have been made.

Co-Chairs of Supervisory Committee:

Oren Etzioni

Alon Halevy

Reading Committee:

Oren Etzioni

Alon Halevy

Henry Levy

Date:

In presenting this dissertation in partial fulfillment of the requirements for the Doctoral

degree at the University of Washington, I agree that the Library shall make its copies

freely available for inspection. I further agree that extensive copying of this dissertation

is allowable only for scholarly purposes, consistent with “fair use” as prescribed in the

U.S. Copyright Law. Requests for copying or reproduction of this dissertation may be

referred to Bell and Howell Information and Learning, 300 North Zeeb Road, Ann Arbor,

MI 48106-1346, to whom the author has granted “the right to reproduce and sell (a) copies

of the manuscript in microform and/or (b) printed copies of the manuscript made from

microform.”

Signature

Date

University of Washington

Abstract

Meaning for the Masses: Theory and Applications

for Semantic Web and Semantic Email Systems

by Luke K. McDowell

Co-Chairs of Supervisory Committee:

Professor Oren Etzioni
Computer Science & Engineering

Professor Alon Halevy
Computer Science & Engineering

The Semantic Web envisions a portion of the World-Wide Web in which the underlying

data is machine understandable and can thus be exploited for improved querying, aggre-

gation, and interaction. However, despite the great potential of this vision and numerous

efforts, the growth of the Semantic Web has been stymied by the lack of incentive to create

content, and the high cost of doing so.

The goal of this dissertation is to enable and motivate non-technical people to both utilize

and contribute content for the Semantic Web. As the foundation for our work, we identify

three design principles that are essential for producing a successful Semantic Web system:

1. Instant Gratification — provide an immediate, tangible benefit to users.

2. Gradual Adoption — offer such benefit even when the system has few users.

3. Ease of Use — be simple enough for a non-technical person to use.

We then design mechanisms and theory that support these principles in the construction of

two novel systems: Mangrove, a community Semantic Web system, and Semantic Email,

a system for leveraging declarative content to automate email-mediated tasks.

First, we describe Mangrove’s architecture and explain how its explicit publish and

feedback mechanisms can provide instant gratification to content authors. In addition, we

describe several novel semantic services that motivate the annotation of HTML content by

consuming semantic information. We show how these services can provide tangible benefit

to authors even when pages are only sparsely annotated. Furthermore, we demonstrate how

seeding and inline annotation with our lightweight annotation syntax can bolster gradual

adoption in Mangrove.

Second, we introduce a paradigm for Semantic Email and describe a broad class of

semantic email processes (SEPs). In support of instant gratification, these automated

processes offer tangible productivity gains on a wide variety of email-mediated activities.

To manage these processes, we define two formal models for specifying the desired behavior

of a SEP. We show that computing the optimal message handling policies for these models

is intractable in general, but identify key restrictions that enable these problems to be

solved in polynomial time while still enabling a range of useful functionality. We then

address a number of significant problems related to SEP usage by non-technical people. In

particular, we design a high-level language for SEP templates that greatly simplifies the

process of specifying and invoking a new SEP. In addition, we show that it is possible to

verify, in polynomial time, that a given template will always produce a valid instantiation,

and demonstrate how to generate explanations for the SEP’s behavior in polynomial time.

Finally, we describe how to meet our principles of gradual adoption and ease of use via a

template-based semantic email server that functions seamlessly for participants with any

mail client and with no a priori knowledge of semantic email.

Both systems have been fully implemented and deployed in a real-world environment,

allowing us to report on practical experience gained with actual users. Overall, this work

produces two novel, usable systems, as well as insights and techniques that can direct future

Semantic Web systems.

TABLE OF CONTENTS

List of Figures iv

List of Tables viii

Chapter 1: Introduction 1

1.1 Desiderata and Challenges for a Successful Semantic Web 2

1.2 Overview of the Solution . 4

1.3 Technical Contributions . 11

1.4 Outline of the Dissertation . 13

Chapter 2: Background 14

2.1 Enabling Technologies for the Semantic Web 14

2.2 Semantic Web Applications . 16

2.3 Content Provision for the Semantic Web . 29

2.4 Cross-cutting Issues . 34

2.5 Discussion . 37

Chapter 3: Mangrove 39

3.1 The Architecture of MANGROVE . 39

3.2 Semantic Services in MANGROVE . 52

3.3 Experience with MANGROVE . 59

3.4 Related Work . 66

3.5 Summary . 70

Chapter 4: Semantic Email 71

4.1 Introduction . 71

i

4.2 Semantic Email Processes . 73

4.3 Logical Model of SEPs . 76

4.4 Decision-theoretic Model of SEPs . 82

4.5 Implementation and Usability . 91

4.6 Experience . 97

4.7 Related Work . 98

4.8 Summary . 102

Chapter 5: Specifying Semantic Email Processes 103

5.1 Introduction . 103

5.2 Overview of SEP Creation . 105

5.3 Concise and Tractable Representation of Templates 105

5.4 Template Instantiation and Verification . 113

5.5 Automatic Explanation Generation . 118

5.6 Related Work . 127

5.7 Summary and Implications for Agents . 128

Chapter 6: Conclusions 131

6.1 Contributions . 131

6.2 Future Directions . 135

Bibliography 141

Appendix A: Mangrove Schema 160

Appendix B: Semantic Email Declarations and Templates 166

B.1 Interpretation of SEP Declarations . 166

B.2 Ontology for Describing SEP Templates . 169

B.3 Ontology for Describing SEP Parameter Descriptions 180

ii

Appendix C: Proofs 183

C.1 Proof of Theorem 4.3.1 . 183

C.2 Proof of Theorem 4.3.2 . 184

C.3 Proof of Theorem 4.4.1 – bounded suggestions 186

C.4 Proof of Theorem 4.4.1 – unlimited suggestions 189

C.5 Proof of Theorem 4.4.2 . 192

C.6 Proof of Theorem 5.4.1 . 194

C.7 Proof of Theorem 5.4.2 . 195

C.8 Proof of Theorems 5.5.1 and 5.5.2 . 199

C.9 Proof of Theorem 5.5.3 . 199

C.10 Proof of Theorem 5.5.4 . 200

C.11 Proof of Theorem 5.5.5 . 202

C.12 Proof of Theorem 5.5.6 . 202

iii

LIST OF FIGURES

1.1 The Mangrove architecture and sample services. Authors produce structured con-

tent using our annotation tool, then explicitly publish this content. Published data is

immediately stored in the RDF database and available to a range of useful semantic

services. In addition, registered services are notified about new data publications,

enabling them to immediately update their outputs and provide feedback to the

content author. 5

2.1 A taxonomy of Semantic Web applications. At the highest level, the applications are

classified as either information-providing or action-oriented. While both categories

have received significant research attention, significantly more information-providing

applications have been deployed for actual usage. 16

2.2 Sample search applications: SHOE PIQ (left) and QuizRDF (right). PIQ “semantic-

only” queries (shown in the top pane) are constructed using a complex graphical

interface, while QuizRDF “semantic+text” queries use a combination of keywords

and selection boxes. 17

2.3 Semantic browsers and portals: The Conzilla browser (left) and the KA2 community

web portal (right). The former requires a special tool to navigate among the dis-

played concepts, while the latter produces HTML that can be viewed with a normal

browser. 19

2.4 SHOE’s TSE Path Analyzer (left) and the Snippet Manager (right), showing a col-

lection of bookmarks. 22

2.5 The TRELLIS application, showing a user reviewing the justification for an earlier

decision. 23

iv

2.6 RCal (left), showing a schedule imported by the user, and ITtalks (right), showing

a summary of relevant talks. 25

2.7 A screenshot from Sirin et al.’s program to compose multiple services, here construct-

ing a foreign language translator. This program is freely downloadable (though not

directly executable) from the web. 27

3.1 The Mangrove architecture and sample services. Semantic Email (Chapters 4 and

5 is implemented as a Mangrove service in order to facilitate interoperability with

other Mangrove services. 40

3.2 Example of HTML annotated with MTS tags. The uw: tags provide semantic

information without disrupting normal HTML browsing. The <reglist> element

specifies a regular expression where ‘*’ indicates the text to be enclosed in MTS tags. 42

3.3 The Mangrove graphical annotation tool. The pop-up box presents the set of tags

that are valid for annotating the highlighted text. Items in gray have been tagged

already, and their semantic interpretation is shown in the “Semantic Tree” pane on

the lower left. The user can navigate the schema in the upper left pane. 44

3.4 Example output from the service feedback mechanism. Services that have registered

interest in a property that is present at a published URL are sent relevant data from

that URL. The services immediately return links to their resulting output. 47

3.5 The calendar service as deployed in our department. The popup box appears when

the user mouses over a particular event, and displays additional information and its

origin. For the live version, see www.cs.washington.edu/research/semweb. 52

3.6 The semantic search results page. The page reproduces the original query and re-

ports the number of results returned at the top. Matching pages contain the phrase

“assistant professor” and the properties <facultyMember> and <portrait>. The ?

in the query instructs the service to extract the <portrait> from each matching page. 55

3.7 The Who’s Who service as deployed in our department. Notice how it allows users

to provide as much information as they like, in whatever format is desired. 56

v

3.8 The number of distinct visits to the Mangrove calendar during each month. These

values exclude traffic from webcrawlers and Mangrove team members. 64

4.1 The invocation and execution of a SEP. The originator is typically a person, but

also could be an automated program. The originator invokes a SEP via a simple web

interface, and thus need not be trained in the details of SEPs or even understand

RDF. 74

4.2 A web form used to initiate a “balanced collection” process, such as our balanced

potluck example. For convenience, clicking submit converts the form to text and

sends the result to the server and a copy to the originator. The originator may later

initiate a similar process by editing this copy and mailing it directly to the server. . 92

4.3 A message sent to participants in a “balanced potluck” process. The bold text in

the middle is a form used for human recipients to respond, while the bold text at

the bottom is a RDQL query that maps their textual response to RDF. 96

5.1 The creation of a Semantic Email Process (SEP). Initially, an “Author” authors a

SEP template and this template is used to generate an associated web form. Later,

this web form is used by the “Originator” to instantiate the template. Typically, a

template is authored once and then instantiated many times. 105

5.2 SEP template for a “Balanced Potluck” process. The template is shown in N3 for-

mat [16], which is an alternative syntax for writing RDF. Variables in bold (e.g.,

$Choices$) are parameters provided by the originator when instantiating the tem-

plate. Other variables are defined inside the declaration (e.g., x, $TotalGuests$)

or are automatically computed by the system (e.g., $Bringing.acceptable()$). . 110

5.3 Part of a parameter description for the potluck template of Figure 5.2. Additional

elements for variables such as MaxImbalance are not shown. 114

vi

5.4 Examples of proof trees for rejecting response r. Each node is a possible state of the

data set, and node labels are constraints that are not satisfied in that state. In both

cases, response r must be rejected because every leaf node (shaded above) does not

satisfy some constraint. 123

vii

LIST OF TABLES

2.1 Different types of search. Textual inputs are generally based on keywords, while

semantic inputs may be a combination of text and tags [41, 125], derived from a

form [82, 121], or constructed graphically [83]. Either type of input may then be

used to construct an output based on textual and/or semantic sources. 18

2.2 Types of semantic browsers and portals. Figure 2.3(left) demonstrates the “Object

view” type of output. 20

2.3 The timeliness of benefit from authoring semantic content. 32

2.4 Techniques for making inference practical. 35

3.1 Comparison of Search Services. In each box, the first value is the f-score of the query,

followed by the precision and recall in parentheses. Within each row, the values in

bold represent the maximum value for that metric. 62

4.1 Summary of theoretical results for D-SEPs. The last two columns show the time

complexity of finding the optimal policy for a D-SEP with N participants. In gen-

eral, this problem is EXPTIME-hard but if the utility function is K-partitionable

then the problem is polynomial time in N . (An MDP can be solved in time guar-

anteed to be polynomial in the number of states, though the polynomial has high

degree.) Adding restrictions on how often the manager may send suggestions makes

the problem even more tractable. Note that the size of the optimal policy is finite

and must be computed only once, even though the execution of a SEP may be

infinite (e.g., with “AnyUnlimited”). 88

5.1 Trigger conditions for a SEP notification. 108

viii

5.2 Comparison of the size (in number of lines) of different ways of specifying a SEP.

For the procedural prototype, the first numerical section displays the size of the Java

code for encoding the SEP functionality, size of the HTML for acquiring parameters

from the originator, and the total of these two. For the declarative approach, the

second section displays the size of the template (OWL, in N3 format), size of the

parameter description (see Section 5.4), and the total. The final column shows

the percentage reduction in the size of a SEP when changing from the procedural

approach to the declarative approach. 113

6.1 Summary of the roles of each person (or other agent) involved in the execution of an

agent, and how they would benefit from a high-level, declarative template language

with safety testing and explanation generation. This table shows that these types of

features could benefit a broad range of agent systems, both email-based and otherwise.134

ix

ACKNOWLEDGMENTS

I am indebted to many people for their guidance and support along the path to this

dissertation. First, I’d like to thank my two thesis advisors, Oren Etzioni and Alon Halevy.

Both were invaluable in helping me to learn to research and to understand a new field. They

joked that it was tough to have two opinionated advisors, but actually they complemented

each other extremely well. Oren forced me to sharpen my ideas and always pushed me to

say more with fewer words. His advice and direction taught me much about life, research,

and the academic world. Alon helped me to navigate the realities of the Semantic Web and

its relation to the database world. His guidance and willingness to suffer through the long

details of the proofs were critical to the theoretical aspects of this dissertation. I also owe

Alon a special thanks for challenging me to finish this dissertation far before I had originally

thought possible.

I was fortunate enough to work with many other talented faculty at the University

of Washington. Susan Eggers was my first advisor at UW. Susan’s enthusiasm for the

department and Seattle was a big factor in my decision to come to UW, and her keen

attention to detail and vision for the big picture were indispensable in my early research

in Computer Architecture. Steve Gribble and Hank Levy were involved in both my early

research with Susan as well as with the later work that would become my dissertation.

Steve’s insight and explanations were always helpful, particularly in our many discussions

with Susan about processor scheduling and performance effects. Hank’s involvement ranged

from my first work on speculation for SMT processors to the formation of Semantic Email.

Hank was both a valuable critic and a great encourager of my ideas, and I am grateful for

all his help.

Thanks to the many faculty from the Princeton University Electrical Engineering de-

partment, who encouraged my study of computers. Special thanks to Margaret Martonosi,

x

who advised my independent work and helped me to decide on graduate studies in Seat-

tle. I’m also grateful to Bede Liu for his advice and for guiding me to that first job after

graduation.

I’ve been blessed with many friends that made my time at the University of Washington

so enjoyable. Donald Patterson and Gerome Miklau have been my closest companions

since the first days of Automata, through all the ups and downs of research, life, and

parenthood. Thanks for the many lunches, laughs, and not infrequent advice. Thanks also

to the many other friends and officemates from the department who have given countless

hours of help with courses, research, and practice talks. I owe a special debt to Doug

Zongker for invaluable help with LaTeX, images, and all things Linux.

Family has always been a great help to me. On the east coast, thanks to my parents

and siblings for all the love and support over the years. Farther west, I offer my thanks and

much love to my wife Sophie, for the many wonderful years so far. We came to Seattle so

that we could pursue further study together, and she has truly blessed me in this time with

constant help, encouragement, and love. I also thank my son Ryan, who was born just as I

began the research for this dissertation — on the very day, in fact, that the first Mangrove

poster submission was due. It’s been a joy to watch Ryan grow up as my own research has

matured. As we eagerly await the birth of our second child (but hopefully not before I get

this dissertation to the graduate school!), I look forward to many new beginnings with my

family by my side.

Most importantly, I thank and praise my Savior Jesus Christ, who has given me the

ability to complete this task. May all the glory be given unto Him.

Not to us, O Lord, not to us,
but to your name be the glory,
because of your love and faithfulness.
(Psalm 115:1)

xi

1

Chapter 1

INTRODUCTION

The Semantic Web is an extension of the current web in which information is

given well-defined meaning, better enabling computers and people to work in

cooperation.[15]

In the Scientific American article quoted above, Berners-Lee et al. propose a future

version of the World Wide Web (WWW) in which the underlying data is machine under-

standable and applications can exploit this data for improved querying, aggregation, and

interaction. Despite significant amounts of effort, however, the “Semantic Web” has yet to

achieve widespread impact. In particular, only a very small fraction of the people familiar

with the WWW have ever used a Semantic Web application, and even fewer people have

contributed any of the content that is needed to make the Semantic Web truly useful.

This dissertation examines how to make the Semantic Web a reality. More specifically,

our goal is to enable and motivate non-technical people to participate in the Semantic Web.

This chapter describes why this particular goal is both significant and challenging, and

outlines our proposed solution. We begin in Section 1.1 by describing some desiderata for

a successful Semantic Web, explaining why non-technical persons are so important to its

success, and defining what we mean for such persons to participate. We also highlight a

number of challenges that arise when trying to meet our goal. Next, Section 1.2 outlines

our solution to these challenges. We first propose three design principles that a Semantic

Web system must satisfy in order to achieve participation by non-technical people. We then

introduce two novel, deployed Semantic Web systems: Mangrove and Semantic Email.

These systems are used to demonstrate the importance of the design principles and to

explore the concrete mechanisms needed to support these principles in real systems, a task

2

that is continued in Chapters 3 to 5. Finally, we summarize the technical contributions of

this work in Section 1.3 and give an outline of the rest of the dissertation in Section 1.4.

1.1 Desiderata and Challenges for a Successful Semantic Web

A successful Semantic Web must minimally consist of useful applications, sufficient content,

and many participants. Clearly an information system without interesting applications is of

little practical use, as is a system without enough content to support its applications. Like-

wise, to have noticeable impact a system must attract a significant number of participants,

a requirement that precludes appealing only to technically-trained people.

In addition, in this work we will assume two additional desiderata that, while not strictly

necessary for achieving a successful system, can greatly increase the applicability and use-

fulness of the system. First, the system should support scalability, both in terms of amounts

of data and numbers of users. While practical, small-scale Semantic Web systems can be de-

veloped for local intranets or particular communities, scalability supports our aim of having

many participants and enables the system to exploit new data sources as they arise. Sec-

ond, we assume that a Semantic Web system will be based on declarativism. Representing

data and services declaratively (i.e., as axioms or rules, rather than as procedures or data

structures) can greatly simplify the design of the system. More importantly, declarativism

may enable interoperability with other information systems (e.g., to enable data reuse in

other contexts) and facilitate automated reasoning (e.g., to infer useful information that

was not explicitly stated).

Thus, to succeed the Semantic Web should not only provide interesting, scalable, and

declarative applications and content, but must readily accommodate participants with lim-

ited technical sophistication. Participation can of course take many forms. In the simplest

case, non-technical people might just utilize the Semantic Web for specific purposes, much

as many people today access powerful search services via Google or financial databases

via an automated teller machine (ATM). On the other hand, such people might also con-

tribute declarative content to the Semantic Web, just as millions have already created web

pages. This represents a formidable goal, but the growth of the web demonstrates that, with

3

sufficient tools and motivation, average people can accomplish what would have seemed far-

fetched just fifteen years ago. Furthermore, given the expense and challenge of obtaining

semantic content in other ways, any system that does not actively include non-technical

content contributors is certain to miss out on a large body of valuable information.

These desiderata are inter-related: more content makes applications more useful, and

useful applications attract more participants. More participants may produce more content,

both of which increase the need for scalability and increase the potential interoperability

gains enabled by declarativism. We focus in this dissertation on appealing to the large

number of non-technical participants who must be enticed to take part in the Semantic

Web. Or, to restate our goal more precisely, we wish to enable and motivate non-technical

people to both utilize and contribute content for the Semantic Web. Achieving this goal will

necessarily entail significant work related to obtaining scalable, declarative applications and

content, but a focus on enabling and motivating participants will be our central theme.

Unfortunately, achieving this goal presents a number of challenges. Most significantly,

there are currently very few applications and very little content for the Semantic Web, and

hence little motivation to explore Semantic Web applications or to author declarative con-

tent. In addition, even if authors were so motivated, authoring such content can be very

challenging for non-technical people because of the complex languages involved, the lack of

simple, ubiquitous authoring tools, and the need to understand how their data relates to an

existing ontology. In essence, authoring is complicated by a fundamental “chasm” [76] be-

tween the structured content required by declarative systems and the unstructured content

(e.g., text files, spreadsheets) that is familiar to most users. Moreover, data often evolves

over time, and this evolution imposes an ongoing maintenance cost on its authors to ensure

that the declarative data remains consistent with its original form. In sum, the cost is

too high and the benefit is too low to persuade non-technical people to participate in the

Semantic Web. The next section will introduce our solution to these challenges.

4

1.2 Overview of the Solution

We posit that a successful Semantic Web system must address the above challenges by

adhering to the following three design principles:

• Instant Gratification: Most importantly, the system must provide an immediate,

tangible benefit to users for both utilizing its applications and for contributing content.

Applications must have a clear, useful purpose and sufficient content. Likewise, content

creation should be motivated by an application that immediately consumes the content

and yields satisfaction to the author, not by some potential future benefit — as when

the consuming application must await a web crawl [44, 83] or may not exist at all (e.g.,

MailSMORE [98]).

• Gradual Adoption: The system must be highly useful even when only a small number

of people have adopted the technology. In particular, applications must provide enough

data to make them initially valuable, and must not rely exclusively on network effects

that are not initially present. Likewise, individual users should not have to fully com-

mit to the system before incurring any benefits from the technology. Instead, systems

should allow users to begin without any software installation and permit content to be

structured and contributed incrementally over time.

• Ease of use: The entire system must be simple enough for a non-technical person to use.

It should not expect such users to understand declarative languages (e.g., RDF [107]),

require the use of complex tools, or insist that all data obey a set of integrity constraints.

We have applied these principles to the design, implementation, deployment, and evaluation

of two distinct systems: Mangrove, a community Semantic Web system, and Semantic

Email, a system for leveraging declarative content to automate email-mediated tasks. Below

we summarize these systems and elaborate on their application of the design principles.

1.2.1 Mangrove

Mangrove is a system that provides novel semantic services that are intended to motivate

specific communities of people to annotate their existing content from the web. For instance,

5

Pages RDF Database

Semantic
Search

Parser

Services

Who's WhoQuery

Notify

Cache

Personal
Homepage

Course
Homepage

Project
Homepage

Annotation

Published

Publication

Crawled
Pages

Google

Annotation Tool

Calendar
Cache

Crawler

Feedback

Authors

Notifier

Semantic
Email

Figure 1.1: The Mangrove architecture and sample services. Authors produce structured content
using our annotation tool, then explicitly publish this content. Published data is immediately stored
in the RDF database and available to a range of useful semantic services. In addition, registered
services are notified about new data publications, enabling them to immediately update their outputs
and provide feedback to the content author.

consider the web site of our computer science department. The web pages at this site con-

tain numerous facts including contact information, locations, schedules, publications, and

relationships to other information. If users were enabled and motivated to semantically an-

notate these pages, then the pages and annotations could be used to support both standard

HTML-based browsing as well as novel semantic services. For example, we have created a

departmental calendar that draws on annotated information found on existing web pages,

which describe courses, seminars, and other events. Because the calendar is authoritative

and prominently placed in the department’s web, events that appear in it are more likely

to receive the attention of the department’s community. As a result, people seeking to

advertise events (e.g., seminars) are motivated to annotate their pages, which leads to their

automatic inclusion in the department’s calendar and in the Semantic Web.

Figure 1.1 shows the architecture of Mangrove organized around the following three

phases of operation. First, in the annotation phase, authors use our graphical annotation

tool or an editor to insert declarative annotations into existing HTML documents. Second,

in the publication phase, authors can explicitly publish annotated content, causing the

parser to immediately parse and store the contents in an RDF database. The notifier then

passes information about relevant updates to registered services, who may send feedback

that informs authors of how their data was used and of any errors that were encountered.

Finally, in the services phase, newly published content is immediately available to a range

6

of services that access the content via RDF queries. Because the data and queries are

represented declaratively, content may be authored with one service in mind but utilized

by a range of different services. For example, a page may be annotated for Mangrove’s

Who’s Who service but then provide personal information that is usable by the departmental

calendar.

This architecture and our novel semantic services support the design principles as follows:

• Instant Gratification: In the HTML world, a newly authored page is immediately ac-

cessible through a browser. We mimic this feature in Mangrove by making annotated

content instantly available to services via the explicit publish mechanism. We posit

that semantic annotation will be motivated by services that consume the annotations

and result in immediate, tangible benefit to authors. Mangrove provides a number of

such services, including the department calendar, a publications database, and a novel

search service that combines declarative and non-declarative information. In addition,

the service feedback mechanism ensures that authors can immediately locate the results

of their work and correct errors as necessary. Note that our explicit publish mecha-

nisms and registration of services for such feedback enables Mangrove to provide this

immediate response in a much more scalable manner than would be possible in systems

based on periodic web crawls (e.g., [44, 83]).

• Gradual Adoption: Mangrove provides significant “seeding” of its services to make

them highly useful even when very few users have contributed content to the system.

In addition, Mangrove services are all accessible via an unmodified commodity web

browser. For content creation, we designed MTS (the Mangrove Tagging Syntax), an

“inline” annotation syntax that allows existing content to be annotated incrementally

and in a way that is resilient to changes on the underlying data. This is in contrast

to languages such as RDF that force existing content to be duplicated in order to be

annotated, creating a future maintenance burden [125, 81].

• Ease of Use: Mangrove services use simple abstractions like calendars, lists, and

text queries that are already familiar to web users. For content creation, our graphical

7

web-page annotation tool enables users to easily annotate existing HTML content. In

addition, to ease semantic authoring Mangrove does not require authors to obey

integrity constraints, such as data uniqueness or consistency. Data cleaning is deferred

to the services that consume the data. Furthermore, Mangrove maintains and displays

the data provenance (i.e., source URL) of every piece of data that is used in a service.

This provides a simple, lightweight method for dealing with issues of trust, similar to

how users ascertain the reliability of information on the web today.

Mangrove has been deployed in our department for almost two years, permitting us to

make a number of observations about its impact. First, we found that simple services such

as the calendar can offer substantial added value compared to other methods of accessing

the same information. For instance, the Mangrove calendar quickly became a popular

service after it was introduced, despite the fact that identical information was almost always

available elsewhere on the web. Second, we found that users may be willing to annotate

their existing documents if the process is easy and interesting services exist to use the

annotations. For instance, in less than two weeks thirty graduate students made the effort

to structure and submit their personal information so that it could be used in Mangrove’s

version of a new departmental Who’s Who service.

Chapter 3 describes Mangrove’s architecture more completely and examines the mech-

anisms that support our three design principles. We also discuss Mangrove’s initial se-

mantic services and report in more detail on experience gained with this system.

1.2.2 Semantic Email

Semantic Email is a system that motivates people to add basic declarative content to some

of their email messages in order to obtain automated processing of and reasoning with their

mail. Just as Mangrove seeks to alter the cost/benefit equation related to the structuring

of web data, Semantic Email identifies a particular pain point where the addition of some

structured content can have a large impact. Like the WWW, email is a vast information

space where people spend significant amounts of time, yet that typically has no semantic

features (aside from generic header fields). While the majority of email will remain this

8

way, we argue that adding semantic features to email offers opportunities for improved

productivity while performing some very common tasks.

Consider several examples:

• Information Dissemination: Sending a talk announcement via email could also result

in posting the announcement to a talks web site and sending a reminder the day before

the talk.

• Event Planning: Imagine sending mail asking the members of a program committee

their preferences for the PC dinner, and having semantic email automatically tabulate

the responses, periodically reminding those that have not responded.

• Report Generation: Consider asking a set of managers for projected budgets and

having the email system automatically tabulate the responses, possibly requiring the

values to satisfy certain individual or aggregate constraints.

• Auction/Giveaway: Imagine sending an email announcement offering to give away

(or auction) some tickets that you cannot use. The semantic email system could give

out the tickets to the first respondents, then politely respond to subsequent requests

when all tickets are claimed.

Because email is not set up to handle these types of tasks effectively, accomplishing them

manually can be tedious, time-consuming, and error-prone. Consequently, we designed a

novel, general model of semantic email processes (SEPs). These processes support the

common task where an originator wants to (1) ask a set of participants some questions, (2)

collect their responses, and (3) ensure that the results satisfy some set of goals. In order to

satisfy these goals, the SEP manager may utilize a number of interventions such as rejecting

a participant’s response or suggesting an alternative response.

Our aim in this work is to sketch a general infrastructure for SEPs and to analyze the

inference problems that semantic email needs to solve to manage processes effectively and

guarantee their outcome. This leads to two primary challenges.

First, how can the manager automatically pursue a wide variety of goals on the orig-

inator’s behalf, and do so in a way that scales to support a large number of originators,

9

participants, and goals? To address this challenge, Chapter 4 defines and explores two useful

models for specifying the goals of a process and formalizing when and how the manager of

the process should intervene. In the logical model, the originator specifies a set of constraints

over the data set that should be satisfied by any process outcome. This model is intuitive,

but suffers from an inability to strive for partially satisfied goals and a disregard for the

costs of its interventions. In the decision-theoretic model, we address these shortcomings

via a probabilistic framework where the goal of a SEP is a function representing the utility

of possible process outcomes. Both models are useful in different situations; Chapter 4

considers their relative strengths in more detail.

For both models we analyze several important and practical reasoning problems. In

particular, we show that, for the logical model, the problem of determining if a response

is acceptable with respect to the constraints is NP-complete in the number of participants

(Theorem 4.3.1), and that, for the decision-theoretic model, the corresponding problem of

determining the optimal message handling policy is PSPACE-hard or worse (Theorem 4.4.1).

These are significant limitations, since the manager must solve one of these problems to de-

cide when to intervene in a SEP, and for many SEPs it is natural to wish to scale to

large numbers of participants. Consequently, we identify suitable restrictions on SEPs that

retain enough power to express all the examples given previously, but that enable tractable

reasoning. Intuitively, these restrictions — bounded constraints (Definition 4.3.5) and K-

partitionable utilities (Definition 4.4.1) — capture the notion that for many SEPs what

matters is the number of people whose responses belong to a fixed number of groups (e.g.,

how many responded Yes?), rather than the specific responses of each participant. We show

that these restrictions enable reasoning that is polynomial time in the number of partici-

pants, both for the logical (Theorem 4.3.2) and decision-theoretic models (Theorem 4.4.2).

Collectively, this analysis gives a solid theoretical footing to SEPs and enables a host of

practical reasoning.

Second, leveraging the theory above requires a formal, declarative SEP specification to

execute. How can a non-technical user easily create such a specification that corresponds to

his goals? Chapter 5 tackles this challenge with a solution based on SEP templates. This

approach shifts most of the complexity of SEP specification from untrained originators onto

10

a much smaller set of trained authors, but also raises the problems of generality, safety, and

understandability. To address generality, we present a high-level, declarative language for

specifying SEP templates. This language vastly simplifies the task of creating new SEPs,

shrinking the size of such specifications by 80%-90% compared to an original procedural

prototype. In addition, this language provides a number of features such as quantification,

guards, and set manipulation that make it easier for a single SEP template to be applicable

in many different situations. This flexibility, however, can lead to potential safety problems.

In particular, to avoid frustrating the originator we must ensure that every possible instan-

tiation of a template is executable, yet checking this property manually can be very difficult

for the SEP author. We formally define this problem of verifying instantiation safety and

show that it is NP-complete (Theorem 5.4.1). However, we also show that by applying a

few reasonable restrictions (e.g., to restrict the number and type of quantifications), this

problem can be solved in time polynomial in the size of the template (Theorem 5.4.2). Fi-

nally, for understandability, we examine how to automatically generate explanations for the

manager’s interventions in terms of why a particular response could not be accepted and

what responses would be more acceptable. We show that, while the general case is NP-hard

or worse (Theorems 5.5.1 and 5.5.4), if we restrict the goals to be bounded/K-partitionable

and the explanations to be of bounded size, then these computations can be solved in poly-

nomial time (Theorems 5.5.2, 5.5.3, 5.5.5, and 5.5.6). Together, our declarative template

language and associated theory vastly simplifies the specification of SEPs and enables their

safe, explainable execution.

Semantic Email is another instance of a system that demonstrates the usefulness of our

three design principles:

• Instant Gratification: Users are not expected to annotate outgoing or incoming mail

for some vague future benefit. Instead, we provide untrained users with existing, useful

SEPs that can be immediately invoked and yield a tangible output in the form of

messages sent and processed on the their behalf. Our formal analysis permits this

processing to scale to complex goals involving many participants.

11

• Gradual Adoption: At first, semantic email will be initiated by only a small number

of “early adopters.” If semantic email could be profitably exchanged only among these

users, it would have very limited applicability. Instead, we allow the originator to include

any person in the execution of a SEP, regardless of whether they have ever even heard

of semantic email. In addition, a SEP can be originated by anyone via a simple web

interface, without the need to install any software.

• Ease of use: We provide SEP templates that encapsulate common email tasks, making

it easy for anyone to originate a new SEP without any programming or understanding

of the system’s internals. In addition, email messages that are exchanged contain simple

text forms that can be handled by any email client and without any knowledge of RDF.

Finally, our formal analysis allows the system to automatically perform useful inferences,

such as calculating the set of responses which are currently acceptable with respect to

the process’s goals, in order to aid participants in deciding upon their responses.

Note that SEPs effectively integrate the processes of application usage and content creation.

In particular, the originator creates declarative content (in terms of participants, choices,

and goals) while making a request for an application service (e.g., a SEP execution). Like-

wise, participants respond to SEP requests in a fashion similar to how they would respond

to any email request, but in such a way that their responses become interpretable in RDF.

This RDF content may be helpful for future reasoning tasks (see Chapter 4). Thus, any

person involved in the execution of a SEP automatically becomes a content contributor to

some degree, accomplishing a significant part of our goal.

1.3 Technical Contributions

Despite significant effort, the Semantic Web has yet to achieve widespread participation by

non-technical people. This dissertation makes an important step towards meeting that goal.

As the foundation for our work, we identify three design principles that are essential for

producing a successful Semantic Web system: instant gratification, gradual adoption, and

ease of use. Satisfying these principles ensures that the system’s usage and content creation

are well motivated, that the system is beneficial and poised to grow even in its infancy, and

12

that the entire system is accessible to non-technical people. We then apply these principles

in two fully-deployed systems to make the following contributions:

• Mangrove: We describe the Mangrove architecture that supports the complete Se-

mantic Web “life-cycle” from content authoring to Semantic Web services. We demon-

strate how elements of the architecture support each of our three design principles. In

particular, we demonstrate how explicit publish and feedback mechanisms can provide

instant gratification, how seeding and inline annotation with MTS can bolster gradual

adoption, and how simple interfaces for content creation and service invocation can sup-

port ease of use. Furthermore, we describe several novel semantic services that motivate

the annotation of HTML content by consuming semantic information. We show how

these services can provide tangible benefit to authors even when pages are only sparsely

annotated. These are some of the first “semantic services” that are invoked by ordinary

users as part of their daily routine.

• Semantic Email: We introduce a paradigm for semantic email and describe a broad

class of semantic email processes. To support these SEPs, we introduce two formal

models for specifying the goals of a process. In both cases we show that the core

reasoning problems of determining when to intervene in a process is NP-hard or worse,

but that reasonable restrictions can enable each problem to be solved in polynomial time.

We also describe how to automatically generate explanations for these interventions

and identify cases where such explanations can be computed in polynomial time. In

addition, we define a declarative language for specifying SEPs that vastly simplifies the

task of creating general SEP templates. For these templates, we show the computational

complexity of the important problem of instantiation safety, and demonstrate conditions

under which this problem can be solved in polynomial time. These capabilities all

support instant gratification by enabling automated, goal-directed, explainable, and

scalable processing of messages on the originator’s behalf. Finally, we describe how to

meet our principles of gradual adoption and ease of use via a template-based semantic

email server that functions seamlessly for participants with any mail client and with no

a priori knowledge of semantic email.

13

In addition, our work on the specification of general, safe, and explainable SEP templates

contributes to the field of intelligent agents. For instance, almost any agent needs some

capability to explain its behavior, and many agents react to the world based on constraints

or expected utilities. We show that generating explanations can be NP-hard in general,

but that the combination of simple explanations and modest goal restrictions may enable

explanation generation in polynomial time. Likewise, an agent template should support

a wide range of functionality, yet ensure the safety of of each possible use. We motivate

the need for one such type of safety (instantiation safety), show how to verify it efficiently,

and highlight the need to carefully balance flexibility in the template language with the

tractability of such verification.

1.4 Outline of the Dissertation

The next chapter provides some background on the Semantic Web, focusing particularly

on applications that have been previously described in the literature and different meth-

ods for obtaining semantic content to support these applications. Chapter 3 describes the

Mangrove system and its application of our design principles, while Chapter 4 serves the

same purpose for Semantic Email. Chapter 5 describes our language for specifying semantic

email processes and analyzes the three challenges of generality, safety, and understandability

that arise in this context. Related work is discussed within each chapter as appropriate.

Finally, Chapter 6 concludes and considers directions for future work. The appendices con-

tain proofs for all of the theorems given in the body of the dissertation and some additional

technical details on Mangrove and Semantic Email.

Parts of this dissertation have been previously published. Mangrove (Chapter 3) is

described in a ISWC-2003 paper [126] and more briefly in a CIDR-2003 paper [76]. Semantic

Email 4 (Chapter 4) has been described in a WebDB workshop paper [56] and a WWW-

2004 paper [127]. Finally, parts of our language for specifying semantic email processes and

our analysis of automatic explanation generation (Chapter 5) were described in a workshop

paper [129] and will appear as a ISWC-2004 paper [128].

14

Chapter 2

BACKGROUND

This chapter provides some background on the Semantic Web and its supporting tech-

nologies, focusing particularly on proposed applications and content generation methods.

Where appropriate, we describe how existing systems have or have not complied with the

three design principles introduced in Chapter 1. First, Section 2.1 provides a very brief

overview of technology and standards that could underly the Semantic Web. In Section 2.2,

we introduce a taxonomy of Semantic Web applications, describe existing implementations

of these ideas, and examine important factors in making these applications usable by non-

technical people. Section 2.3 then examines content creation. We first discuss creation via

automated techniques and technical users, because this can be an important part of making

applications initially useful, then examine creation by non-technical users in more detail.

Next, Section 2.4 discusses cross-cutting issues such as inference and trust management that

impact both application usage and content creation. Finally, Section 2.5 summarizes the

implications of this survey and its relation to the remainder of the dissertation.

2.1 Enabling Technologies for the Semantic Web

Recall the definition of the Semantic Web from the previous chapter:

The Semantic Web is an extension of the current web in which information is

given well-defined meaning, better enabling computers and people to work in

cooperation. [15]

The remainder of this chapter discusses a number of applications of such cooperation and

examines how to produce the needed supporting information. This section briefly describes

how to express and manipulate information with such “well-defined” meaning.

15

Recent Semantic Web systems are almost always based on the standard language

RDF [107]. RDF knowledge can be written down in many ways, but the most common uses

a XML serialization. For instance, the following RDF example states that there is a Person

whose name is “John Meyers” and whose mbox (personal mailbox) is “myers@tennis.org.”

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:foaf="http://xmlns.com/foaf/0.1/">

<foaf:Person>

<foaf:name>John Myers</foaf:name>

<foaf:mbox>myers@tennis.org</foaf:mbox>

</foaf:Person>

</rdf:RDF>

In this dissertation, we refer to data expressed in RDF as semantic data (though occasion-

ally we will refer to its declarative approach). Such data has two key properties. First, it

represents the data in a logical manner. For instance, the above snippet makes a number of

abstract statements with a subject, predicate, and object, rather than specifying particular

data structures or files. Second, RDF data is (at least potentially) ontology-based. Specif-

ically, RDF permits users to refer to known schemas or ontologies that can define shared

terminology such as name and mbox. Such ontologies are referred to via a unique namespace,

e.g., http://xmlns.com/foaf/0.1/. Ontologies provide a shared understanding that, to-

gether with the declarative data representation, can potentially enable different systems to

utilize and understand data written by different users who did not communicate but who

both chose to use the same ontology. Of course, dealing with problems that arise when

terms are used inconsistently or different terms refer to the same concept is a significant

challenge [48, 77].

A number of additional points regarding RDF are relevant. First, the above snippet

demonstrates that RDF syntax is somewhat verbose and difficult to write by hand. Second,

RDF can be embedded inside HTML documents, but representing parts of existing HTML

content in RDF requires that such content be replicated in separate HTML and RDF sec-

tions [125, 81]. Third, RDF schemas permit the description of only fairly basic ontological

relationships, e.g., subclass, subproperty, domain, and range restrictions. Languages such as

16

Semantic Web Applications

Information-Providing
Applications

Action-Oriented
Applications

Search Browsing
& Portals

Data
Aggregation

Decision
Support

Email
Management

Time
Management

Web Service
Interaction

Figure 2.1: A taxonomy of Semantic Web applications. At the highest level, the applications are
classified as either information-providing or action-oriented. While both categories have received sig-
nificant research attention, significantly more information-providing applications have been deployed
for actual usage.

DAML+OIL [86] and OWL [178] build on top of RDF to allow more expressiveness. Finally,

because RDF and OWL are widely accepted standards, there is the potential for significant

reuse of data and tools based on these languages. Indeed, freely available tools such as

Jena [123] and Sesame [27] vastly simplify the task of creating Semantic Web applications.

2.2 Semantic Web Applications

Figure 2.1 presents a taxonomy of Semantic Web applications, divided broadly into

information-providing applications and action-oriented applications. Each category is fur-

ther broken down into three or four subcategories. While not covering all possible or pro-

posed applications, this taxonomy does include the vast majority of applications that have

been discussed in the literature. Below we elaborate on each category in turn.

2.2.1 Information-providing Applications

This section describes applications that present information but do not perform world-

altering actions on behalf of the user.

Semantic Search

Most Semantic Web systems have provided some sort of search capability. Ini-

tially, such applications were “semantic-only,” e.g., they searched based only on

17

Figure 2.2: Sample search applications: SHOE PIQ (left) and QuizRDF (right). PIQ “semantic-
only” queries (shown in the top pane) are constructed using a complex graphical interface, while
QuizRDF “semantic+text” queries use a combination of keywords and selection boxes.

fully structured queries and data [83, 44, 120]. For instance, the SHOE PIQ

query in Figure 2.2(left) requests every Publication whose publicationResearch is

http://www.cs.umd.edu/projects/plus/SHOE/. A key problem, however, was that given

the very low coverage of existing semantic knowledge bases, there was likely to be no se-

mantic content related to a given query. In response, many applications have sought to

augment semantic search with some type of text-based search such as Google:

1. Semantic+text backup: Several systems added the feature to either automati-

cally [142] or easily [82] reformulate the semantic (e.g., structured) query and send it

to a standard text-based search engine.

2. Semantic+text union: Recently, TAP Search [74] proposed the inverse. Instead of

starting with a semantic query, TAP accepts standard textual queries from the user

and attempts to automatically construct a reasonable semantic query. The search

results then consist of the union of independently-executed textual and semantic search

results.

18

Table 2.1: Different types of search. Textual inputs are generally based on keywords, while semantic
inputs may be a combination of text and tags [41, 125], derived from a form [82, 121], or constructed
graphically [83]. Either type of input may then be used to construct an output based on textual
and/or semantic sources.

Search type Input type Output based on Examples

Textual Textual Textual query Google
Semantic-only Semantic Semantic query SHOE PIQ [83], WebKB-2 [121]
Semantic+text backup Semantic Sem. query; textual if fails SHOE [82], SoccerSearch [142]
Semantic+text union Textual Independent sem. and text. queries TAP Search [74]
Semantic+text synthesis Semantic Dependent sem. and text. queries QuizRDF [41]

3. Semantic+text synthesis: Finally, QuizRDF [41] (see Figure 2.2(right)) performs

both a textual and a semantic search based on an initial semantic query, but uses

information from the textual search to guide the semantic search. This feature can

enable more useful searches when web content is only partially annotated, and is also

the basis for the Mangrove search service described in Chapter 3.

Table 2.1 summarizes these different approaches. While the “semantic+text backup” tech-

nique avoids the embarrassment of returning no answers to a query, in the common case

it provides no improvement over existing textual search engines and thus is unlikely to be

used. The “semantic+text union” technique, employed by TAP, is interesting because it

enables untrained users to search simply by entering keywords. This search, however, is less

flexible (since the user cannot provide any guidance on what semantic information is being

sought) and cannot profitably combine information from the textual and semantic worlds.

Finally, the “semantic+text synthesis” technique, employed by QuizRDF, eliminates these

shortcomings of TAP, but requires the user to construct more complex semantic queries

(though QuizRDF’s user interface does provide some assistance in this process). A promis-

ing direction for future work is to combine these latter two approaches: permit users to

enter plain textual queries (like TAP), have the system deduce an appropriate query that is

split into textual and semantic portions (like those used by QuizRDF), then display results

to the user and guide her in query refinement as necessary. This technique would provide

more benefit to users while remaining consistent with our ease of use design principle.

19

Figure 2.3: Semantic browsers and portals: The Conzilla browser (left) and the KA2 community
web portal (right). The former requires a special tool to navigate among the displayed concepts,
while the latter produces HTML that can be viewed with a normal browser.

Semantic Browsers and Portals

Aside from improving search, semantic data has also been applied to enable direct semantic

browsing or to improve traditional HTML browsing:

• Semantics-only browsing: In the simplest case, systems may provide a semantic-only

browser (e.g., Conzilla [138], Boeing’s browser [10]). These applications permit users

to graphically navigate through a knowledge base, following semantic connections to

look for information of interest (see Figure 2.3(left)). The utility of these applications

obviously depends on the content of the knowledge base and the user’s ability to un-

derstand the connections and find relevant data. Recently, Haystack [152] presented a

more sophisticated browser that can exploit domain-specific presentation information

and that allows users to easily create their own associations and collections, expanding

upon the bookmark features of traditional web browsers.

• Semantics-boosted browsing: Alternatively, COHSE [12], Annotea [97], and Mag-

pie [55] start with a base of HTML content and modify this content based on associated

semantics. For instance, COHSE uses semantic annotations to add or suppress links in

existing HTML documents.

20

Table 2.2: Types of semantic browsers and portals. Figure 2.3(left) demonstrates the “Object view”
type of output.

Type Base data Supplementary
Data

Output type Examples

Traditional HTML None HTML Netscape, Internet Explorer
Semantics-only Semantic None Object view Boeing [10], Conzilla [138], Haystack [152]
Semantics-boosted HTML Semantic HTML COHSE [12], Magpie [55]
Semantic portals Semantic None HTML InfoLayer [81], KA2 [14], SEAL [116, 88]

• Semantic Portals: Finally, systems such as InfoLayer [81], KA2 [14], and SEAL [116,

88] generate entire websites based on underlying semantic data. These systems build

on the key concept of separating the logical view of a web site from its graphical pre-

sentation, as embodied in earlier database research (e.g., Strudel [62]). In particular,

the portal specifies a view over the semantic data via a template for each type of de-

sired output page [81] or concept (e.g., person) [14], possibly along with an ontology

describing navigation options for the user [116]. For instance, in Figure 2.3(right), the

left window shows a list of projects known by the KA2 portal, along with various navi-

gational links. Some portals also permit users to create and issue arbitrary queries; the

right portion of that figure contains the result for one such query requesting the person

“Struder” and his photo.

Table 2.2 summarizes these different browsing and portal applications. For average users,

basic semantics-only browsers are likely the least useful, due to the need to learn a new

tool, the challenges of finding desired information, and the uniform display of all types of

content. However, when the presentation can be specialized for particular data-intensive

domains (as Haystack has demonstrated in the case of bioinformatics [152]), the ability

to explore related concepts and find associations can be very useful. Semantics-boosted

browsing has the advantage that it can integrate seamlessly with existing web browsing,

adding value where possible without requiring any extra effort from users. In this sense it

is similar to the TAP search feature discussed previously. To do better than just “doing no

harm,” however, still requires the existence of sufficient semantic content.

Semantic portals are also trivial to use with normal web browsers, and have the ad-

vantage of completely producing an attractive web page, eliminating the need to maintain

21

separate semantic and textual versions of data. In addition, they have the potential to

achieve common usage, either because they replace existing, hand-maintained pages (e.g.,

a personal or project home page), or because they present a useful view of the knowledge

of a community. The challenges for this approach are ensuring that data is easy to create

and maintain, and that a “community” portal attracts enough content to make it initially

useful [167], as required by our gradual adoption design principle.

Data Aggregation

A third category of information-providing applications are those that aggregate data from

a number of sources for some specialized processing. Unlike generic search or browsing

applications, these applications base their presentation and features on a particular domain

of interest. These applications are similar to data integration systems, which also integrate

data from multiple distributed sources [67, 75, 4, 109, 54, 106, 118]. Note, however, that

data integration systems handle more heterogenous sources by mapping data to a common

mediated schema, whereas the applications below typically assume that all data is stored

using a single schema (though wrappers may have been used to obtain data from a variety

of sources). Of course, developing and applying similar schema mappings would enable

Semantic Web systems to leverage substantially more data [48, 77, 80, 181].

For instance, the SHOE “Path Analyzer” (Figure 2.4(left)) graphically displays possi-

ble pathways between animal sources and end products to support understanding of dis-

ease transmission [83]. Likewise, the Snippet Manager (Figure 2.4(right)) assists users

with viewing, organizing, and sharing personal collections of information such as pictures

and bookmarks [9]. Other examples include CS AKTive Space [122], which summarizes

U.K. computer science research, Bibserv [1], which collects bibliographic information, and

Elena [163, 141], which proposes to collect metadata about educational materials.

Often, aggregation applications provide exactly the same data that could have been

obtained with an appropriate query. For instance, the results in Figure 2.4(left) could

have been obtained with a (complex) query for properties connecting sources to processes,

and processes to end products. In fact, several early systems (e.g., Ontobroker [44], Web-

22

 Page 9

Figure 2: Simple workspace and vocabulary-driven property editor

Through the UI, all of the current metadata values can be viewed and edited and

new annotations can be added. The set of properties available for attaching such

annotations is drawn from a set of vocabularies that are loaded into the

application at start up.

A particularly common and important form of metadata is the classification of

an item into one or more categories in one or more classification schemes.

Classification schemes may be shared between users – a user workspace can

export a classification scheme as a classificationService that can then be

discovered and reused by other users in the network. Amongst the standard

classification schemes provided are the DMOZ open directory scheme [6] and

the scheme generated from the bookmark/favourites folder structure when the

user imports their web bookmarks. The same workspace can be viewed

organized according to any of the classification schemes currently available.

Figure 3: Switch between bookmark and dmoz view of item

New items can be added to a workspace by importing them from some external

source (such as the bookmarks or favourites file from a web browser) or by
Figure 2.4: SHOE’s TSE Path Analyzer (left) and the Snippet Manager (right), showing a collection
of bookmarks.

KB [120, 121]) appear to have originally assumed that such queries (perhaps pre-constructed

for convenience) would be the principal, if not only, way that users interacted with the

system. In addition, aggregation applications introduce a number of restrictions on how

data may be processed, such as limiting querying to only those properties hard-coded into

the application. Thus, in a sense aggregation applications add little new functionality and

may in fact constrain what is possible.

In practice, however, aggregation applications provide several important benefits com-

pared to more generic applications. First, domain-specific applications can often transform

results into a form that is much more understandable for typical users [83]. Second, these

applications can apply customized data cleaning or processing (e.g., to integrate syntacti-

cally different references to the same person [50, 122] or to classify bookmarks based on a

web directory [9]), enabling higher precision display of data than would be obtained from

a generic query service. Finally, these applications may implement important performance

optimizations, such as optimized server requests [9, 83] or application-specific caching. The

combination of these features enable aggregation applications to present higher quality,

highly responsive services that can be utilized by even average users — as required by our

instant gratification and ease of use design principles. Mangrove provides several such

aggregation applications (e.g., the Calendar and Who’s Who services); these are described

in Chapter 3.

23
preferred in carrying out the operation. He points to weather sources to indicate
whether conditions match the critical meteorological data, and if the preferred tech-
niques in the manual can be carried out.

Fig. 6. An intelligence analyst considering whether a hypothetical mission is feasible is brows-
ing the analysis done by another intelligence analyst for a mission that was shown in Figure 5.

Figure 6 shows a relatively inexperienced intelligence analyst trying to analyze the
feasibility of a hypothetical “rubber duck” mission to Dublin. The analyst uses the
“Import” button to bring up the Analysis Browser window. He searches for “CRRC”
(which is the craft used in a “rubber duck” operation) and finds the analysis of the
previous intelligence analyst for a “rubber duck” operation to Gibraltar. He can now
select a portion of this analysis and “import” it into his own analysis, or he can simply
browse it and figure out what kind of sources will be needed. For example, the analyst
finds out that according to a reasonably accurate source, the water temperature should
be between 50 F and 90 F for the CRRC to be safe.

Figure 2.5: The TRELLIS application, showing a user reviewing the justification for an earlier
decision.

Decision Support

The final category of information-providing applications are decision support applications.

Like aggregation applications, these applications typically collect data from multiple sources

and display it in some convenient form. Decision support applications, however, are distin-

guished by their inclusion of additional features and analysis intended to help users reach

some conclusion from the data. In this sense they are similar to earlier database research,

which augmented traditional transaction processing systems with additional features for

more complex querying [69, 100, 32, 30], data cleaning [66, 153], and view selection [36, 5]

to support analysis of current and historical data.

Examples of decision support applications are ClaiMaker [110], which uses human anno-

tations to assist users with analyzing the competing claims of different research papers, and

TRELLIS [68] (see Figure 2.5), which uses information from previous sessions and users to

aid the planning or analysis of military operations. Other such applications include those

focused on financial analysis (e.g., Analyst Workbench [162], Ontoprise’s Corporate His-

24

tory Analyzer [142]), and project planning [159]. Hyperclip [157] provides an application

designed to help office workers understand the context of documents created or referenced

by other workers, though this system suffers from a lack of clear motivation for producing

the needed annotations of these documents.

While almost all aggregation applications are focused on a particular domain, some

decision support applications add extra functionality while remaining domain-independent.

For example, while demonstrated in particular domains, ClaiMaker’s ability to reason about

relationships and TRELLIS’s construction of aggregate user ratings permit reuse in many

other contexts. Other applications such as the Analyst Workbench and the Corporate

History Analyzer are more restricted to a particular domain.

2.2.2 Action-oriented Applications

This section describes applications that may take actions on behalf of the user.

Email Management

As discussed in Chapter 1, email represents a rich information space where many people

spend significant amounts of time. However, little prior work has considered how adding

semantics to email might increase productivity.

A few researchers have proposed systems to filter or search email based upon turning the

generic header tags into RDF [39] or based on annotations manually added by the sender

or recipient (e.g., MailSMORE [98]). The problem with these systems is that the former

offers little improvement over the search and filter features of existing mail clients, while the

latter requires substantial manual effort for a questionable future benefit (or for the benefit

of someone else, e.g., the recipient).

Thus, while the above approaches may enable the integration of some email-based data

with other web-based sources, they offer little benefit for improving email management.

Chapter 4 describes our system for Semantic Email and how it provides more instant grat-

ification in this realm.

25

Figure 3: A screenshot depicting the main page of the ITTALKS system.

3.3 Access

The ITTALKS system is accessible either to users directly via the web, or to agents acting on
their behalf. The web portal provides numerous features, including registration, search, entry
and domain administration. An agent-based interface allows interaction with user agents or
other services.

3.3.1 Human Interface

The web portal allows a user to browse desired information in a variety of formats, to provide
the highest degree of interoperability. It permits a user to retrieve information in DAML,
standard HTML format, which includes a short DAML annotation for DAML-enabled web
crawlers, or WML [42] format, which supports WAP enabled phones. The ITTALKS web
portal also has the ability to generate RDF Site Summary (RSS) [37] files for certain queries.
These RSS files can then be used for various external purposes, such as displaying upcoming
talks on a departmental web site for some particular university or domain.

3.3.2 Agent Interface

To provide access for agent based services, ITTALKS makes use of Jackal [12], a commu-
nication infrastructure for Java-based agents developed by our research group at UMBC.
Jackal is a Java package, which provides a comprehensive communications infrastructure
while maintaining maximum flexibility and ease of integration. The heart of Jackal is a simple
conversation system, serving to maintain context for concurrent threads of conversation while
providing a guide for judging behavioral correctness and modeling the actions of other agents.
Jackal provides facilities for creating and manipulating user-defined conversation structures of
arbitrary extent. Jackal has a very modular, loosely coupled architecture, designed to support
maximal concurrency among components, accomplished with the use of multiple threads and
buffered interfaces between subsystems. Its concise API allows for comprehensive specifica-

Figure 2.6: RCal (left), showing a schedule imported by the user, and ITtalks (right), showing a
summary of relevant talks.

Time Management

Several systems have explored ways of improving time management with semantics, and an

entire W3C task force has been devoted to considering RDF calendaring issues [176]. For

instance, RCal [147] (see Figure 2.6(left)) can import schedule information from an anno-

tated conference web page into Outlook, and can use calendar info to automatically schedule

meetings involving several RCal-enabled participants. A second example is ITtalks [148] (see

Figure 2.6(right)), which presents information about talks in the information technology do-

main. Users may view relevant talks based on a profile registered with the ITtalks website,

or may install a personal agent that receives talk announcements and automatically decides

whether to notify the user based upon the attendance of friends and expected distance to

the talk. Other systems that can assist with time management include GraniteNights [70],

SKICal [2], and our Semantic Email system described in Chapter 4.

These prototypes demonstrate the potential of automated applications to assist with

common time management tasks. However, present technology remains far from the pop-

ular example given by Berners-Lee et al. [15] where the personal agents of several family

members coordinate to automatically schedule and assign responsibility for a set of appoint-

ments subject to various bureaucratic, medical, and availability constraints. Achieving this

visionary goal will require much more sophisticated profiles and ontologies as well as the

ability to compose multiple semantic services as described in the next section.

26

Web Service Interaction

The web today offers a great variety of consumer products and services online. However,

actually purchasing these products or services can be tedious (e.g., due to repeated personal

data entry at different sites) and time-consuming (especially if multiple services are required

to accomplish some goal, as is common with travel). Likewise, the use of web services for

direct B2B supplier discovery, customization, and ordering offers the promise of greatly

increased efficiency, but in practice has been limited to facilitating repeated transactions

between known business partners. The development of standards for web service descrip-

tion, discovery, and execution such as UDDI, WSDL, SOAP, and BPEL4SW is a first step

towards automating this process. These standards, however, are not sufficient for enabling

automated composition of such services without human involvement. For instance, UDDI

can describe that a service accepts two integers as inputs and produces a text string as

output, but the crucial information (that this service results in the user purchasing a book

identified by ISBN) must be specified as a human-readable text string.

In response, several groups have developed methodologies for semantically describing

web services (e.g., DAML-S/OWL-S [7], METEOR-S [145], Bernstein and Klein [17], CAW-

ICOMS [58], WSMF [28]) and some have explored algorithms and query languages for

discovering suitable services to achieve some goal (e.g., Woogle [51], PQL [17], CAW-

ICOMS [58], DAML-S Matchmaker [144], Trastour et al. [171], Benatallah et al. [13]). For

instance, DAML-S [7] provides an ontology for describing the capabilities, requirements,

and effects of a service. Applications such as the DAML-S Matchmaker [144] use this de-

scription to flexibly match service advertisements and requests (e.g., to match requests for

services selling “sedans” with a more general service offering “vehicles”).

Based on these service descriptions, some prototypes to compose multiple services have

been constructed. For example, McIlraith et al. [133] and Liebig [111] both describe applica-

tions that utilize multiple suppliers to make travel arrangements based on user preferences.

Likewise, Sirin et al. [164] (see Figure 2.7) implement a system that assists users in identify-

ing and composing suitable web services to achieve some goal. More advanced systems have

also been proposed [28, 166, 35]. For instance, Bussler et al. [28] focuses on tight integra-

27

Figure 2.7: A screenshot from Sirin et al.’s program to compose multiple services, here constructing
a foreign language translator. This program is freely downloadable (though not directly executable)
from the web.

tion with business environments, for instance to automatically identify a desired product,

receive approval for a purchase order, transmit the order to the supplier, and propagate the

resulting receipt back to all needed departments in the purchaser’s company.

These applications offer the potential to profitably identify and compose not just web

data, but web services as well, both for consumer and for e-commerce applications. However,

unlike the information-providing applications and the email/time management applications

discussed above, none of these systems appear to be sufficiently developed for practical usage

today. A key limitation is the need to create many detailed, comprehensive semantic de-

scriptions. This task is unlikely to be undertaken by casual users, though some research has

explored semi-automatic approaches for generating these descriptions [85] or for searching

based on existing WSDL/UDDI files [51].

2.2.3 Discussion

The examples above highlight a wide range of possible Semantic Web applications. These

applications also reveal multiple features that impact how amenable their usage is by non-

28

technical persons. Below we examine these features in terms of our three proposed design

principles. Later, the final section of this chapter will discuss the overall implications for

the adoption of Semantic Web systems.

First, consistent with our instant gratification principle, many applications did offer

a tangible benefit to usage. For instance, TAP Search [74] and SEAL [116, 88] provide

potentially useful information browsing and retrieval capabilities for the real-world domains

of entertainment and researchers, respectively. Likewise, RCal [147] schedules meetings and

McIlraith et al.’s system [133] offers potentially useful (though not yet practical) travel

scheduling. These plausible uses are a critical advantage compared to systems such as

MailSMORE [98] and HyperClip [157] that don’t offer a compelling usage scenario.

Second, these applications showed mixed results in terms of gradual adoption. Re-

garding content, applications that can include non-semantic data in their outputs (e.g.,

QuizRDF [41], TAP Search [74]) are more likely to find relevant results for their users given

the initial lack of semantic data. Regarding users, the ability to interact with anyone else

is better than than the ability to interact only with other users that have installed specific

software (e.g., as in RCal [147]). Unfortunately, none of the systems we surveyed provided

such flexible interaction capabilities, but Chapter 4 describes our solution for Semantic

Email.

Finally, these applications revealed a number of features that support our ease of use

principle. For instance, applications that are web-accessible and have simple keyword (e.g.,

TAP Search [74]) or browsing (e.g., SEAL [116, 88]) interfaces are more likely to succeed

than applications requiring local installation (e.g., TRELLIS [68]) or complex query con-

struction (e.g., SHOE PIQ [83]). Furthermore, domain-customized applications such as

Snippet Manager [9] and ITtalks [148] are often easier for non-technical persons to use than

more generic browsers or search engines. An interesting research challenge is to develop

applications that are broadly applicable (simplifying development and usage training), but

that maintain the helpful features of more customized applications. Possible approaches to

this problem include the use of predefined queries [167] and the encoding of navigation and

presentation information in an ontology [116, 152].

29

2.3 Content Provision for the Semantic Web

The previous section described a range of possible Semantic Web applications that could

potentially be useful for and usable by ordinary people. In order to actually make these

applications viable, however, they must be supplied with data of adequate quantity and

quality.

In this section we consider three possible sources for such data: automatic generation,

and manual generation by either technical users or non-technical users. While our focus

in this dissertation is on application usage and content creation by non-technical users,

we first discuss content creation via automated techniques and technical users, because

these can be important additional sources of data, particularly for making applications

initially useful. We then consider how to both motivate and enable non-technical users to

contribute content. Obviously these two issues are interrelated — if the authoring task is too

onerous, practically no motivation may be sufficient to entice participation. Nonetheless,

we consider motivation first because our instant gratification principle implies that it is of

prime importance — without motivation, users are unlikely to perform any authoring task

regardless of its ease.

2.3.1 Automatic Content Creation

Ideally, humans would not need to create semantic content at all, but it could simply be

derived (semi)automatically from existing data sources. Indeed, there are several possible

ways to automatically acquire semantic data: by leveraging existing structured data from

databases [172, 80] or XML sources [44, 77], or by utilizing wrappers or information extrac-

tion techniques to extract data from semi-structured or unstructured sources (e.g., HTML,

text, publications, emails) [88, 82, 60, 103, 156, 114, 11, 50]. All of these techniques enable

the automatic leveraging of existing data in the semantic world. Note, however, that they

still require some human effort to configure the translations, wrappers, etc. for each source.

In addition, these configurations may be very sensitive to changes in the structure of the

underlying data, which is often under the control of some other person. Finally, while they

30

apply to a significant amount of data, they cannot be used everywhere, either because the

needed data does not exist or because it is not amenable to such automation.

Nonetheless, automatic content generation remains a key part of many systems. One of

the most important uses for these techniques is for seeding a knowledge base for a particular

application. Several systems have used such seeding, e.g., TAP Search [74] and Bibserv [1].

These efforts help to make an application immediately useful even before any manual content

creation has been performed, thus supporting our gradual adoption principle. Chapter 3

provides a number of examples of how seeding is used for this purpose in Mangrove.

2.3.2 Content Creation by Technical Users

Some systems specifically assume that technically-sophisticated people will produce all of

the content necessary for the system to be successful. For instance, WebKB’s content rep-

resentation is most appropriate for “knowledge engineers,” [119], and the InfoLayer system

assumes that users are familiar with UML modeling [81]. Likewise, constructing web ser-

vice descriptions in DAML-S is difficult, requiring navigation of a complex ontology and

specification of pre- and post- conditions.

For web services, the number of descriptions needed is relatively small, and thus relying

on technical users is plausible. Exploiting content from the huge number of existing web

pages, however, presents more of a challenge. While technical users may produce significant

amounts of content, it makes sense to focus instead on the vast numbers of users who lack

technical sophistication yet have a web page and could be enticed to contribute content to

the Semantic Web. The next section describes techniques to encourage content creation by

this group. Of course, these techniques can also be beneficial for technical users as well.

2.3.3 Motivating Content Creation by Non-Technical Authors

For a few kind souls, the simple joy of adding content that might benefit others is sufficient

motivation for semantic authoring. In general, however, more tangible benefit is necessary:

People tend to use systems on a tit-for-tat basis. They tend not to invest work

when they cannot recognize immediate benefit from it. ([88], emphasis added)

31

There are two primary factors influencing the degree of “immediate benefit” received by

authors. First, what type of benefit is received? Second, how immediate is the benefit?

Below we consider each in turn.

What type of benefit is received?

Roughly speaking, benefits from semantic authoring fall into two categories: personal ben-

efits and social benefits. First, personal benefits cover those that apply even if no one else

ever directly makes use of the semantic content. For instance, semantic authoring may en-

able convenient organization of bookmarks and notes [9] or analyses of research papers [110].

Alternatively, content creation may enable useful automation of meeting scheduling [147] or

repetitive email tasks (as with our Semantic Email system). As a final example, semantic

authoring may simplify future maintenance of data, for instance to detect inconsistencies

in the data or to ensure that a publication list remains up to date [81, 61]. In each case,

users are motivated to author semantic content because of some intrinsic benefit to their

own work or life, independent of anyone else.

Second, social benefits describe those where the author’s benefit depends heavily on

the extent to which others will encounter the author’s semantic data. For instance, an

application might encourage semantic authoring by offering a more attractive [81, 88] or

informative [12] presentation of the content (e.g., a personal or department home page) than

could be easily achieved via other means. Alternatively, authors may be motivated by the

promise of more extensive and accurate proliferation of data that is semantically annotated.

For instance, calendar applications bring annotated events to the attention of more potential

attendees [148], while publication databases [1, 110] lead to more numerous (and factual)

citations for submitted papers. Finally, authors may be motivated by the potential for

profit. For instance, Elena [163] assumes that contributors will collect registration fees

when users discover their annotated learning services, just as travel services may benefit

from annotating their service descriptions for automated planners [133, 111]. This final

motivation is similar to the “proliferation” incentive, but the addition of direct financial

incentives may significantly alter both application usage and the impartiality of contributed

data.

32

Table 2.3: The timeliness of benefit from authoring semantic content.

Type Typical
speed

Reasons for the speed Examples

Instant Few seconds New content is immediately collected, efficient
access mechanisms.

Snippet Manager [9], Bibserv [1],
InfoLayer [81]

Delayed Minutes to
hours

New content collected right away, but requires
processing/cache flush before usable.

QuizRDF [41], TAP Search [74]

Eventual Few days or
more

New content available only after (re)loaded by
crawler, or approval is needed.

SHOE [83], Ontobroker [44],
SEAL [116]

Uncertain Some future
time or never

Data may never be used, or only used by an-
other person with no tangible benefit to author.

MailSMORE [98], Hyperclip [157]

How immediate is the benefit?

To some extent, people tend to be motivated by benefit that is more immediately available.

For the Semantic Web, providing timely benefit depends both upon the general system

(how quickly is data collected and available to applications?) and upon the speed of the

target application (which may require substantial time to initialize or execute for some

inputs [41, 60, 9]).

Consequently, benefit to semantic authors may occur across roughly four time scales.

Table 2.3 describes these different time scales and gives examples of systems in which they

occur. For instance, the InfoLayer system [81] generates its portal directly from a database

that may be efficiently updated, and thus content authors may potentially see the effects

of changes instantly. The current configuration of QuizRDF [41], however, requires index

regeneration before searching a new or modified RDF data set, thus delaying any use of

the data for about a minute. Many early systems (e.g., SHOE [83], OntoBroker [44])

relied upon periodic web crawls to obtain semantic content, resulting in content that is

eventually available to applications. Finally, some applications may provide benefit only at

some uncertain future point, if at all (e.g., when annotating incoming email messages to

enhance future searches [98] or when marking up the relationships among documents for

the potential future use of others [157]).

The ultimate timeliness of benefit depends on multiple factors. For instance, some sys-

tems (e.g., Ontobroker [44]) with eventual benefit also offered alternative ways of collecting

data that were more immediate, but that were less convenient for typical web authors. On

the other hand, if an instant application has only a small number of users, authors may

conclude that there is only uncertain benefit to contributing content.

33

Thus, aside from applications offering personal benefits, providing timely benefit to

authors depends just as much upon the existence of application users as it does upon the

system and application infrastructure. Our proposed design principle of instant gratification

addresses these issues by requiring that applications have whatever system architecture,

usage scenarios, content base, and attracted user population are necessary to provide an

immediate, tangible benefit to authoring.

2.3.4 Enabling Content Creation by Non-Technical Authors

Once users are motivated to create semantic content, they must be enabled either to an-

notate existing content (usually HTML) or to generate entirely new content. While early

Semantic Web systems such as SHOE and Ontobroker required users to author such seman-

tic context with a text editor, essentially all complete systems today provide some form of

support for this task.

Possible techniques for simplifying content creation and maintenance include the pro-

vision of graphical annotation tools [78, 83, 98], enabling non-redundant markup of

HTML [60], permitting the annotation of documents not under the annotator’s control (e.g.,

external annotation [12, 97]), supporting semi-automatic annotation [79], and supporting

web-based, installation-free content creation [116, 121, 148]. An additional interesting fea-

ture is the ability to create new content in the midst of viewing existing data. For instance

the decision-support applications ClaiMaker, TRELLIS, and Hyperclip [110, 68, 157] all

enable the user to add new statements about documents or objects while examining exist-

ing connections. This functionality may eliminate the need for a separate annotation tool

and makes it easier to entice casual users to contribute data to the system. Our Semantic

Email system provides a related technique, where users naturally create semantic content in

the course of requesting a service from the system. Chapters 3 and 4 provide more details

on the approaches we have taken with Mangrove and Semantic Email to enable users to

easily author such content.

34

2.3.5 Summary

This section, while focused on content creation, has highlighted the importance of our in-

stant gratification design principle — both application usage and content creation must

provide immediate benefit. When applied correctly, these factors complement each other,

with more application usage increasing the “social” benefits of content creation, yielding

more content and hence more useful applications. Techniques for making application usage

immediately beneficial include seeding with wrapper-based data (Section 2.3.1), customizing

presentation based on the domain (Section 2.2.1), and providing zero-installation applica-

tions (Section 2.2.3). Likewise, content creation can be improved by providing immediate

“personal” benefits to authors (Section 2.3.3), supporting semi-automatic annotation (Sec-

tion 2.3.4), enabling content creation within consuming applications (Section 2.3.4), and

making new content immediately available to applications that consume the data (Sec-

tion 2.3.3). In the next section, we examine a few issues that can affect both of these

factors.

2.4 Cross-cutting Issues

This section considers a number of issues that impact the design and execution of the

entire system, from content creation, to query execution, to application usage. We focus

specifically on inference and trust management. Additional discussion of other relevant

issues such as application construction, semantic interoperability, and ontology engineering

is beyond the scope of this work.

2.4.1 Inference

Inference (i.e., deducing additional facts beyond those explicitly stated) can significantly

enhance Semantic Web systems in two ways. First, inference improves the output of appli-

cations by augmenting incomplete knowledge [44, 9]. Second, inference reduces the burden

of annotation by making it unnecessary to explicitly specify every fact [61]. Examples of

practical inference include deducing types from subclass relations (e.g., BookmarkItem is

also an Item [9]), handling symmetric and transitive properties (e.g., cooperatesWith is

35

Table 2.4: Techniques for making inference practical.

Type Description Example
Manually-inserted Manually constructed code inserts derived

facts into knowledge base ahead of time.
BookmarkItem’s are also of type Item [9].

Automatically-inserted An inference engine inserts derived facts
into the knowledge base ahead of time.

If X cooperatesWith Y, then Y is of type
Researcher [60].

Application-based Applications derive needed facts at run-
time.

events inherit location from parent course
(Mangrove Calendar); suggested by [9].

Restricted Query engine directly supports limited
types of inferencing.

Multiple backends with varying capabili-
ties [82], OWL-Lite vs. OWL-Full [43].

symmetric [44]), and processing assertions that two resources (such as topics for a talk [148])

are equivalent or distinct.

Supporting inference, however, can also cause a serious scalability problem, without

necessarily improving results (e.g., the experience of OntoBroker in [60]). To ameliorate this

problem, Table 2.4 lists a number of techniques that systems have employed in an attempt

to support inference practically. In the first two cases, inferencing occurs offline, before a

query is generated. In this case, inferred facts are inserted directly into the knowledge base,

based either on manually constructed code (for a few key inferences) or a generic inference

engine. The next two cases perform inferencing at query time, either within the application

(with no system support), or within the query processor itself, but for a restricted set of

axioms.

None of these approaches is ideal. Manually-inserted and application-based inferencing

can provide inferencing targeted at the needs of specific applications, but are error-prone

and do not generalize well. Automatically-inserted inferencing is more general while still

having little impact on query execution time, but may produce large amounts of useless

inferences unless carefully focused [60]. Restricted inferencing seems the most promising

since it is general, focuses directly on inferences needed for a specific query, and can be

efficient for appropriate choices of the restrictions. However, many common tools have yet

to support this technique in a scalable manner [123], and more work is required to allow

designers to easily select the complexity needed for an application.

In our systems, Mangrove makes use of application-based inferencing to support a

small number of key inferences. The current Semantic Email system performs no reasoning

about the ontology (though a number of uses for interpreting responses are suggested). This

36

system does, however, make heavy use of reasoning about instances of the ontology in order

to determine if a response is consistent with the originator’s goals. Chapters 3 and 4 explain

these issues in more detail.

2.4.2 Trust Management

Another critical issue for Semantic Web systems is dealing with the trustworthiness and

reliability of data sources. Existing schemes for managing trust can be divided into three

general types:

• Authority-based filtering: Authority-based systems either have a central moderator

approve or modify content to ensure reliability (e.g., KA2 [167], SemTalk [64]) or only

accept content from approved, trusted sources (e.g. SHOE’s Path Analyzer [83], On-

tobroker’s “Ontogroup” [14]). More recently, TAP [73] has proposed using a “Web of

Trust” among centralized registries to provide reliable data.

• User-based filtering: Alternatively, systems may permit the end users of the system

to specify what data sources to trust. For instance, WebKB-2 [121] permits users to

include or exclude the data from specified users when querying, while ITtalks [148]

proposes using a set of reliability claims from users or their agents to determine what

sources to trust.

• User-based verification: Instead of filtering, systems may assist users in verify-

ing the reliability of data returned by applications. For instance, Annotea [97] and

ClaiMaker [110] present the user with data from all relevant sources, but also reveal the

source of each output fact. These systems assume that the (human) users can generally

ascertain the reliability of the data by examining the source content or characteristics

of its author. TRELLIS [68] seeks to aid users in this process by aggregating reliability

estimates from multiple users that can then be exploited by individual users to select

appropriate sources for their analysis.

Ultimately, the most appropriate trust policy depends upon the target application. For

instance, authority-based filtering may help provide reliability, but can conflict with our

37

instant gratification principle by adding delay before new data is available to applications

or new users can contribute. Some argue that we must have fully automated schemes for

deciding what information is reliable, since programs will be processing the data and cannot

employ human judgment [74, 15]. While this may be true for most of the action-oriented

applications described in Section 2.2, it is not necessarily true for the information-providing

applications, as demonstrated by the practical systems that utilize user-based verification

for trust.

In our systems, Mangrove utilizes user-based verification that may be supplemented by

an initial authority-based filtering step that utilizes local domain knowledge about reliable

sources. The Semantic Email system performs user-based filtering by allowing originators

to restrict the acceptable responses to those from the set of invited participants. As before,

Chapters 3 and 4 provide more details on these techniques.

2.5 Discussion

This chapter has presented a wide variety of proposed Semantic Web applications and ex-

plored issues relevant to content creation for these applications. While prior to our work with

Semantic Email there were no compelling, feasible usage scenarios for email management,

our summary of existing work has identified a number of potentially practical and useful

applications for other domains. A few such applications (e.g., Bibserv [1], TAP Search [74])

are deployed and seem highly usable already. In addition, a number of other applications

offer very useful ideas that simply need more focus on the key issues that will drive adoption.

For instance, systems such as SEAL [116] and InfoLayer [81] create attractive portals based

on semantic data, but would benefit from being able to more easily collect new data without

crawling (SEAL) and from providing additional applications beyond just rendering HTML

pages (InfoLayer). Likewise, RCal [147] provides useful calendaring services but needs to be

able to communicate more easily with non-Rcal users, while the Snippet Manager [9] needs

to integrate more closely with existing tools (e.g., bookmark collections inside browsers).

This chapter described a number of such features that are intended to help drive system

adoption. Sections 2.2.3 and 2.3.5 summarized these features directed towards application

38

usage and content creation, respectively. However, a number of significant challenges have

not been addressed. For instance, once a user provides content to the system, how can she

immediately and easily discover how that content is being used? Without such a mech-

anism, errors processing the data or difficulty finding the results could easily prevent her

from obtaining any benefit from the contribution. Likewise, given the redundancy require-

ments of RDF for annotating existing HTML, how can authors annotate content in a way

that will not become a future maintenance problem? In addition, existing action-oriented

applications require that all participants be knowledgeable about the system and have ap-

propriate software installed (e.g., as described above for RCal). How can such an application

encourage adoption by instead enabling interaction with naive participants? Even more im-

portantly, the vision of the Semantic Web promised benefits based on logical reasoning —

but what kinds of practical inference can benefit these applications? And how can naive

participants easily express their goals to such a system?

Thus, the key deficit in existing Semantic Web research has not been a lack of application

ideas, but a failure to identify and implement a complete set of features needed to drive

adoption by actual users. This dissertation addresses this problem in two ways. First,

we have already proposed three key design principles needed to drive system adoption.

These principles can focus the design of a Semantic Web system or be used as a metric

to gauge the likely success of an existing system. Second, we introduce a number of novel

mechanisms that are inspired by these principles and that address previously unsolved

problems related to adoption. The next three chapters explain these mechanisms in the

context of Mangrove and Semantic Email and elaborate on how these systems embody

the key design principles.

39

Chapter 3

MANGROVE

This chapter presents Mangrove, a system designed to enable and entice “ordinary

users” to annotate and contribute their existing HTML content to the Semantic Web. The

next section introduces Mangrove’s architecture and explains how it supports the three key

principles of instant gratification, gradual adoption, and ease of use. Section 3.2 describes

our first semantic services while Section 3.3 discusses our initial experience from deploying

Mangrove. Finally, Section 3.4 discusses related work, and Section 3.5 concludes.

3.1 The Architecture of MANGROVE

This section presents the high-level architecture of Mangrove, details some of the key

components, and relates them to our design principles.

3.1.1 Architecture Overview

Figure 3.1 shows the architecture of Mangrove organized around the following three phases

of operation:

• Annotation: Authors use our graphical annotation tool or an editor to insert annota-

tions into existing HTML documents. The annotation tool provides users with a list of

possible properties from a local schema based on the annotation context (e.g., describ-

ing a person or course), and stores the semantic data using the MTS syntax that is

described in Section 3.1.2.

• Publication: Authors can explicitly publish annotated content, causing the parser

to immediately parse and store the contents in an RDF database. The notifier then

notifies registered services about relevant updates to this database. Services can then

send feedback to the authors in the form of links to updated content (or diagnostic

40

Pages RDF Database

Semantic
Search

Parser

Services

Who's WhoQuery

Notify

Cache

Personal
Homepage

Course
Homepage

Project
Homepage

Annotation

Published

Publication

Crawled
Pages

Google

Annotation Tool

Calendar
Cache

Crawler

Feedback

Authors

Notifier

Semantic
Email

Figure 3.1: The Mangrove architecture and sample services. Semantic Email (Chapters 4 and 5
is implemented as a Mangrove service in order to facilitate interoperability with other Mangrove
services.

messages in case of errors). In addition, Mangrove’s crawler supplies data to the

parser periodically, updating the database when authors forego explicit publishing.

• Service Execution: Newly published content is immediately available to a range of

services that access the content via database queries. For example, we support seman-

tic search and more complex services such as the automatically-generated department

calendar.

These three phases are overlapping and iterative. For instance, after annotation, publica-

tion, and service execution, an author may refine her documents to add additional annota-

tions or to improve data usage by the service. Supporting this complete life-cycle of content

creation and consumption is important to fueling the Semantic Web development process.

Below, we describe the components of Mangrove in more detail. Section 3.2 then

describes the semantic services that make use of Mangrove to provide instant gratification

to content authors.

3.1.2 Annotation in Mangrove

Semantic annotation of HTML content is central to Mangrove. This section describes how

Mangrove enables such annotation in a manner consistent with our principles of gradual

adoption and ease of use. In particular, we describe the MTS syntax and our graphical

annotation tool, and explain how they enable authors to annotate existing content in a way

41

that deviates very little from existing practices, does not require that a page be annotated

all at once, and that is robust to future factual changes in the data.

Instead of manual annotation, we considered the use of wrapper technology for auto-

matically extracting structured data from HTML, as described in Chapter 2. However,

such technology relies on heavily regular structure; it is appropriate for recovering database

structure that is obscured by HTML presentation (e.g., Amazon.com product descriptions

that are automatically generated from a database), but not for analyzing pages authored by

hand. Thus, Mangrove utilizes a small number of wrappers to generate “seed” data to ini-

tially populate semantic services, but this is not sufficient for solving the general problem.

We also considered natural language processing and, specifically, information extraction

techniques (e.g., [165, 104, 103, 156, 114, 11]). While such approaches have been very suc-

cessful in some contexts, they require unambiguous inputs, are often domain-specific, and

may produce unreliable results. As a result, we formulated the more pragmatic approach

described below.

The MTS Syntax

We developed MTS (the Mangrove Tagging Syntax) to enable easy annotation (or tagging)

of existing HTML. Ideally, we would have liked to use RDF for this annotation. However,

as previously mentioned, RDF’s syntax is currently inadequate for our purposes, since it

requires that existing HTML data be replicated in a separate RDF section [81]. Since HTML

documents are frequently updated by their authors, this data replication can easily lead to

inconsistency between the RDF and its data source, particularly if “semantically-unaware”

tools (e.g., Microsoft FrontPage) are used for editing.

In essence, MTS is a syntax that supports gradual adoption by enabling authors to embed

declarative RDF statements within their HTML documents without disrupting traditional

browsing of those documents. As a consequence, MTS does not have the aforementioned

redundancy problem, because HTML and MTS tags may interleave in any fashion, permit-

ting “inline” annotation of the original data. Therefore, factual changes to the annotated

data using any tool will result in a seamless update to the semantic content on the page.

42

<html xmlns:uw="http://wash.edu/schema/example">
<uw:course about="http://wash.edu/courses/692">
<h1><uw:name>Networking Seminar

</uw:name></h1>

<p>Office hours for additional assistance:
<uw:instructor>

<uw:name>Prof. John Fitz</uw:name>
<uw:workPhone>543-6158</uw:workPhone>

</uw:instructor>
<uw:instructor>

<uw:name>Prof. Helen Long</uw:name>
<uw:workPhone>543-8312</uw:workPhone>

</uw:instructor>

<table> <tr><th>2003 Schedule</tr>
<uw:reglist=

’<tr><uw:event>
<td><uw:date>*</uw:date>
<td><uw:topic>*</uw:topic>

</uw:event></tr>’>

<tr> <td>Jan 11 <td>Packet loss</tr>
<tr> <td>Jan 18 <td>TCP theory</tr>

</uw:reglist>
</table>

</uw:course> </html>

Figure 3.2: Example of HTML annotated with MTS tags. The uw: tags provide semantic infor-
mation without disrupting normal HTML browsing. The <reglist> element specifies a regular
expression where ‘*’ indicates the text to be enclosed in MTS tags.

MTS consists of a set of XML tags chosen from a simple local schema. The tags enclose

HTML or plain text. For instance, a phone number that appears as “543-6158” on a

web page would become “<uw:workPhone>543-6158</uw:workPhone>”. Here “uw” is

the namespace prefix for our local domain and “workPhone” is the tag name. Nested tags

convey property information. For instance, Figure 3.2 shows a sample tagged document

where the <workPhone> tag is a property of the <instructor> named “Prof. John Fitz.”

MTS contains a number of additional features to support ease of use. For instance, in

order to enable users to annotate existing data regardless of its HTML presentation, the

MTS parser disregards HTML tags when parsing (though images and links are reproduced

in the parser output to permit their use by services). In addition, in order to reduce the

annotation burden for items such as lists and tables that exist inside HTML documents,

Mangrove provides a simple regular expression syntax. For instance, the <reglist>

element in Figure 3.2 enables the table to be automatically tagged based on existing HTML

patterns. This enables new rows that are added to the table to be automatically tagged

without any effort on the part of the author. Finally, MTS supports RDF-like about

attributes (e.g., of the <course> element in Figure 3.2) that enable information about an

43

object to appear in multiple documents and be fused later. For ease of use, however, we

do not require or typically expect users to provide such unique identifiers. Section 3.2.4

discusses some of the resultant referential integrity challenges.

MTS’s expressive power is equivalent to that of basic RDF. For simplicity, we omitted

advanced RDF features such as containers and reification. Note that the goal of MTS is

to express base data rather than models or ontologies of the domain (as in RDF Schema,

DAML+OIL [86], OWL [43]).

Finally, MTS syntax is not based on XHTML because most existing pages are in HTML

and hence would require reformatting to become valid XHTML, and many users are averse

to any such enforced reformatting. Furthermore, a large fraction of HTML documents

contain HTML syntax errors (generally masked by browsers) and thus would require manual

intervention to reliably convert to legal XHTML. However, existing XHTML (or XML)

documents that are annotated with MTS will still be valid XHTML (XML) documents,

and thus tools that produce or manipulate these formats may still be freely used with

MTS-annotated documents.

The Graphical Annotation Tool

The MTS syntax enables a small number of tags to concisely annotate a document in a

way that is robust to future document changes. However, for most users, direct use of this

syntax is still too complex and error-prone.

Thus, to facilitate semantic authoring, we developed the simple graphical annotation

tool shown in Figure 3.3. The tool displays a rendered version of the HTML document

(right pane) alongside a tree view of the relevant schema (upper left pane). Users highlight

portions of the HTML document, and the tool automatically pops up a list of MTS tags

that may be selected, based on the current annotation context. The tool also displays a

simplified tree version of the tagged portion of the document (lower left pane), showing the

value of each property. This enables the author to easily verify the semantic interpretation

of the document or, by clicking on a node in the tree, to browse through the document

based on its semantics.

44

Figure 3.3: The Mangrove graphical annotation tool. The pop-up box presents the set of tags
that are valid for annotating the highlighted text. Items in gray have been tagged already, and
their semantic interpretation is shown in the “Semantic Tree” pane on the lower left. The user can
navigate the schema in the upper left pane.

The annotation tool is freely downloadable and is constructed in Java, enabling it to

run on any platform. In addition, the annotation tool allows authors to easily publish newly

annotated content (see the “Publish” button in the lower left of Figure 3.3), as described

in Section 3.1.3.

Schema in Mangrove

Currently, Mangrove provides a single, predefined XML schema to support the annotation

process (see Appendix A). Providing a schema is a crucial, as we can’t expect casual users

to design their own (and that would certainly not entice people to use the system). The

intent of the schema is to capture most aspects of the domain of interest. Consistent with

our gradual adoption principle, the pages being annotated do not have to contain all the

details of a certain schema. Instead, authors map the data on their page to the appropriate

45

schema tags. In the future, we anticipate a process by which users can collectively evolve

the schema as necessary.

3.1.3 Document Publication

In today’s web, changes to a web page are immediately visible through a browser. We

create the analogous experience in Mangrove by enabling authors to publish semantically

annotated content, which instantly transmits that content to Mangrove’s database and

from there to services that consume the content.

Mangrove authors have two simple interfaces for publishing their pages. They can

publish by pressing a button in Mangrove’s graphical annotation tool, or they can enter the

URL of an annotated page into a web form. Both interfaces send the URL to Mangrove’s

parser, which fetches the document, parses it for semantic content, and stores that content in

the RDF database. This mechanism ensures that users can immediately view the output of

relevant services, updated with their newly published data, and then iterate either to achieve

different results or to further annotate their data. In addition, before adding new content,

the database purges any previously published information from the corresponding URL,

allowing users to retract previously published information (e.g., if an event is canceled).

Crawling or polling all potentially relevant pages is an obvious alternative to explicit

publication. While Mangrove does utilize a crawler, it seems clear that crawling is in-

sufficient given a reasonable crawling schedule. This is an important difference between

Mangrove and previous systems (e.g., [44, 83]) that do not attempt to support instant

gratification and so can afford to rely exclusively on crawlers. Mangrove’s web crawler

regularly revisits all pages that have been previously published, as well as all pages in a

circumscribed domain (e.g., cs.washington.edu). The crawler enables Mangrove to find

semantic information that a user neglected to publish. Thus, publication supports instant

gratification as desired, while web crawls provide a convenient backup in case of errors or

when timeliness is less important.

46

Notification: Services specify data of interest by providing a query to the Mangrove

notifier.1 When the database is updated by a new data publication or a web crawl, the

notifier forwards data matching that query to the corresponding services for processing.

For instance, the calendar service registers its interest in all pages that contain <event>

properties (or that had such properties deleted). When it receives notification of relevant

new data, the calendar processes that data and updates its internal data structures, ensuring

that content authors see their new data on the calendar with minimal delay.2

Service feedback: Mangrove also provides a service feedback mechanism that is a key

element of its architectural support for instant gratification. As noted earlier, services can

register their interest in arbitrary RDF properties (e.g., event). Then, when a URL that

contains such a property is published by an author, the services are automatically notified

about the new information. Each notified service can return feedback to the author as

shown in Figure 3.4. The feedback can identify problems encountered (e.g., a date was

ambiguous or missing) or can confirm that the information was successfully “consumed” by

the service.

The feedback mechanism supports instant gratification by making it easier for authors

to immediately see the tangible output resulting from their new semantic data. Authors

can click on any of the links shown in Figure 3.4 and they will be directed to a web page

that shows how the information they just annotated is being used by a semantic service. For

example, as soon as an event page is annotated and published, the organizer can click on a

link and see her event appearing in the department’s calendar. To be true to the ‘instant’ in

‘instant gratification’, publishing a page returns feedback to authors in about two seconds.

An important advantage of Mangrove’s declarative data representation is that it en-

ables content that was designed for one particular service to also be exploited by other

services. For instance, content intended for the Who’s Who service described later may

also improve the output of Mangrove’s calendar. Because Mangrove services and infor-

1Currently, we assume that such a query consists of just a set of “relevant” RDF properties. More complex
queries can be also supported efficiently [154].

2Note that while only registered services receive such notifications, any service that follows a simple API
(of Mangrove or Jena[123]) may query the database for content.

47

Figure 3.4: Example output from the service feedback mechanism. Services that have registered
interest in a property that is present at a published URL are sent relevant data from that URL. The
services immediately return links to their resulting output.

mation are created independently by different sets of people, there is thus the potential for

authors to be unaware of additional services that consume their information and that would

provide further motivation for them to author more semantic information. The service feed-

back mechanism acts as a service discovery mechanism that addresses this problem. Once a

service registers its interest in a particular property, an author that publishes relevant infor-

mation will be notified about that service’s interest in the property.3 We expect that users

will typically publish content with a particular service in mind, and then decide whether or

not to investigate and possibly annotate additional content for the services that they learn

of from this feedback. As the number of services grows, an author can avoid “feedback

spam” by explicitly selecting the services that send her feedback, by limiting their number,

or by filtering them according to the criteria of her choice (e.g., by domain or category).

Additional techniques for supporting useful feedback across very large numbers of services,

content providers, and distinct ontologies is an interesting area for future work. Note that

since the author is publishing information with the hope of making it broadly available,

privacy does not seem to be a concern in this context.

3Very loosely speaking, this is analogous to checking which web pages link to your page — a service that
is offered through search engines such as Google.

48

The service feedback mechanism also supports ease of use by helping authors to produce

well-formed data. This addresses an important problem we experienced with Mangrove

prior to the development of feedback, where data would be published, but because of some

error would not appear in the output of the expected service. Service feedback directly

informs content authors of such problems, allowing them to easily produce usable data. We

discuss further support for producing well-formed data for services below.

3.1.4 Practical Data Maintenance

Database and knowledge base systems have a set of mechanisms that ensure that the con-

tents of a database are clean and correct. For example, database systems enforce integrity

constraints on data entry, thereby eliminating many opportunities for entering “dirty” data.

In addition, database applications control carefully who is allowed to enter data, and there-

fore malicious data entry is rarely an issue. On the Semantic Web, however, there is no

single authority that everyone agrees upon, and hence such integrity constraints are difficult

if not impossible to define. In addition, there is no central administration of the data that

could enforce such constraints. Even more importantly, applying such constraints would be

inconsistent with our ease of use design principle for two reasons. First, enforcing integrity

constraints would create another hurdle preventing people from joining the Semantic Web,

rather than enticing them. Second, on the Semantic Web authors who enter data may not

even be aware of which services consume their data and what is required in order for their

data to be well formed. Thus, enforcing such constraints would be very frustrating for such

authors.

Hence, in Mangrove our goal is for authors to be able to add content without consider-

ing constraints, and for services to be able to consume data that is cleaned and consistent as

appropriate for their needs. Furthermore, when users do intend their data to be consumed

by certain services, there should be a feedback loop that ensures that their data was in a

form that the service could consume. Below we describe how Mangrove supports such

flexibility in a large-scale data sharing environment.

49

Deferring integrity constraints: On the HTML web, a user can put his phone number

on a web page without considering whether it already appears anywhere else (e.g., in an

employer’s directory), or how others have formatted or structured that information. De-

spite that, users can effectively assess the correctness of the information they find (e.g., by

inspecting the URL of the page) and interpret the data according to domain-specific con-

ventions. In contrast, existing systems often restrict the way information may be expressed.

For instance, in WebKB-2 [121], a user may not add information that contradicts another

user unless the contradictions are explicitly identified first. Likewise, in SHOE [83], all data

must conform to a specified type (for instance, dates must conform to RFC 1123).

Mangrove purposefully does not enforce any integrity constraints on annotated data or

restrict what claims a user can make. With the calendar, for instance, annotated events may

be missing a name (or have more than one), dates may be ambiguous, and some data may

even be intentionally misleading. Instead, Mangrove defers all such integrity constraints to

allow users to say anything they want, in any format. Furthermore, Mangrove allows users

to decide how extensively to annotate their data. For instance, the instructor property

may refer to a resource with further properties such as name and workPhone, or simply

to a string literal (e.g., “John Fitz”). Permitting such “light” annotations simplifies the

annotation of existing HTML and allows authors to provide more detail over time, consistent

with our gradual adoption principle.

To complement the deferral of integrity constraints, Mangrove provides three mecha-

nisms that facilitate the creation of appropriate data for services: service feedback (discussed

earlier), data cleaning, and inspection of malicious information.

Data cleaning: The primary burden of cleaning the data is passed to the service consuming

the data, based on the observation that different services will have varying requirements for

data integrity. In some services, clean data may not be as important because users can tell

easily whether the answers they are receiving are correct (possibly by following a hyperlink).

For other services, it may be important that data be consistent (e.g., that an event have the

correct location), and there may be some obvious heuristics on how to resolve conflicts. The

50

source URL of the data is stored in the database and can serve as an important resource

for cleaning up the data.

To assist with this process, Mangrove provides a service construction template that

enables services to apply a simple rule-based cleaning policy to the raw results obtained

from the RDF database. For instance, for course events, our calendar specifies a simple

policy that prefers data from pages specific to a particular course over data from general

university-provided pages. Thus, factual conflicts (e.g., a location change not registered

with the university) are resolved in the course-specific page’s favor. The cleaning policy also

helps the calendar to deal with different degrees of annotation. For instance, to identify the

instructor for a course lecture, the calendar simply requests the value of the <instructor>

property, and the template library automatically returns the <name> sub-property of the

instructor if it exists, or the complete value of that property if sub-properties are not

specified.

Even when data is consistent and reliable, services still face the problem of interpreting

the semantic data. For instance, dates found on existing web pages are expressed in natural

language and vary widely in format. We note that while this problem of data interpretation

is difficult in general, once users have explicitly identified different semantic components

(e.g., with a <date> property), simple heuristics are sufficient to enable useful services for

many cases. For instance, Mangrove’s service template provides a simple date and time

parser that we have found very effective for the calendar service. In addition, semantic

context can assist the cleaning process, e.g., to provide a missing year for an event specified

as part of a course description. To utilize these features, services may create their own

cleaning policy or use a default from the service template.

Inspection of malicious information: Another reason that we store the source URL

with every fact in the database is that it provides a mechanism for partially dealing with

malicious information. The highly distributed nature of the web can lead to abuse, which

popular services such as search engines have to grapple with on a regular basis. Potential

abuse is an issue for semantic services as well. What is to prevent a user from maliciously

publishing misleading information? Imagine, for example, that a nefarious AI professor

51

purposefully publishes a misleading location for the highly popular database seminar in an

attempt to “hijack” students and send them to the location of the AI seminar.

We have considered several approaches to combating this kind of “semantic spoof-

ing.” We could have an administrator verify information before it is published, creating

a “moderated” semantic web. However, this non-automated approach prevents instant

gratification and does not scale. Alternatively, we could enable automated publishing for

password-authenticated users, but investigate complaints of abuse and respond by disabling

an abuser’s publishing privileges. This approach, however, violates our ease of use principle

and prevents the same data from being easily shared by more than one semantic domain.

Instead, we chose a fully automated system that mirrors the solution adopted by search

engines — associating a URL with every search result and leaving decisions about trust to

the user’s discretion.

Thus, Mangrove services associate an easily-accessible source (i.e., a URL) with each

fact made visible to the user. For example, as shown in Figure 3.5, a user can “mouse over”

any event in the calendar and see additional facts including one or more originating URLs.

The user can click on these URLs to visit these pages and see the original context. Naturally,

service writers are free to implement more sophisticated policies for identifying malicious

information, based on freshness, URL, or further authentication. For instance, in case of

conflict, our department calendar uses its previously mentioned cleaning policy to enable

facts published from pages whose URL starts with www.cs.washington.edu/education/

to override facts originating elsewhere.

3.1.5 Scaling Mangrove

Scalability is an important design consideration for Mangrove, and it has influenced several

aspects of Mangrove’s architecture, such as our explicit publish/notification mechanisms.

Nevertheless, the scalability of our current system is limited in two respects. First, at the

logical level, the system does not currently provide mechanisms for composing or translat-

ing between multiple schemas or ontologies (all users annotate data with a common local

52

Figure 3.5: The calendar service as deployed in our department. The popup box appears when the
user mouses over a particular event, and displays additional information and its origin. For the live
version, see www.cs.washington.edu/research/semweb.

schema). Second, at the physical level, the central database in which we store our data

could become a bottleneck.

We address both scalability issues as part of a broader project described in [76]. Specifi-

cally, once a department has annotated its data according to a local schema, it can collabo-

rate with other structured data sources using a peer-data management system (PDMS) [77].

In a PDMS, semantic relationships between data sources are provided using schema map-

pings, which enable the translation of queries posed on one source to the schema of the other.

Our group has developed tools that assist in the construction of schema mappings [47, 48],

though these tools are not yet integrated into Mangrove. Relying on a PDMS also dis-

tributes querying across a network of peers, eliminating the bottleneck associated with a

central database.

3.2 Semantic Services in MANGROVE

One of the goals of Mangrove is to demonstrate that even modest amounts of annotation

can significantly boost the utility of the web today. To illustrate this, Mangrove supports

53

a range of semantic services that represent several different web-interaction paradigms,

including Google-style search and novel services that aggregate semantically annotated in-

formation. Below, we briefly discuss service construction and describe Mangrove’s initial

services.

3.2.1 Constructing Mangrove Services

Services are written in Java and built on top of the Mangrove service construction tem-

plate that provides the basic infrastructure needed for service creation. Currently, we use

the Jena [123] RDF-based storage and querying system, which enables our services to pose

RDF-style queries to extract basic semantic information from the database via a JDBC con-

nection. Alternatively, services may use higher-level methods provided by the template. For

instance, the template contains methods to retrieve all relevant information about a given

resource from the RDF database, augmented with a summary of the sources of that infor-

mation. The template also provides methods to assist with data cleaning and interpretation,

as explained in Section 3.1.4.

The Mangrove service template also aids service construction with support for in-

crementally computing and caching results. First, the template provides a standard

runUpdate() method; this method is invoked by the Mangrove notifier, which passes

in a handle to the complete RDF dataset as well as a handle to the new RDF data for

which the notification has occurred. Upon notification, invoked services rely primarily on

the new data and local cached state, but an application can consult the complete dataset as

necessary. Second, the template also provides a simple caching mechanism that maintains

pre-computed information (e.g., processed event descriptions) and a mapping between each

piece of information and its source page(s). For instance, when the calendar is invoked by

the notifier, it uses those source mappings to determine what events may have changed,

then updates the cache with the new information. The calendar viewer then uses this cache

to quickly access the information requested by users.

Overall, Mangrove makes services substantially easier to write by encapsulating

commonly-used functionality in this service template. Moreover, Mangrove’s caching

54

features help to ensure that the performance is sufficient to provide instant gratification to

both content authors and service users. To further minimize response time, Mangrove’s

services are executed by a Jakarta Tomcat servlet engine. This provides substantially faster

performance than the original CGI-based implementation, since services and their RDF

data may remain memory resident in between service invocations.

3.2.2 Semantic Search

Consistent with our gradual adoption principle, we believe that annotation will be an incre-

mental process starting with “light” annotation of pages and gradually increasing in scope

and sophistication as more services are developed to consume an increasing number of an-

notations. It is important for this “chicken and egg” cycle that even light annotation yield

tangible benefit to users. One important source of benefit is a Google-style search service

that responds appropriately to search queries that freely mix semantic properties and text.

The service returns the set of web pages in our domain that contain the text and properties

in the query.

The interface to the service is a web form that accepts standard textual search queries.

The service also accepts queries such as “assistant professor” <facultyMember> <portrait>? ,

which combines the phrase “assistant professor” with properties. Like Google, the query has

an implicit AND semantics and returns exactly the set of pages in our domain containing

the phrase “associate professor” and the specified properties. The ? after the <portrait>

property instructs the service to extract and return the HTML inside that property (as

with the SELECT clause of a SQL query). Users select appropriate properties for the

search from the simple schema available on the search page; an interesting area for future

work is considering ways to make this selection even easier.

The service is implemented by sending the textual portion of the query (if any) to Google

along with instructions to restrict the results to the local domain (cs.washington.edu).

The Mangrove database is queried to return the set of pages containing all the properties

in the query (if any). The two result sets are then intersected to identify the relevant set

of pages. When multiple relevant pages are present, their order in the Google results is

55

Figure 3.6: The semantic search results page. The page reproduces the original query and reports
the number of results returned at the top. Matching pages contain the phrase “assistant professor”
and the properties <facultyMember> and <portrait>. The ? in the query instructs the service to
extract the <portrait> from each matching page.

preserved to enable more prominent pages to appear first in the list. Finally, any extraction

operations indicated by one or more question marks in the query are performed and included

in the result (see Figure 3.6). Like Google, not every result provides what the user was

seeking; the search service includes semantic context with each result — a snippet that

assists the user in understanding the context of the extracted information. The snippet is

the name property of the extracted property’s subject. For instance, when extracting the

<portrait> information as shown in Figure 3.6, the snippet is the name of the faculty

member whose portrait is shown.

With its ability to mix text and properties, this kind of search is different from the

standard querying capability supported by Mangrove’s underlying RDF database and

other Semantic Web systems such as SHOE [83] and WebKB [121]. Our search service has

value to users even when pages are only lightly annotated, supporting our goal of gradually

enticing users onto the Semantic Web.

56

Figure 3.7: The Who’s Who service as deployed in our department. Notice how it allows users to
provide as much information as they like, in whatever format is desired.

3.2.3 Aggregation Services

Aggregation services provide useful views on data from the Semantic Web. We describe the

aggregation services we implemented with Mangrove below.

First, our Who’s Who service compiles pictures, contact information, and personal data

about people within an organization. In our department, a static Who’s Who had existed

for years, but was rarely updated (and was woefully out-of-date) because of the manual

creation process required. Our dynamic Who’s Who (see Figure 3.7) directly uses more

up-to-date information from users’ home pages, enabling users to update their own data at

any time to reflect their changing interests.

Our experience with the Who’s Who service illustrates an important advantage of the

Mangrove annotation approach over other approaches such as asking users to enter in-

formation into databases via web forms. A large amount of useful data already exists in

hand-crafted personal and organizational web pages, and the active viewing of this data over

the web motivates users to keep this information up-to-date. Once these pages are tagged,

57

Mangrove automatically leverages the author’s HTML updates to keep the information

in its database up-to-date without additional effort on the author’s part. Thus, manually

maintained databases often become stale over time whereas Mangrove’s information is as

fresh as HTML.

Whereas Who’s Who merely collects information from a set of web pages, our Research

Publication Database compiles a searchable database of publications produced by members

of our department based on the information in home pages and project pages. To support

ease of use, this service applies simple heuristics to avoid repeated entries by detecting

duplicate publications. To support gradual adoption, only a single <publication> prop-

erty enclosing a description of the publication is required in order to add an entry to the

database, which facilitates light, incremental annotation. However, users may improve the

quality of the output and the duplicate removal by specifying additional properties such as

<author> and <title>.

Our most sophisticated service, the department calendar (shown in Figure 3.5), auto-

matically constructs and updates a unified view of departmental events and displays them

graphically. As with our other services, the calendar requires only a date and name to in-

clude an event in its output, but will make use of as much other information as is available

(such as time, location, presenter, etc.).

Department members are motivated to annotate their events’ home pages in order to

publicize their events. We initially seeded the calendar with date, time, and location in-

formation for courses and seminars by running a single wrapper on a university course

summary page. Users then provide more detail by annotating a page about one of these

events (e.g., users have annotated pre-existing HTML pages to identify the weekly topics

for seminars). Alternatively, users may annotate pages to add new events to the calendar

(e.g., an administrator has annotated a web page listing qualifying exams). Typically, users

annotate and publish their modified pages, the calendar is immediately updated, and users

then view the calendar to verify that their events are included. For changes (e.g., when

an exam is re-scheduled), users may re-publish their pages or rely on the Mangrove web

crawler to capture such updates later.

It is easy to conceive of other services as well. We view the services described above as

58

informal evidence that even light annotation can facilitate a host of useful services, which

motivates further annotation, etc.

3.2.4 Inference and Referential Integrity Issues

Mangrove services currently perform very limited, though practical, inferencing. For in-

stance, the publications database can infer missing information (e.g., the author of a paper)

from context (e.g., the paper was found on the author’s home page). Likewise, the calendar

can infer the instructor associated with a lecture event when that event is embedded inside

a course element. These inferences are implemented directly by the application service,

aided by some specific methods from the service construction template, rather than by

a general mechanism associated with the RDF database. As discussed in Chapter 2 this

application-based inferencing is well-targeted for specific inferencing needs, but is error-

prone and difficult to modify. Extending Mangrove to use more general reasoners is an

interesting opportunity for future work. For instance, we could utilize a RDF Schema rea-

soner to simplify Mangrove’s applications with suitable subclass reasoning (e.g., to infer

that all subclasses of Person should have a name). Note, however, that doing the slightly

more complex reasoning described above (for publications and events) requires capabilities

that are not supported by either RDF Schema or OWL [178]. Hence, currently there ap-

pears to be little benefit to using OWL in Mangrove, though Mangrove could benefit

from an appropriate rules language combined with an efficient reasoner.

Another challenging issue for Mangrove services is dealing with multiple references to

the same person or object. For instance, an annotated personal web page may be published

via slightly different URLs, causing Mangrove to treat the content as two distinct peo-

ple that happen to have identical descriptive information. Likewise, if a person annotates

personal content on multiple web pages, Mangrove may believe that the information is

about more than one person. These are problems for RDF content in general and can

be solved by the content author (in either RDF or MTS) by providing a unique about

attribute for the person. However, this is more complex for typical authors and does not

address the problem of the same person being referred to by different about attributes.

59

Currently, Mangrove offers a very primitive solution to this problem by constructing a

canonical URL for a published document based on local knowledge of the departmental

webspace, then using this URL as a default about attribute for the first object described

on a page. For instance, a graduateStudent described with annotations on the page

www.cs.washington.edu/homes/lucasm/contact.html is assigned an about attribute of

www.cs.washington.edu/homes/lucasm/. This approach effectively coalesces all the infor-

mation about a person in one user’s webspace into a single entity unless explicit about at-

tributes are used. In most cases this technique has been sufficient for our purposes, but more

sophisticated techniques based on identifying related entries [19, 33, 38, 59, 124, 50, 122] or

isomorphic RDF graphs [31] could be useful.

3.3 Experience with MANGROVE

This section presents our initial experience using and evaluating Mangrove. Our goal is

to answer some basic questions about the Mangrove approach:

1. Feasibility: Can Mangrove be used to successfully tag and extract the factual

information found in existing HTML pages?

2. Benefit: Can Mangrove services actually benefit users when compared with popular

commercial services? Specifically, we attempt to quantify the potential benefit of

Mangrove’s semantic search service as compared with Google.

3. Practice: Given the actual costs and benefits in a deployment, will Mangrove

services be invoked by actual users? Are these users willing to contribute content to

Mangrove?

These questions are mostly qualitative, however we develop some simple measures in an

attempt to quantify the feasibility and benefits of our approach.

60

3.3.1 Information Capture

To test the extent to which (1) our system can successfully extract a range of information

from existing HTML pages, and (2) our existing web actually contains the information of

interest, we created a copy of our department’s web space for experimentation. The depart-

ment web consists of about 68,000 pages whose HTML content is about 480 MB. We then

tagged the home pages of all 44 faculty members using the graphical tagger, focusing partic-

ularly on adding 10 common tags such as <name>, <portrait>, and <advisedStudent>.

Four graduate students were instructed to tag and publish each document, but not to make

any other changes to the original HTML. The students were familiar with Mangrove,

though some had previously tagged only their own home page.

We evaluate tagging success by examining the output of our Who’s Who service and

comparing it with the original HTML documents. Of the 440 possible data items (e.g., a

faculty member’s name or picture), 96 were not present in the original HTML. For instance,

only half of the professors had their office location on their home page. Of the remaining

344 facts, the vast majority (318, or 92.4%) were correctly displayed by Who’s Who, while

26 had some sort of problem. Nine of these problems were due to simple oversight (i.e., the

data was present but simply not tagged), while eight items had tagging errors (e.g., using

an incorrect tag name). For six data items, it was not possible to succinctly tag the data

with MTS. For instance, MTS presently cannot tag a single string as both a home and

office phone number. Finally, three tagged items revealed minor bugs with the Who’s Who

service itself.

Thus, despite the variety of HTML pages (we have no standard format for personal home

pages) and the presence of some inevitable annotation errors, we successfully extracted a

large amount of relevant information and constructed a useful service with the data. This

simple measurement suggests that while additional Mangrove features may improve the

tagging process, the overall annotation and extraction approach is feasible in practice.

61

3.3.2 Benefits of Mangrove Search

Using the tagged data discussed above, we examined the effectiveness of Mangrove’s

search service (described in Section 3.2.2). As a simple search exercise, we issued a small

set of queries to retrieve the picture and phone number of all assistant and associate pro-

fessors in our department. For example, we issued the query:

<facultyMember> <jobTitle=“assistant professor”> <portrait>? For comparison, we

sent comparable search queries to Google and to Mangrove’s tag-only search, which ac-

cepts sets of tags (with no text terms) as queries.

Obviously, Google has different goals than our search service, so the results are not

necessarily comparable, however the exercise helps to illustrate the potential benefit

from even a modest amount of tagging. When sending queries to Google, we included

site:cs.washington.edu to restrict the query to our site. We tried several variants of

each query (e.g., "assistant professor," "assistant professor" phone, "assistant

professor" phone OR voice, etc.). For finding photos, we also queried the Google image

search directly. In each case, we inspected all results returned by Google for the desired

photo or phone number.

In addition, we wanted to assess how robust Mangrove is to tagging omissions or

errors. What happens, for example, when the <jobTitle> is omitted or applied incor-

rectly? Users can fall back on Mangrove’s tag+text search, which filters Google results

using tag information as explained in Section 3.2.2. In our tag+text queries, we combined a

phrase (e.g., "assistant professor") with the tag <facultyMember> and the tag to be

extracted (<workPhone> or <portrait>). Figure 3.6 shows the results of one such query.

Table 3.1 summarizes the results for our three experimental conditions: Google, tag-only

search, and tag+text search. We use the standard information retrieval metrics of precision

(p) and recall (r), and combine them into an f-score (f) as follows:

f =
(β + 1)pr

(βp + r)

The f-score is a standard method of combining recall and precision to facilitate compari-

62

Table 3.1: Comparison of Search Services. In each box, the first value is the f-score of the query,
followed by the precision and recall in parentheses. Within each row, the values in bold represent
the maximum value for that metric.

Search Objective Google Tag-only Search Tag+Text Search
f (Prec.,Rec.) f (Prec.,Rec.) f (Prec., Rec.)

Assistant Professor photos 0.75 (100%,60%) 0.82 (100%,70%) 0.84 (89%, 80%)
Associate Professor photos 0.52 (75%,40%) 0.89 (100%,80%) 0.91 (83%,100%)

Assistant Professor phone numbers 0.64 (58%,70%) 0.89 (100%,80%) 0.95 (91%,100%)
Associate Professor phone numbers 0.29 (19%,60%) 0.67 (75%,60%) 0.80 (80%, 80%)

son [161].4 As is commonly done, we set the parameter β to 1 in order to weight precision

and recall equally. In this experiment, precision is the percentage of the results, for each

engine, that were correct; recall is the percentage of the total correct answers returned by

each engine.

The table supports some tentative observations. First, tags can substantially improve

precision over Google’s results. Second, and more surprising, tags often result in improved

recall over Google as well. The reason is that querying Google with a query such as

"assistant professor", restricted to our site, returns 176 results with very low preci-

sion. A query that yields much better precision and a much higher f-score for Google is

"assistant professor" phone OR voice; however, this longer query yields lower recall

than the tag-based searches, because it only returns pages that contain the word phone or

the word voice. Since the tag-based searches yield both better precision and better recall, it

is not surprising that their f-score is substantially better than Google’s. Of course, far more

extensive experiments are needed to see if the above observations are broadly applicable.

The table also enables us to compare the two variants of tag-based search. We see

that tag-only search tends to have very high precision, but lower recall when compared

to tag+text search. Tag+text has higher recall because it is more robust to omitted or

incorrect tags. For example, in some cases a professor’s rank was not tagged properly due

to human error. Tag+text search also offers the ability to search based on data that was

not tagged because a suitable tag did not exist, as would be the case if we had omitted

<jobTitle> from the schema.

4To be fair to Google, we tried multiple formulations of each query as mentioned above. The
results reported for Google in each row are the ones whose f-score was maximal.

63

Both of our tag-based searches have the further benefit that they can extract the tagged

information from web pages (see Figure 3.6), whereas Google only sometimes manages to

extract this information with its image search or in its result snippets. This feature of our

service makes it much simpler to quickly view the results and facilitates the use of search

queries as building blocks for more sophisticated services.

These measurements are from a single limited domain and the results, while thought-

provoking, are far from definitive. Nevertheless, the measurements do provide evidence

for the feasibility of Mangrove and its potential for supporting value-added services for

users. One might argue that the comparison of Mangrove’s search with Google is not

fair because the semantic search makes use of additional information in the form of tags

that have to be inserted into HTML pages manually. However, our goal is not to argue

that Mangrove has a better search algorithm, but rather to quantify the benefit that can

result from this annotation effort.

3.3.3 Deployment Experience

The results above highlight some of the potential benefits of Mangrove on real data,

but were carried out in a controlled setting. The ultimate question, however, is whether

Mangrove is usable and useful for ordinary people in an actual deployment. Below, we

make a number of observations regarding this question gleaned from almost two years of

Mangrove’s deployment in our department.

First, simple services such as the calendar can offer substantial added value over other

forms of accessing the same information. For instance, in the 21 months the online calendar

has been operational, it has received more than 7600 distinct visits, with an average of

about two page views per visit. Figure 3.8 plots this activity over time. After an initial

burst of activity, this graph shows that calendar usage has remained fairly constant around

300-400 distinct visits per month, with a noticeable drop in activity over the summer. These

measurements show that community members have continued to find the calendar service

useful, even though the same raw data is available elsewhere on the web, validating our

claim that there is value in extracting existing information for novel presentations based on

associated semantics.

64

0

100

200

300

400

500

600

700

O
ct

-0
2

N
ov

-0
2

D
ec

-0
2

Ja
n-

03

F
eb

-0
3

M
ar

-0
3

A
pr

-0
3

M
ay

-0
3

Ju
n-

03

Ju
l-0

3

A
ug

-0
3

S
ep

-0
3

O
ct

-0
3

N
ov

-0
3

D
ec

-0
3

Ja
n-

04

F
eb

-0
4

M
ar

-0
4

A
pr

-0
4

M
ay

-0
4

Ju
n-

04

D
is

tin
ct

 v
is

its
 p

er
 m

on
th

Figure 3.8: The number of distinct visits to the Mangrove calendar during each month. These
values exclude traffic from webcrawlers and Mangrove team members.

Second, users are willing to annotate their documents if the process is easy and inter-

esting services exist to use the annotations. For instance, administrators, students, and

faculty have all utilized annotation to promote a wide range of events, ranging from official

departmental events to visitor schedules to informal events at a local pub. Our experi-

ence also highlights the importance of service popularity in providing instant gratification

to content authors. For example, during the first year of the Who’s Who operation, only

eight graduate students annotated content in order to be included. Then, however, the

official departmental Who’s Who was changed to link to the Mangrove version. In the

two weeks after this change was announced, thirty additional graduate students performed

some annotation in order to add themselves to the service. Since then, new contributions

have continued, though more slowly, increasing the total number to forty-six participants.

In contrast, the lack of an existing user base and prominent link to the Who’s Who for

undergraduates means that a total of just four such students have bothered to annotate

content for this service, though our department has many more undergraduate students

than graduate students.

65

Third, Mangrove is focused on enabling the annotation of existing content. However, in

our deployment users also contributed a significant amount of original content designed for

specific services. For instance, a previously mentioned departmental administrator provides

content for the calendar about graduate student exams. Typically, she does not annotate

existing data, but rather creates annotated descriptions for newly scheduled exams by copy-

ing and modifying the entry for a previous exam. Likewise, a significant number of graduate

students (20 out of 46) chose to contribute at least some of their content to the Who’s Who

by filling out and making web-accessible a provided MTS template. Modifying this tem-

plate was in some ways easier for a student than changing his existing web page, and made

it easy to publish information (e.g., his birthday) that he may not have had on his existing

web page but that was traditionally a part of Who’s Who entries. Thus, Mangrove’s ease

of use and focus on instant gratification can motivate the contribution of both existing and

original content to the Semantic Web. However, more work is needed to better support this

creation of original content. For instance, if some information provided in these alternative

manners duplicates content already present in HTML, we must address the consistency

problems that will inevitably arise.

Finally, an important aspect of Mangrove is how annotated pages evolve over time. In

particular, if pages are modified with annotation-unaware editors such as Microsoft Front-

Page, it is possible for the annotations to be lost or corrupted. In this area we had mixed

results. For personal home pages, we found that annotations seemed to endure fairly well.

For instance, of the graduate students that contributed HTML content usable by the Who’s

Who, only one student’s web page is currently lacking well-formed semantic content. To

some extent, this may reflect the usage of simpler text editors that make the semantic tags

more obvious when editing.

On the other hand, our experience with the evolution of course and seminar web pages

has been more disappointing. For instance, over the past two years a number of seminar

web pages have been annotated, either by the seminar organizer or by a Mangrove team

member on their behalf. We had hoped that once annotated, future versions of a seminar’s

page would continue to benefit from the annotations, and that the number of annotated

seminars would thus grow over time. Unfortunately, this has not occurred, for perhaps

66

two reasons. First, one potential explanation is that Mangrove and its calendar failed

to reach “critical mass” in this context. While the calendar provides a useful summary

of the times of all seminars, it never reached the point where a majority of seminars had

associated annotations, and hence provided more details on seminar topics, presenters, etc.

To some extent, this may reflect the fact that we performed relatively little advertising for

Mangrove — a few newsgroup announcements and some small talks describing the research

— and substantially more publicity is required to launch a new system. Second, we found

that many seminar pages appear to be frequently recreated “from scratch” each academic

quarter, often by administrators who were not aware of the old annotations. Hence, the new

pages lacked annotations and there was not sufficient demand and awareness to insist that

they be added. Instead, we’ve had greater success with more permanent pages (e.g., those

announcing graduate student exams or events of the local ACM chapter). These sources,

with more stability in their content and in the human editors responsible for them, have

continued to contribute a significant amount of new semantic content, even though doing

so requires a small amount of work to maintain the annotations.

Clearly, additional deployments in different universities, organizations, and countries are

necessary to gain additional insight and further refine Mangrove’s design. Nonetheless,

our experience strongly suggests that the Mangrove system and services are both feasible

and beneficial.

3.4 Related Work

Mangrove is the first system to articulate and focus on instant gratification as a central

design principle for a Semantic Web system. Many of the key differences between Man-

grove’s architecture and that of related Semantic Web systems follow from this distinct

design goal. We discuss these differences in more detail below.

Haustein and Pleumann [81] note the importance of semantic data being “immediately

visible” in a way that yields benefit to content authors. Their system, however, primarily

provides this benefit by eliminating redundancy between HTML and semantic data, and

then using this data and templates to dynamically generate attractive HTML or RDF

67

content. While these features potentially make maintaining interrelated HTML and RDF

data more convenient, their system is very different from Mangrove. Specifically, they

have a different architecture that doesn’t support explicit publication, notification, or service

feedback. In addition, we have identified and deployed a set of instant gratification services

as an essential part of Mangrove, which are absent from their system.

Two other projects most closely related to our work are OntoBroker [44] and SHOE [83],

both of which make use of annotations inside HTML documents. Although SHOE’s language

did permit users to inject annotations into HTML pages, their annotations do not actually

use the existing HTML content. Thus, both with SHOE and with OntoBroker’s RDF-based

annotations, all factual HTML data must be repeated in the semantic annotation, leading

to the redundancy and maintenance problems discussed earlier.5

SHOE’s services, like those of many other systems, primarily consisted of tools to simply

search or view semantic data, although their “Path Analyzer” [84] provided a convenient

interface for exploring relationships among concepts. OntoBroker did implement a number

of services, such as a Community Web Portal [167] and services intended to assist business

processes [142]. SHOE and OntoBroker, however, primarily rely upon periodic web crawls

to obtain new information from annotated HTML, thus preventing instant gratification and

content creation feedback. In addition, Mangrove has the advantage of enabling useful

services even when content is only lightly annotated. For instance, while OntoBroker’s

“SoccerSearch” service [142] tries a semantic search and then a textual search if the for-

mer fails, Mangrove’s semantic+text search service can profitably combine both types of

information.

As an alternative to crawling, some systems provide a web interface for users to directly

enter semantic knowledge [121, 44] or to instruct the system to immediately process the

content of some URL [121]. However, we are aware of no existing systems that support

this feature in a manner that provides instant gratification for typical web authors. For

instance, the WebKB-2 system supports a command to load a URL, but this command

5Early work with OntoBroker’s HTML-A annotation language and OntoPad [167] originally per-
mitted annotations to reuse existing data; however, later work with CREAM [78] lost this very
useful feature as the group focused on an RDF encoding.

68

must be embedded within a script, and existing data must be manually deleted from the

repository before a (modified) document can be reprocessed.

WebKB-1 and WebKB-2 [120, 121] also provide a way to embed semantic knowledge in

HTML documents, this time using expressive conceptual graphs and an extensive ontology,

but generally require the duplication of information in those documents. In addition, their

services are currently limited to either information browsing or a semantic-only search. The

OntoSeek project [72] addresses goals of information retrieval similar to WebKB but does

not support the encoding of information in HTML pages and does not provide any services

beyond search.

Conceivably, we could leave the data in the HTML files and access them only at query

time. In fact, several data integration systems (e.g., [34, 4, 91]) do exactly this type of

polling. The difference between Mangrove and such systems is that in the latter, the

system is given descriptions of the contents of every data source. At query time, a data

integration system can therefore prune the sources examined to only the relevant ones

(typically a small number). In Mangrove we cannot anticipate a priori which data will

be on a particular web page, and hence we would have to access every page for any given

query – clearly not a scalable solution. An additional reason why we chose publishing to a

database over query-time access is that the number of queries is typically much higher than

the number of publication actions. For example, people consult event information in the

department calendar much more frequently than announcing new events or changing the

events’ time or location.

Other systems that have permitted the annotation of HTML documents include the

“lightweight databases” of Dobson and Burrill [49] and the annotation tool of Vargas-Vera

et al. [174], but both systems are merely modules for complete Semantic Web systems.

CREAM [78] provides a sophisticated graphical tool that allows annotation of HTML doc-

uments similar to our graphical tagger, but it must replicate data due to its use of RDF.

Some systems (i.e., Annotea [97]) avoid redundancy by using XPointers to attempt to track

which part of a document an annotation refers to, but this approach may fail after docu-

ment revisions and only applies to XHTML documents, which makes it incompatible with

the majority of information on the web.

69

In Mangrove we chose to store annotations within the original HTML pages, for sim-

plicity and to enable easy updates of the annotations when the source data changes. How-

ever, the overall architecture is also consistent with external annotation, where a user may

annotate any page and the annotations are transmitted directly to a semantic database, as

possible with CREAM [78], Annotea [97], or COHSE [12]. A side effect of these tools is

that they automatically aggregate data as with our explicit publish operation; Mangrove

completes the necessary features for instant gratification by providing service notification,

feedback, and a host of useful services.

Recall that the TAP semantic search [74] executes independent textual and semantic

searches based on traditional text queries. This service is easy to use but cannot currently

exploit information from one search in the other, nor can the user specify the type of

semantic information that is desired. QuizRDF [41] searches combine textual and semantic

content, but are more restricted than those provided by Mangrove’s search service, making

them more difficult to use as a building block for other services. However, QuizRDF has an

elegant user interface that more readily assists users in identifying relevant properties.

For storing and accessing RDF data, we utilize the Jena toolkit [123]. Other systems

that also offer centralized RDF storage include Kaon [136] and Sesame [27]. Edutella [141]

extends these approaches to provide RDF annotation, storage, and querying in a dis-

tributed peer-to-peer environment, and proposes some services, but primarily assumes the

pre-existence of RDF data sources rather than considering the necessary architectures and

services to motivate Semantic Web adoption. We view these systems as valuable modules

for complete Semantic Web systems such as Mangrove. In contrast, Mangrove supports

the complete process of content creation, real-time content aggregation, and execution of

services that provide instant gratification to content authors.

The W3C and many others have advocated the use of digitally signed RDF to ensure

the reliability of RDF data [177, 179, 90]. This approach may be logical in cases where

data integrity is essential, but is too heavyweight for average users, and is not necessary

for most services (where usability and freshness are more important). Furthermore, signed

RDF only solves half of the data authentication problem — the part Mangrove solves by

simply maintaining the source URL for all content. The more difficult problem is, given

70

the known source of all data, how should services decide what data sources and data are

reliable, and how should this information be presented to the user? This chapter highlights

how some simple policies can work well for common services and argues for revealing the

source of the data to the end user, similar to the way users ascertain the validity of web

content today.

3.5 Summary

This chapter introduced the Mangrove architecture and described how it supports the

complete Semantic Web “life-cycle” from content authoring to practical services. We demon-

strated how elements of the architecture support each of our three design principles. Specif-

ically, Mangrove supports instant gratification with a loop that takes freshly published

semantic content to semantic services, and then back to the user through the service feed-

back mechanism. Next, Mangrove provides gradual adoption by seeding its services with

a variety of useful data and by providing the MTS syntax, which allows content to be an-

notated incrementally in a way that makes future maintenance trivial. Finally, Mangrove

supports ease of use by reusing familiar application interfaces, providing a simple graphical

annotation tool, deferring integrity constraints to the services, and associating a source URL

with every fact in the database for lightweight trust management.

Overall, Mangrove provides a range of semantic services, combined with a system

designed to drive adoption by applying our three key design principles. These services

have been deployed and actively used in our department for almost two years, and we

provided evidence supporting our claim that applying the design principles both enables

and motivates non-technical people to participate in the Semantic Web. The next chapter

will consider the application of these ideas to the domain of email.

71

Chapter 4

SEMANTIC EMAIL

This chapter describes a general notion of semantic email, focusing particularly on the

theory and application of semantic email processes (SEPs). We explain how these processes

can provide instant gratification to the user via practical reasoning that can scale to support

SEPs with many participants. In addition, we examine how our design principles of gradual

adoption and ease of use can address usability challenges that arise in this context. The

next chapter then introduces a language for specifying such processes and examines some

challenges that such a language raises.

4.1 Introduction

Email offers a particular opportunity where the cost/benefit equation associated with struc-

turing data can be changed dramatically, thus potentially extending the impact of the Se-

mantic Web far beyond its current reach. Like the WWW, email is a vast information space

where people spend significant amounts of time, yet that typically has no semantic features

(aside from generic header fields). While the majority of email will remain this way, Chap-

ter 1 listed a number of common examples where adding semantic features to email offers

opportunities for improved productivity. In general, there are at least three ways in which

semantics can be used to streamline aspects of our email habitat:

1. Update: We can use an email message to add data to some source (e.g., to add an

event announcement to a web calendar)

2. Query: Email messages can be used to query other users for information. Seman-

tics associated with such queries can then be used to automatically answer common

questions (e.g., seeking my phone number or directions to my office).

72

3. Process: We can use semantic email to manage simple but tedious processes that we

currently handle manually (e.g., to organize meetings or give away/auction items).

Because email is not set up to handle these tasks effectively, accomplishing them by hand

can be tedious, time-consuming, and error-prone. The techniques needed to support the

first two uses of semantic email depend on whether the message is written in text by the

user or formally generated by a program on the sender’s end. In the user-generated case,

we would need sophisticated methods for extracting the precise update or query from the

text (e.g., [52, 103]). In both cases, we require some methods to ensure that the sender and

receiver share terminologies in a consistent fashion.

This chapter focuses on the third use of semantic email to streamline processes, as we

believe it has the greatest promise for increasing productivity and is where users currently

feel the most pain. These processes support the common task where an originator wants to

(1) ask a set of participants some questions, (2) collect their responses, and (3) ensure that

the results satisfy some set of goals. In order to satisfy these goals, the SEP manager may

utilize a number of interventions such as rejecting a participant’s response or suggesting an

alternative response.

The remainder of this chapter is organized as follows. We first examine how to provide

instant gratification to originators by formally defining practical SEPs and solving relevant

inference problems for them. Specifically, Section 4.2 introduces a formalization for SEPs

that exposes several fundamental reasoning problems that can be used by the semantic email

manager to facilitate SEP creation and execution. In particular, a key challenge is to decide

when and how the manager should intervene to direct the process toward an outcome that

meets the originator’s goals. We address this challenge with two different formal models.

First, Section 4.3 describes a model of logical SEPs (L-SEPs) and demonstrates that it is

possible to automatically infer which email responses are acceptable with respect to a set of

ultimately desired constraints in polynomial time. Second, Section 4.4 describes a model of

decision-theoretic SEPs (D-SEPs) that alleviates several shortcomings of the logical model,

and presents results for the complexity of computing optimal policies for D-SEPs. These

capabilities all support instant gratification by enabling automated, goal-directed processing

73

of messages on the originator’s behalf. Next, Section 4.5 discusses implementation issues

related to gradual adoption and ease of use that arise for semantic email and how we

have addressed these in our system. Finally, Section 4.6 describes our experience with the

deployed system, Section 4.7 contrasts our approach with related work, and Section 4.8

concludes.

4.2 Semantic Email Processes

Our formalization of SEPs serves several goals. First, the formalization captures the ex-

act meaning of semantic email and the processes that it defines. Second, it clarifies the

limitations of SEPs, thereby providing the basis for the study of variations with different

expressive powers. Finally, given the formalization, we can pose several reasoning problems

that can help guide the creation of semantic email processes as well as manage their life

cycle. We emphasize that the users of SEPs are not expected to understand a formalization

or write specifications using it. Generic SEPs are written by trained authors (who create

simple constraints or utility functions to represent the goal of a process) and invoked by

untrained users. The semantic email system then coordinates the process to provide the

formal guarantees we describe later.

Figure 4.1 illustrates the three primary components of a SEP:

• Originator: A SEP is initiated by the originator, who is typically a person, but could

be an automated program or agent.

• Manager: The originator invokes a new SEP by sending a message to the semantic

email manager. The manager sends email messages to the participants, handles re-

sponses, and requests changes (i.e., intervenes) as necessary to meet the originator’s

goals. The manager stores all data related to the process in an RDF supporting data

set, which may be configured to allow queries by external services (or other managers).

To accomplish its tasks, the manager may also utilize external services such as inference

engines, ontology matchers, and other Semantic Web applications, as described further

below. The manager may be a shared server or a program run directly by the originator.

74

������������
	�����

�������������������

� �"!$#&%"'

(�)*��',+*-$%.!/�0�*!�#&%.'

1 ���2�3�54�� 6 �3�
�7�98��;:5���2��<= >�?�@BA�����C @
>
�"��BDBE � �

�.�F,DG��H� �HIJ�.
K�C >�LM
N �
�.G�GOG@
>�����

P*
KRQHST
	U/OBOBE C A�����C @
>
= >HV
N
>GAHW*>�X,C >� Y >�� @ME @�XBZ[\����A�]BMN

^�_�`�acbed fcg"h�acb�ikj;l*a,m

�0!$%*)"!;n"o

Figure 4.1: The invocation and execution of a SEP. The originator is typically a person, but also
could be an automated program. The originator invokes a SEP via a simple web interface, and thus
need not be trained in the details of SEPs or even understand RDF.

• Participants: The participants respond to messages received about the process. A par-

ticipant may be a person, a standalone program (e.g., to represent a resource such as a

conference room), or a software agent that acts on behalf of a person (e.g., to automat-

ically respond to requests where possible, deferring others to the person). We assume

that email addresses uniquely determine individuals or sets of potential participants in

the process.

Informally speaking, the execution of a process is achieved by the supporting data set

and the set of data updates that email recipients make as they respond. Logically, we

describe our data in the model below as a set of relations (i.e., the relational database

model). However, as the application domains get more complex, we expect to use a richer

representation language. To enable these future extensions as well as interactions with other

Semantic Web applications, our system implements the data set in RDF, using the Jena

storage system [123].

We illustrate our formalization with the running example of a “balanced potluck.” The

originator invokes a process to announce the potluck and ask everyone whether they are

bringing an appetizer, entree, or dessert. The originator also expresses a set of goals for the

potluck. For example, he may specify that the number of appetizers, entrees, or desserts

75

should differ by at most two. Note that this particular problem, while it has a number of

other uses (e.g., distributing N persons evenly among K committees or time slots), is just

an example. Both our formalization and implementation of SEPs support a much broader

range of uses.

The manager seeks to expedite the execution of this process and to achieve the origina-

tor’s goals. Because all SEP data is represented declaratively, there are a number of ways

in which reasoning over this data can enhance the manager’s operation:

• Predicting responses: The manager may be able to infer the likely response of some

participants even before sending any requests. For instance, the manager could employ

another Semantic Web application or data source to detect that a suggested meeting

time is unacceptable for a certain participant, based on information from calendars,

course schedules, or other processes. The manager could use this information either to

warn the originator as the process is being created, or to serve as a surrogate response

until a definitive answer is received. Also, the manager could add a helpful annotation

to the request sent to the participant, indicating what time is likely to be a conflict

and why. As suggested above, this same reasoning could also be profitably employed

on the participant’s end, where an agent may have additional information about the

participant’s schedule.

• Interpreting responses: Typically, the originator will provide the participants with

a finite set of choices (e.g., Appetizer, Entree, Dessert). However, suitable reason-

ing could enable substantially more flexibility. For instance, we could allow a potluck

participant to respond with any value (either in plain text or in some formal language).

Then, the manager could use a combination of information extraction or wrapper tech-

niques (e.g., [52, 103]) and/or ontology matching algorithms (e.g., [48, 47]) to map the

participant’s response into the potluck’s ontology. There are several interesting out-

comes to this mapping. First, the response may directly map to one of the original

potluck choices (e.g., “Cake” is an instance of Dessert). Second, the response may

map to multiple choices in our ontology (e.g., “Jello salad” may be both an Appetizer

and a Dessert). In this case, the manager might consider the response to be half of

76

an appetizer and a dessert, or postpone the decision to a later time and classify it as is

most convenient.1 Third, the response may not map to any given choice, but may still

be a subclass of Food (e.g., a “Sorbet” is a Palette Cleanser); here the manager might

accept the response but exclude it from the goal calculations. Fourth, the response may

map to a known ontology element that is not Food (e.g., “A hat”). Finally, the response

may not map to any known element. In these latter two cases, the manager may either

reject the response or notify the originator.

• Recommending interventions: Reasoning can also assist the manager with directing

the process towards outcomes consistent with the originator’s goals. For instance, if the

manager detects that a potluck process is becoming unbalanced, it could refuse to accept

certain responses, request changes from some participants, or warn the originator that

further action is needed. In this case reasoning is needed to deduce the likely outcome

of a process from the current state, and the likely effects of possible interventions.

In this work we focus on using reasoning for recommending interventions, leaving the other

two items for future work. Specifically, we provide two different approaches for model-

ing the originator’s goals and when to intervene. In the logical model (Section 4.3), the

originator specifies a set of constraints over the data set that should be satisfied by any

process outcome, while in the decision-theoretic model (Section 4.4) the originator provides

a function representing the utility of possible process outcomes. Below we consider each in

turn, discuss possible variants, and present results for fundamental reasoning tasks that can

determine how and when the manager should intervene.

4.3 Logical Model of SEPs

We now introduce our model of a logical semantic email process (L-SEP) and analyze

important inference problems for this model.

1This a very simple form of semantic negotiation; more complex techniques could also be useful [170].

77

4.3.1 Definition of L-SEPs

A L-SEP is a 5-tuple Λ(P,D,R,M,CD) with parts as follows:

Participants P : the set of participants in the process. Note that P may include the

originator.

Supporting data set D: the set of relations that holds all data related to the process.

The initial contents of D are specified by the originator (usually to be a set of default values

for the columns). With each relation in D we associate a schema that includes:

• a relation name and names, data types, and range constraints for the attributes. A

special data type is emailAddress, whose values are elements of the set P . Attributes

may have default values.

• possibly a distinguished from attribute, of type emailAddress, which means that rows in

the relation whose from value is p can only result from messages from the participant

p. The from attribute may be declared unique, in which case every participant can only

affect a single row in the table.

Responses R: the set of possible responses to the originator’s email. R is specified as

follows:

• Attributes: the set of attributes in D that are affected by responses from participants.

This set of attributes cannot include any from attributes.

• Insert or Update: a parameter specifying whether participants can only add tuples,

only modify tuples, or both. Recall that if there is a from field then all changes from p

pertain only to a particular set of tuples.

• Single or Many: a parameter specifying whether participants can send a single response

or more than one. As we explain in the next section, some responses may be rejected

by the system. By single, we mean one non-rejected message.

Messages M : the set of messages that the manager may use to direct the process, e.g., to

remind the participants to respond or to reject a participant’s response.

78

Constraints CD: the set of constraints for every relation in D. We use the following

definitions to specify the constraint language C:

Definition 4.3.1 (variable) A variable v is defined by a SQL query over D. v may be

either an attribute variable (the value of a specific attribute in a row), or an aggregate

variable. An aggregate variable may select a group of rows in an attribute A by specifying

an equality/inequality predicate, and aggregate the corresponding values in an attribute B.

We allow the aggregation functions count, min, max, sum, and average. 2

Definition 4.3.2 (term) A term may be

• a constant,

• a variable as defined above, or

• an expression combining two terms with any arithmetic operator 2

Definition 4.3.3 (atomic predicate) An atomic predicate compares two terms, or a term

with an enumerated set. We allow comparison predicates (=, 6=, <,≤), LIKE, and ∈, 6∈. 2

A set of constraints CD then consists of atomic predicates combined in any manner with

conjunction and disjunction.

Example: In our example, D contains one table named Potluck with two columns: email, a

from attribute of type emailAddress and declared to be unique, and bringing, with the range

constraint Potluck.bringing ∈ {not-coming, appetizer, entree, dessert, NULL}. The

set of possible responses R is { not-coming, appetizer, entree, dessert }. In addition,

CD contains a few constraint formulas similar to the abstract one below, specifying that the

potluck should be balanced:

(SELECT count(*) WHERE bringing = ’dessert’) ≤

(SELECT count(*) WHERE bringing = ’appetizer’) + 2

Finally, the set of messages in our example includes (1) the initial message announcing

the potluck and asking what each person is bringing, (2) messages informing each responder

79

whether their response was accepted or not, (3) a reminder to those who have not responded

2 days before the potluck, (4) regular messages to the originator reporting the status of the

RSVPs, and (5) a message to the originator in the event that everyone has responded.

4.3.2 Inference for L-SEPs

Given the formal model for an L-SEP we can now pose a wide variety of inference problems

whose results can serve to assist in the manager’s operation. This section describes the first

such inference problem, which has different variations.

The core problem we want to address is determining whether to accept a new response r,

given the current state of D and the constraints CD. The output of the inference problem is

a condition that we will check on D and r to determine whether to accept r. The condition

will decide whether to accept r by considering the impact of this acceptance on whether

the L-SEP will terminate in an acceptable state, i.e., a state that satisfies CD. In our

discussion, we assume that r is a legal response, i.e., the values it inserts into D satisfy the

range constraints on the columns of D; if not, the manager can respond with error messages

until a legal response is received.

The space of possible inference problems is defined by several dimensions:

• Necessity vs. possibility: As in modal logics for reasoning about future states of a

system [149, 57], one can either look for conditions that guarantee that any sequence

of responses ends in a desired state (the 2 operator), or that it is possible that some

sequence ends in a desired state (the 3 operator).

• Assumptions about the participants: In addition to assuming that all responses are

legal, we can consider other assumptions, such as: (1) all the participants will respond

to the message or (2) the participants are flexible, i.e., if asked to change their response,

they will cooperate.

• The type of output condition: At one extreme, we may want a constraint Cr

that the manager checks on D when a response r arrives, where Cr is specified in the

same language used to specify CD. At another extreme, we may produce an arbitrary

80

procedure with inputs D and r that determines whether to accept r. We note that a

constraint Cr will inevitably be weaker than an arbitrary algorithm, because it can only

inspect the state of D in very particular ways. As intermediate points, we may consider

constraints Cr in more expressive constraint languages. Note that in cases where we

can successfully derive Cr, we can use database triggers to implement modifications to

D or to indicate that r should be rejected.

As a very simple example, consider the case where we want all response sequences to end

in an acceptable state, we make no assumptions on the participants except that we can

elicit a legal response from them, and we are interested in deriving a constraint Cr that

will be checked when a response arrives. If the initial state of D is an acceptable state,

then simply setting Cr to be CD provides a sufficient condition; i.e., we only let the data

set D be in states that satisfy CD. In the example of the balanced potluck, we would not

accept a response with a dessert if that would lead to having 3 more desserts than entrees or

appetizers. As another example, we would not accept a request for a giveaway process that

caused the total number of tickets claimed to be more than the number that is available.

In many cases, such a conservative strategy will be overly restrictive. For example, we

may want to continue accepting desserts so long as it is still possible to achieve a balanced

potluck. Furthermore, this approach is usable only when the constraints are initially satis-

fied, even before any responses are received, and thus greatly limits the types of goals that

can be expressed. This leads us to the following inference problem.

4.3.3 Ultimate Satisfiability

Our goal is to find necessary and sufficient conditions for accepting a response from a

participant. To do that, we cut across the above dimensions as follows. Suppose we are

given the data set D after 0 or more responses have been accepted, and a new response r.

Note that D does not necessarily satisfy CD, either before or after accepting r. The manager

will accept r if it is possible that it will lead to a state satisfying CD (i.e., considering the 3

temporal operator). We do not require that the acceptance condition be expressed in our

constraint language, but we are concerned about whether it can be efficiently verified on D

81

and r. We assume that D defines some constant number of attributes (e.g., emailAddress,

bringing). Furthermore, we assume that participants can only update their (single) row,

and only do so once.

Definition 4.3.4 (ultimate satisfiability) Given a data set D, a set of constraints CD

on D, and a response r ∈ R , we say that D is ultimately satisfiable w.r.t. r if there exists

a sequence of responses from the participants, beginning with r, that will put D in a state

that satisfies CD. 2

Unfortunately, ultimate satisfiability is difficult in general (proved by a reduction from

3-SAT):

Theorem 4.3.1 Let Λ be an L-SEP with N participants and constraints CD. If CD may

be any set of constraints permitted by the language C, then ultimate satisfiability is NP-

complete in N .

Note that this is a significant limitation, since for many SEPs it is natural to wish to

scale to large numbers of participants (e.g., for large meetings or company-wide surveys).

To address this problem, we begin with the following definition:

Definition 4.3.5 (bounded constraints) Given a data set D and a set of constraints CD

on D, we say that CD is bounded iff one of the following holds:

• Domain-bounded: the predicates of CD only refer to attributes whose domain size is

at most some constant L.

• Constant-bounded: the predicates of CD refer to at most K distinct constants, and

the only aggregate used by CD is count. 2

All of the examples in this paper may be described by constraints that satisfy the

constant-bounded (count-only) condition above, while the domain-bounded case may be

useful for SEPs that require more complex interactions (e.g., where the average number

of guests must be less than J). Using this definition, we can show that ultimate satisfiability

is much more tractable if the constraints are bounded:

82

Theorem 4.3.2 Let Λ be an L-SEP with N participants and constraints CD. If CD is

bounded, then determining ultimate satisfiability is polynomial time in N and |CD|.

As an example of applying this theorem to the balanced potluck, suppose a new dessert

response arrives. At that point, the inference procedure needs to verify that, even if the

dessert response is accepted, there are still enough people who have not yet answered such

that the ultimate set of dishes could be balanced. To check this condition, the procedure

must determine if there is any possible final state of the database, consistent with the

responses received so far plus this new response, that satisfies the constraints. Naively

considering every possibility is infeasible, since there are O(4N) possible final states for our

example potluck with N participants. The key to checking this condition more efficiently is

to express the database states in terms of variables representing aggregates on the number

of participants with each response. For instance, one possible (unbalanced) final state of the

potluck might be {12 appetizers, 23 entrees, 31 desserts, 4 not-coming}. Using these

aggregates, only O(N 4) states need to be considered, which is typically a much smaller

number. The proof in Appendix C shows how such compact representations are always

possible when the constraints are bounded.

4.4 Decision-theoretic Model of SEPs

The logical model of SEPs described above supports a number of useful inferences that

have both theoretical and practical applications. This model, however, has a number of

shortcomings. First, L-SEPs, like logical theories in general, make no distinctions among

unsatisfied outcomes. In our example, there is no way for L-SEPs to strive for a “nearly-

balanced” potluck, since all unbalanced potlucks are equivalently undesirable. Second, an

L-SEP ignores the cost of the actions taken in pursuit of its goals. For instance, a potluck

L-SEP will always reject a response that results in unsatisfiable constraints, even if rejecting

that response (e.g., from an important official) may produce far worse effects than a slightly

unbalanced potluck. Finally, L-SEPs make a very strong assumption that participants are

always willing to change their responses if rejected. For instance, participants in a meeting

83

scheduling process may be somewhat accommodating, but may refuse to modify a rejected

response due to other commitments.

To address these limitations, we offer a decision-theoretic approach. We describe the goal

of a decision-theoretic SEP (D-SEP) by a utility function over the outcome of the process

that takes into consideration the cost of all actions required to achieve that outcome. In

addition, instead of rejecting responses, the decision-theoretic model sometimes suggests

that participants modify their choices. For instance, the balanced potluck uses a utility

function that measures the extent to which the final meal selection is balanced, minus the

costs (social or otherwise) of asking some participants to switch their responses. Below we

formalize this model and then examine the tractability of finding optimal policies for it.

4.4.1 Definition of D-SEPs

A decision-theoretic SEP is a 6-tuple, δ(P, S, V,A,U, T). Below we explain each component

and contrast it to the corresponding component of the logical model.

• Participants P : the set of participants, of size N , as in the logical model.

• States S: the set of possible states of the system. A state s describes both the responses

that have been received (just like the supporting data set D does in the logical model) as

well as information about outgoing change requests that have been sent by the system.

• Values V : the set of possible values for participants to choose from (e.g., V =

{appetizer, entree, dessert}). This set is equivalent to R, the set of possible responses

in the logical model.

• Actions A: the set of actions available to the system after sending out the initial

message. Actions we consider are NoOp (do nothing until the next message arrives),

SWv (ask a participant to switch their response from v to something else), or Halt

(enter a terminal state, typically only permitted when a message has been received

from every participant). Other variants of actions are also useful (e.g., ask a participant

to switch from v to a particular value w); such additions do not fundamentally change

the model or our complexity results. The set of actions corresponds roughly to the set

84

of messages M that may be sent in the logical model, though the logical model sends

rejections instead of suggestions.

• Utilities U(s, a): the utility from executing action a in state s. For the potluck

example, U(s, SWv) is the (negative) utility from making a change suggestion, while

U(s,Halt) is the utility based on the final potluck balance. The utility function corre-

sponds to the set of constraints CD for the logical model.

• Transitions T (s, a, s′): the probability that the system will transition to state s′ after

performing action a in state s. However, rather than having to specify a probability for

each transition, these are computed from a smaller set of building blocks. For instance,

ρv is the probability that a participant will originally respond with the value v; ρvw is

the probability that, when asked to switch from the choice v, a participant will change

their response to w (ρvv is the probability that a participant refuses to switch). This

component has no analogue in the logical model.

The execution of the process proceeds in discrete steps, where at each step the manager

decides upon an action to take (possibly NoOp). The outcome of this action, however, is

uncertain since the manager is never sure of how participants will respond. The transition

function T () models this uncertainty.

A policy π describes what action the manager will take in any state, while π(s) denotes

the action that the manager will take in a particular state s. An optimal policy π? is a

policy that maximizes the expected utility U(δ) of the process, where

U(δ) = U(s1, a1) + U(s2, a2) + ... + U(sj , aj)

for the sequence of states and actions (s1, a1), ..., (sj ,Halt).

D-SEPs are a special case of Markov Decision Processes (MDPs), a well-studied formal-

ism for situations where the outcome of performing an action is governed by a stochastic

function and costs are associated with state transitions [150]. Consequently, we could find

the optimal policy for a D-SEP by converting it to an MDP and using known MDP policy

85

solvers.2 However, this would not exploit the special characteristics of D-SEPs that permit

more efficient solutions, which we consider below.

4.4.2 Variations of D-SEPs

As with our logical model, the space of possible D-SEPs is defined by several dimensions:

• Restrictions on making suggestions: Most generally, the manager may be allowed

to suggest changes to the participants at any time, and to do so repeatedly. To be more

user-friendly, we may allow the manager to make suggestions anytime, but only once per

participant. Alternatively, if users may be expected to make additional commitments

soon after sending their response (e.g., purchasing ingredients for their selected dish),

then we may require the manager to respond with any suggestion immediately after

receiving a message, before any additional messages are processed.

• Assumptions about the participants: In addition to the assumed probabilities

governing participant behavior, we may also wish to assume that all participants will

eventually respond to each message they receive. Furthermore, we might assume that

participants will respond immediately to any suggestions that they receive (particularly

if the manager also responds immediately to their original message), or instead that

they can respond to suggestions anytime.

• The type of utility functions: At one extreme, we might allow complex utility

functions based upon the individual responses of the participants (e.g., “+97 if Jay

is bringing dessert”). Often, however, such precision is unnecessary. For instance, all

potluck outcomes with 8 desserts and 1 entree have the same low utility, regardless of

who is bringing what dish.

Below we consider the impact of these variations on the complexity of computing the optimal

policy.

2Specifically, D-SEPs are “Stochastic Shortest-Path” MDPs where the terminal state is reachable from
every state, so an optimal policy is guaranteed to exist [18]. Incorporating additional features from temporal

MDPs [26] would enable a richer model for D-SEPs (e.g., scheduling a meeting should be completed before
the day of the meeting). However, existing solution techniques for TMDPs do not scale to the number of
participants required for semantic email.

86

4.4.3 Computing the Optimal Policy

In this section we examine the time complexity of computing the optimal policy π? for a

D-SEP. We begin by considering a D-SEP with an arbitrary utility function and then

examine how restrictions to the utility function and the permitted quantity and timing of

suggestions make computing π? more tractable. In all cases we assume that the participants

will eventually respond to each message and suggestion that they receive. (We can relax

this assumption by representing in the model the probability that a participant will not

respond to a message.) The following theorem is proved by reduction from QBF (quantified

boolean formula) and the EXPTIME-hard game G4 [168, 112]:

Theorem 4.4.1 Let δ be a D-SEP with N participants where the utility U(s, a) is any

deterministic function over the state s and the current action a. If the manager can send

only a bounded number of suggestions to each participant, then determining π? is PSPACE-

hard in N . If the manager can send an unlimited number of suggestions, then this problem

is EXPTIME-hard in N . The corresponding problems of determining if the expected util-

ity of π? for δ exceeds some constant θ are PSPACE-complete and EXPTIME-complete,

respectively.

Thus, for the case of arbitrary utility functions determining π? for a D-SEP is imprac-

tical for large values of N . Note that conversion to an MDP offers little help, since the

MDP would require a number of states exponential in N . As with L-SEPs, this represents

a significant problem, since we would like SEPs to scale to many participants. Below, we

begin to make the calculation of π? more tractable by restricting the type of utility function:

Definition 4.4.1 (K-Partitionable) The utility function U(s, a) of a D-SEP is K-

partitionable if it can be expressed solely in terms of the variables a,C1, ..., CK where a

is the current action chosen by the manager and each Ci is the number of participants who

have responded with value Vi in state s. 2

Intuitively, a utility function is K-partitionable if what matters is the number of par-

ticipants that belong to each of a fixed number of K groups, rather than the specific par-

ticipants in each of these groups. For instance, the utility function of our example potluck

87

is 4-partitionable, because all that matters for evaluating current and future utilities is the

current number of participants that have responded Appetizer, Entree, Dessert, and

Not-Coming. In this case a simple utility function might be:

U(s,Halt) = −α(|CA − CE|
2 + |CA − CD|2 + |CE − CD|2)

U(s, SWv) = −1

where α is a scaling constant and CA, CE , and CD are the numbers of appetizers, entrees,

and desserts, respectively. Note that the maximum utility here is zero.

A K-partitionable utility function is analogous to the count-only constraint language of

Theorem 4.3.2. As with Theorem 4.3.2, we could allow more complex utility functions (e.g.,

with variables representing the max, sum, etc. of the underlying responses); with suitable

restrictions, such functions yield polynomial time results similar to those described below.

Note, however, that the simpler K-partitionable definition is still flexible enough to support

all of the SEPs discussed in this paper. In particular, a K-partitionable utility function may

still distinguish among different types of people by counting responses differently based on

some division of the participants. This technique increases the effective value of K, but only

by a constant factor. For instance, the utility function for a meeting scheduling process that

desires to have the number of faculty members attending (Cyes,F) be at least three and the

number of students attending (Cyes,S) be as close as possible to five, while strongly avoiding

asking faculty members to switch, might be:

U(s,Halt) = −α[max(3 − Cyes,F , 0)]2 − β|Cyes,S − 5|2

U(s, SWno,F) = −10

U(s, SWno,S) = −1

A D-SEP that may make an unlimited number of suggestions but that has a K-

partitionable utility function can be represented as an “infinite-horizon” MDP with just

O(N2K) reachable states. Consequently, the D-SEP may be solved in time polynomial

88

Table 4.1: Summary of theoretical results for D-SEPs. The last two columns show the time
complexity of finding the optimal policy for a D-SEP with N participants. In general, this problem
is EXPTIME-hard but if the utility function is K-partitionable then the problem is polynomial
time in N . (An MDP can be solved in time guaranteed to be polynomial in the number of states,
though the polynomial has high degree.) Adding restrictions on how often the manager may send
suggestions makes the problem even more tractable. Note that the size of the optimal policy is finite
and must be computed only once, even though the execution of a SEP may be infinite (e.g., with
“AnyUnlimited”).

Restrictions Description of Restrictions Complexity
with arbitrary
utility function

Complexity
when

K-partitionable
AnyUnlimited Manager may suggest changes at any time, and

may send an unlimited number of suggestions to
any participant.

EXPTIME-hard MDP with
O(N2K) states

AnyOnce Manager may suggest changes at any time, but
only once per participant.

PSPACE-hard O(N3K) time

Immediate Manager may suggest changes only immediately
after receiving a response, once per participant.

PSPACE-hard O(N2K) time

Synchronous Same as “Immediate”, but each participant is
assumed to respond to any suggestion before the
manager receives any other message.

PSPACE-hard O(NK) time

in N with the use of linear programming (LP), though alternative methods (e.g., policy

iteration, simplex-based LP solvers) that do not guarantee polynomial time may actually

be faster in practice due to the large polynomial degree of the former approach [113].

Furthermore, if we also restrict the system to send only one suggestion to any participant

(likely a desirable property in any case), then computing the optimal policy becomes even

more tractable:

Theorem 4.4.2 Let δ be a D-SEP with N participants where U(s, a) is K-partitionable

for some constant K and where the system is permitted to send at most one suggestion to

any participant. Then π? for δ can be determined in O(N 3K) time. (If the system can send

at most L suggestions to any participant, then the total time needed is O(N (2L+1)K).)

Table 4.1 summarizes the results presented above as well as a few other interesting cases

(“Immediate” and “Synchronous”). These results rely on two key optimizations. First, we

can dramatically reduce the number of distinct states via K-partitioning; this permits π?

to be found in polynomial time. Second, we can ensure that the state transition graph

is acyclic (a useful property for MDPs also noted in other contexts [21]) by bounding the

number of suggestions sent to each participant; this enables us to find π? with simple graph

search algorithms instead of with policy iteration or linear programming. Furthermore, this

89

approach enables the use of existing heuristic search algorithms where an exact computation

remains infeasible. Consequently, with appropriate restrictions many useful D-SEPs can

be efficiently solved in polynomial time.

4.4.4 Discussion

Compared to L-SEPs, the primary advantages of D-SEPs are their ability to balance the

utility of the process’s goals vs. the cost of additional communication with the participants,

and their graceful degradation when goals cannot be completely satisfied. On the other

hand, the need to determine suitable utilities and probabilities is an inherent drawback

of any decision-theoretic framework. Below we consider techniques to approximate these

parameters.

First, the π? for a D-SEP depends upon the relative value of positive utilities (e.g.,

having a well-balanced potluck) vs. negative utilities (e.g., the cost of making a sugges-

tion). Our discussion above exhibited a number of simple but reasonable utility functions.

In practice, we expect that D-SEPs will provide default utility functions based on their

functionality, but would allow users to modify these functions by adjusting parameters or

by answering a series of utility elicitation questions [23].

Second, D-SEPs also require probabilistic information about how participants are likely

to respond to original requests and suggestions. This information can be determined in a

number of ways:

• User-provided: The process originator may be able to provide reliable estimates of

what responses are likely, based on some outside information or past experience.

• History-based: Alternatively, the system itself can estimate probabilities by examin-

ing the history of past processes.

• Dynamically-adjusted: Instead of or in addition to the above methods, the system

could dynamically adjust its probability estimates based on the actual responses re-

ceived. If the number of participants is large relative to the number of choices, then the

90

system should be able to stabilize its probability estimates well before the majority of

responses are received.

Finally, some versions of D-SEPs require calculating the probability of the next message

received being an original message (ρo(S)) or a response to a suggestion (ρs(S)). One

reasonable approximation is as follows:

ρo(S) =
βo

βo + (1 − β)s

ρs,v(S) =
(1 − β) · sv

βo + (1 − β)s

where o is the number of participants who have yet to make an original response, s =

s1 + ... + sk (sv is the number of participants that have yet to respond to a suggestion

SWv), and β is a parameter in the range (0,1). As β approaches 0, responses to suggestions

become more and more likely to arrive before any additional original responses (as in the

“Synchronous” case), while setting β to 0.5 assumes that the relative likelihood of original

responses vs. suggestion responses depends only on the number of pending messages of

each type. The most appropriate choice of β can be determined by any of the probability

estimation techniques discussed above. Of course more sophisticated models based on the

specific response that a participant was asked to change or the different types of participants

(e.g., student, faculty, etc.) are also possible.

Thus, although the need to provide utility and probability estimates is a drawback of

D-SEPs compared to L-SEPs, simple techniques can produce reasonable approximations

for both. In practice, the choice of whether to use a D-SEP or L-SEP will depend on the

target usage and the feasibility of parameter estimation. In our implementation, we allow

the originator to make this choice. For D-SEPs, we currently elicit some very basic utility

information from the originator (e.g., see Figure 4.2), and use some probabilities provided

by the SEP author for expected participant behavior. Extending our implementation to

support history-based and dynamically-adjusted probabilities is future work.

91

4.5 Implementation and Usability

We have implemented a complete semantic email system and deployed it in several appli-

cations. In doing so, we faced several challenges. Our design principles from Chapter 1,

particularly those of gradual adoption and ease of use, provide a framework for tackling

these challenges. Below we elaborate on these challenges and describe how we have ad-

dressed them in our system.

4.5.1 Process Creation and Execution

Translating SEP theory to real problems: Applying our SEP theory to real problems

requires enabling an originator to easily create an L-SEP or D-SEP model that corre-

sponds to his goals. One option is to build a GUI tool that guides the originator through

constructing the appropriate choices, messages, and constraints or utilities for the process.

Practically, however, a tool that is general enough to build an arbitrary process is likely to

be too complex for untrained users.

Instead, our system is based on the construction of reusable templates for specific classes

of SEPs. Facilitating the authoring of general, widely-applicable templates that can be

safely instantiated even by naive originators is an important challenge that is the focus of

the next chapter. For our current discussion, we briefly describe the use of templates from

the point of view of the originator. An untrained originator finds a SEP from a public library

of SEP templates and instantiates the template by filling out a corresponding web form,

yielding a SEP declaration. For instance, Figure 4.2 shows such a form for the balanced

potluck. Note that the bottom of this form allows users to choose between executing an

L-SEP (the “strictly” and “flexibly” options) or a D-SEP (the “tradeoff-based” option).

In addition, originators may specify either individuals or mailing lists as participants; for

the latter case, the form also asks the originator for an estimate of the total number of

people that will respond (not shown in Figure 4.2).

The originator then invokes the process by forwarding the declaration to the manager.

Given the formal declaration, the manager then executes the process, using appropriate

92

Figure 4.2: A web form used to initiate a “balanced collection” process, such as our balanced
potluck example. For convenience, clicking submit converts the form to text and sends the result
to the server and a copy to the originator. The originator may later initiate a similar process by
editing this copy and mailing it directly to the server.

L-SEP and D-SEP algorithms to decide how to direct the process via appropriate message

rejections and suggestions.

Facilitating responses: Another key challenge is enabling participants to respond to

messages in a way that is convenient but that can be automatically interpreted by the

manager. A number of different solutions are possible:

• Client software: We could provide a custom email client that would present the

participant with an interface for constructing legal responses or automatically respond

to messages it knows how to handle (e.g., “Decline all invitations for Friday evenings”).

This client-based approach, however, requires all participants in a process to install

93

additional software (conflicting with our gradual adoption goal) and is complicated by

the variety of mail clients currently in use.

• Information extraction: We could allow participants to respond in a natural language

(e.g., “I’ll bring a dessert”). We could then use wrappers or information extraction tech-

niques to attempt to convert this response to one of the offered choices. This approach

is promising but risks having the wrapper fail to extract the correct information.

• Email or web forms: We could provide participants with a text-encoded form to fill

out, or we could send them a link to a suitable web-based form to use for their response.

Embedded HTML forms are also attractive, but unfortunately are not handled uniformly

by existing email clients.

While web forms have some advantages, we chose to use email text forms instead because

they fit more naturally with how people typically handle incoming messages. In addition,

text forms offer a simple solution that works for any participant. Participants respond by

replying to the process message and editing the original form.

Our earlier discussion generally assumed that participants would send a single acceptable

response. However, our implementation does permit participants to “change their mind” by

sending additional responses. For the logical model, this response is accepted if changing the

participant’s original response to the new value still permits the constraints to be satisfied

(or if the response must always be accepted, e.g., for Not-Coming). For the decision-theoretic

model, the new response is always accepted but may lead to a change suggestion based on

the modified state of the process.

Manager deployment: Potentially, the manager could be a program run on the origina-

tor’s personal computer, perhaps as part of his mail client. This permits an easy transition

between authoring traditional mails and invoking SEPs, and can also benefit from direct

access to the originator’s personal information (e.g., calendar, contacts). However, as with

providing client software for participants, this approach requires software installation and

must deal with the wide variety of existing mail clients.

Our implementation instead deploys the manager as a shared server. The server receives

94

invocations from the originator and sends out an initial message to the participants. Partic-

ipants reply via mail directly to the server, rather than to the originator, and the originator

receives status and summary messages from the server when appropriate. The originator

can query or alter the process via additional messages or a web interface.

Discussion: Our server-based approach is easy to implement and satisfies our gradual

adoption and ease of use principles, since it requires no software installation, works for all

email clients, and does not require users (as originators) to read or write RDF. In addition,

we believe that divorcing the processing of semantic email (in the server) from the standard

email flow (in the client) will facilitate gradual adoption by ameliorating user concerns about

privacy3 and about placing potentially buggy code in their email client. Furthermore, this

approach supports our instant gratification principle by providing untrained users with

existing, useful SEPs that can be immediately invoked and yield a tangible output (in the

form of messages sent and processed on the users’ behalf).

Note also that this approach effectively integrates content creation into the act of invok-

ing a SEP. In particular, simply by filling out a web form with the participants, choices, and

goals for a SEP, the originator creates semantic content. Likewise, participants respond to

requests in a way that is easy to use but that makes it easy to interpret their responses

declaratively. This declarative data enables a range of useful reasoning that may benefit

both the current SEP and future interactions, as described in Section 4.2. Thus, any person

involved in the execution of a SEP automatically contributes declarative content to some

extent, accomplishing a significant part of our overall goal.

4.5.2 Human/Machine Interoperability

The previous section highlighted how semantic email messages can be handled by either

a human or by a program operating on their behalf. Thus, an important requirement is

that every message must contain both a human-understandable portion (e.g., “You’re in-

vited to the potluck on Oct 5...”) and a corresponding machine-understandable portion.

3Only semantic email goes through the server, personal email is untouched. Of course, when the semantic
email also contains sensitive information, the security of the server becomes significant.

95

For messages sent to a participant, this approach supports gradual adoption by permit-

ting the originator to send the same message to all participants without any knowledge of

their capabilities. For responses, a machine-understandable portion enables the manager

to evaluate the message against the process constraints/utilities and take further action.

The human-readable component provides a simple record of the response if needed for later

review.

In our implementation, we meet this interoperability requirement with a combination

of techniques. For responses, a human can fill out the included text form (see Figure 4.3),

which is then converted into RDF at the server with a simple mapping from each field

to an unbound variable in a RDQL query associated with the message. Alternatively, a

machine can respond to the message simply by answering the query in RDF, then applying

the inverse mapping in order to correctly fill out the human-readable text form.

For messages to the participants, the challenge is to enable the manager to construct

these textual and RDF/RDQL portions directly from the SEP declaration. Here there is a

tension between the amount of RDF content that must be provided by the SEP author (in

the template) vs. that provided by the SEP originator (when instantiating the template).

Very specific SEP templates (e.g., to balance N people among appetizer, entree, and dessert

choices) are the easiest to instantiate, because the author can specify the RDF terms needed

in advance. General SEP templates (e.g., to balance N people among K arbitrary choices)

are much more reusable, but require substantially more work to instantiate (and may require

understanding RDF). Alternatively, authors may provide very general templates but make

the specification of RDF terms for the choices optional; this enables easy template reuse

but fails to provide semantic content for automated processing by the participants.

In our current system, we offer both highly specialized SEPs (e.g., for meeting schedul-

ing) and more general SEPs (e.g., to give away some type of item). Enabling originators to

easily customize general SEPs with semantic terms, perhaps from a set of offered ontologies,

is an important area of future work.

96

Figure 4.3: A message sent to participants in a “balanced potluck” process. The bold text in the
middle is a form used for human recipients to respond, while the bold text at the bottom is a RDQL
query that maps their textual response to RDF.

4.5.3 Integrating with Non-Semantic Messages

Despite the advantages of semantic email, we do not want to create a strict dichotomy in

our email habitat. In our potluck example, suppose that one of the participants wants to

know whether there is organized transportation to the potluck (and this information affects

his decision on what to bring). What should he do? Compose a separate non-semantic

email to the originator and respond to the semantic one only later? A better (and easier to

use) solution would be to treat both kinds of emails uniformly, and enable the participant

to ask the question in replying to the semantic email, ultimately providing the semantic

response later on in the thread.

97

Our implementation supports this behavior by supplying an additional Remarks field in

each response form, where a participant may include a question or comment to be forwarded

to the originator. For a question, the originator can reply, enabling the participant to

respond to the original semantic question with the included form or pose another question.

4.6 Experience

Our semantic email system is deployed and may be freely used by anyone without any

software installation; the source code for deploying other instances of the server is also

available. So far we have developed simple processes for functions like collecting RSVPs,

giving tickets away, scheduling meetings, and balancing a potluck. Our system uses standard

ontologies where possible (e.g., RDF Calendar [176]), augmented as needed with a local

semantic email schema.

Our semantic email server has seen growing interest over the fifteen months that it

has been available. For instance, a DARPA working group has adopted semantic email

for all of its meeting scheduling and RSVP needs, students have used semantic email to

schedule seminars and Ph. D. exams, and semantic email has been used to organize our

annual database group and departmental-wide potlucks. Furthermore, a number of other

institutions have expressed interest in deploying copies of semantic email locally at their

sites. These are merely anecdotes but lend credence to our claim that semantic email is

both useful and practical.

Despite the usage we have seen, however, the group of people instantiating new SEPs

as originators seems to be much smaller than the group of people who have learned about

and shown enthusiasm for the system. While some of this effect is to be expected, we also

believe that a significant reason is the amount of initial work required to instantiate a SEP.

In spite of SEPs’ advantages, when faced with a particular data-collection task it is easier

in the short-term to just send a non-semantic email message and deal with the consequences

later. In short, the instant gratification from using SEPs is not instant enough. Chapter 6

proposes some future work to make the invocation a SEP even easier.

Our experience with untrained participants has been mixed. On one hand, partici-

98

pants have generally demonstrated an ability and willingness to respond to semantic email

messages and requests. However, our use of plain text messages, while allowing anyone to

participate, has sometimes been problematic. For instance, some fraction of users inevitably

returns forms that are ambiguous or invalid in some way. These problems have highlighted

the importance of both careful instructions and simple, understandable error messages. In

addition, while our use of an RDQL query embedded in the participant’s response has some

intuitive appeal (the message is entirely understandable on its own, less state in the server,

etc.), in practice this method sometimes fails because the participant neglects to return the

entire message or because a mail client performs some unusual reformatting. Consequently,

we modified our server to use a cached version of the RDQL query in cases where the query

is lost or distorted.

4.7 Related Work

Some hardcoded email processes, such as the meeting request feature in Outlook, invita-

tion management via Evite, and contact management via GoodContacts, have made it into

popular use. Each of these commercial applications is limited in its scope, but validates

our claim about user pain. Our goal in this work is to sketch a general infrastructure for

semantic email processes, and to analyze the inference problems it needs to solve to manage

processes effectively and guarantee their outcome.

Collaboration systems such as Lotus Notes/Domino and Zaplets offer scripting capabili-

ties and some graphical tools that could be used to implement sophisticated email processes.

However, these systems (as with the workflow systems discussed later) lack support for rea-

soning about data collected from a number of participants (e.g., as required to balance a

potluck or ensure that a collected budget satisfies aggregate constraints). In addition, such

processes are constructed from arbitrary pieces of code, and thus lack the formal properties

that our declarative model provides. Finally, messages in such systems lack the RDF con-

tent of semantic email, precluding automated processing by the recipient (e.g., to decline

invitations for unavailable times).

Information Lens [117] used forms to enable a user to generate a single email mes-

99

sage with semi-structured content that might assist recipients with filtering and prioritizing

that message. Our SEPs generalize this earlier work by enabling users to create an email

process consisting of a set of interrelated messages, and by extending Information Lens’s

rule-based message processing to support more complex constraint and utility reasoning

based on information from the entire set of messages. Consequently, SEPs support a much

broader range of possible applications. More recently, Kalyanpur et al. [98] proposed having

users semantically annotate messages to improve mail search, sorting, and filtering. This

approach can potentially result in rich semantic content, but requires users to invest sig-

nificant annotation effort for some potential future benefit (e.g., in improved searching for

an old email) or primarily for the benefit of the recipient. SEPs instead generate both the

semantic content and the text of the email message directly from simple forms, and provide

instant gratification by immediately utilizing this content for simple but time-saving email

processes.

Possible uses of semantic email are similar to those of some existing Semantic Web

systems (e.g., [146, 102, 133], cf., RDF Calendar group discussions [176]). The key dif-

ferentiating aspects of our work are its generality to many different tasks, its ability to

interoperate freely with naive participants, and its polynomial time reasoning for recom-

mending interventions. For instance, RCal [146] uses messages between participants to

agree upon meeting times and McIlraith et al. [133] describe an agent that makes travel

arrangements by invoking various web services (which could be modeled as participants

in a SEP). These systems, however, enable full interaction only between two parties that

are both executing domain-specific software. For instance, though RCal provides a web

interface to let anyone schedule an appointment with an installed RCal user, an RCal user

cannot use the system to request an appointment with a non-“RCal-enabled” person. Like-

wise, McIlraith et al.’s agent is designed only to communicate with specific web services,

not with humans (such as human travel agents) that could offer the same functionality. Our

system instead permits processes to include any user, regardless of their capabilities. An

additional, though less critical, distinction is our use of email instead of HTTP or a custom

protocol (cf., Everyware [63]). Email provides a convenient transport mechanism because

the vast majority of users already have well-known addresses (no additional directories are

100

needed), messages can be sent regardless of whether the recipient has performed any config-

uration, and existing email clients provide a useful record of messages exchanged. Finally,

our framework enables the automated pursuit of a wide variety of goals through reasoning

in guaranteed polynomial time, a result not provided by the other systems discussed above.

The combination of these factors makes semantic email a lightweight, general approach for

automating many tasks that would be impractical with other systems.

4.7.1 Efficient Reasoning With Aggregation

A significant challenge for the SEP theory that we describe is reasoning about the possible

relationships between aggregate values (current and future), given a particular state of the

SEP database (i.e., the messages received so far). Reasoning about aggregation has received

significant attention in the query optimization literature [155, 108, 37, 71] and some in the

description logic literature (e.g., [8]). This body of work considered the problem of optimiz-

ing queries with aggregation by moving predicates across query blocks, and reasoning about

query containment and satisfiability for queries involving grouping and aggregation. In con-

trast, our L-SEP results involve considering the current state of the database to determine

whether it can be brought into a state that satisfies a set of constraints. Furthermore, since

CD may involve several grouping columns and aggregations, they cannot be translated into

single-block SQL queries, and hence the containment algorithms will not carry over to our

context.

Workflow systems [137, 135, 173, 105] could also be used to represent some SEPs,

and many such systems have a solid formal foundation based on Petri Nets [92] or the Pi

calculus [134]. In addition, languages for workflow typically permit much more complex

control flow than allowed by our current SEP framework (which involves asking a single set

of questions from a single set of participants). Workflow systems, however, typically have

very weak support for reasoning about values and aggregations of data, instead restricting

their attention to reasoning about temporal and causality constraints. Such formalisms

could potentially convert aggregation constraints to temporal constraints by enumerating

all possible data combinations, but this may result in an exponential number of states. One

101

exception is the recent work of Senkul et al. [160], who extend workflows to include resource

constraints based on aggregation. Each such constraint, however, is restricted to performing

a single aggregation with no grouping (and thus could not express the potluck constraint

given in the earlier example). In addition, their solution is based on general constraint

solving and thus will take exponential time in the worst case. We have shown, however,

that in our domain L-SEPs can easily express more complex aggregation constraints while

maintaining polynomial-time inference complexity for bounded constraints.

Other more database-focused work (e.g., Abiteboul et al. [3], Bonner [22], Deutsch et

al. [46]) has defined formalisms that could potentially be applied to representing SEPs,

at least at a high level. For instance, Deutsch et al. [46] define a language for specifying

and verifying data-driven web services, while Abiteboul et al. [3] investigate specifying and

verifying relational transducers for business processes. These formalisms offer more support

for reasoning about data than directly possible with workflow systems, but still lack support

for reasoning about aggregation. For instance, the notion of goal reachability for relational

transducers [3] is similar to our definition of ultimate satisfiability. Various restrictions on

the model allow decidability of goal reachability in P, NP, or NEXPTIME, but none of these

restrictions (nor the extensions described by Hull [89]) permit goals involving aggregation.

Essentially, efficient reasoning about aggregation requires the ability to abstract away

from the details of the data to concentrate only on important summary information (e.g., the

number of desserts so far), the details of which depend upon the structure of the goal. To

some extent, this same idea of exploiting structural information has been studied in the field

of Markov Decision Processes (e.g., [24, 25]). For instance, Boutilier et al. [25] describe an

improved method of policy iteration for solving MDPs that represents the optimal policy

as a structured decision tree, rather than explicitly representing the optimal action for

each possible state. This approach offers a helpful (though not guaranteed) technique for

reducing the effective state space that must be considered. This work is complementary

to our analysis of D-SEPs — we apply K-partitioning to drastically reduce the number of

states for a D-SEP, which may then be used as the input to an improved policy solver that

efficiently represents the optimal policy over these states.

102

4.8 Summary

This chapter generalizes the original vision of the Semantic Web to also encompass email.

We have introduced a paradigm for semantic email and described a broad class of semantic

email processes. These automated processes offer tangible productivity gains on email-

mediated tasks that are currently performed manually in a tedious, time-consuming, and

error-prone manner. Moreover, semantic email opens the way to scaling similar tasks to large

numbers of people in a manner that is infeasible today. For example, large organizations

could carry out surveys, auctions, and complex meeting coordination via semantic email

with guarantees on the behavior of these processes.

Semantic Email is a second example of how a successful Semantic Web system should

exhibit our three proposed design principles. First, SEPs offers instant gratification to

originators in the form of messages sent and processed on their behalf. Our declarative data

representation enables a range of helpful reasoning to support this processing. In particular,

we define two formal models for specifying the desired behavior of a SEP and identify key

restrictions that enable tractable reasoning over these models. Second, our system provides

gradual adoption by enabling anyone to launch and participate in a SEP without needing

to understand RDF or install any software. Finally, our system supports ease of use with

its template-based SEP instantiations and its use of simple text forms for responses. The

next chapter examines ways to make Semantic Email even more useful and practical by

simplifying the process of authoring a SEP.

103

Chapter 5

SPECIFYING SEMANTIC EMAIL PROCESSES

The previous chapter described the theory of SEPs and how they can automatically

pursue goals on behalf of an originator, but how can a non-technical originator tell a SEP

what to do? One approach to this problem is to use templates that are authored once but

then instantiated many times by ordinary users. This approach, however, raises a number of

challenges. For instance, how can templates concisely represent a broad range of potential

uses, yet ensure that each possible instantiation will function properly? And how does the

SEP explain its actions to the humans involved? This chapter describes the three challenges

of generality, safety, and understandability that arise in this context. We then describe

how we address each challenge via a declarative, high-level template language, instantiation

safety testing, and automatic explanation generation, and relate these solutions to our three

design principles.

5.1 Introduction

Chapter 4 demonstrated that SEPs can be used for a wide range of useful interactions

and that important reasoning problems for SEPs are computationally tractable in many

common cases. Applying this theory to real problems, however, requires the ability to create

a SEP specification that corresponds to an originator’s goals.

Our approach to this problem is to encapsulate classes of common behaviors into reusable

templates (cf., program schemas [45, 65] and generic procedures [132]). Templates address

the specification problem by allowing a domain-specific template to be authored once but

then instantiated many times by untrained users. In addition, specifying such templates

declaratively opens the door to automated reasoning to verify important properties and to

compose templates for more complex interactions.

However, specifying SEP behavior via templates presents a number of challenges:

104

• Generality: How can a template concisely represent a broad range of potential uses?

• Safety: Templates are written with a certain set of assumptions — how can we ensure

that any (perhaps unexpected) instantiation of that template by a naive originator will

function properly (e.g., do no harm [180], generate no errors)?

• Understandability: When executing a template, how can a SEP explain its actions

to the humans (or other agents) that are involved?

This chapter addresses each of these challenges. For generality, we describe the essential

features of our template language that enable authors to easily express complex goals with-

out compromising the tractability of SEP reasoning. The sufficiency of these features is

demonstrated by our implementation of a small but diverse set of SEPs. For safety, we

show how to verify, in polynomial time, that a given template will always produce a valid

instantiation. Finally, for understandability, we examine how to automatically generate ex-

planations of why a particular response could not be accepted and what responses would

be more acceptable. We also identify suitable restrictions where such explanations can be

generated in polynomial time. Collectively, these results greatly increase the usefulness

of semantic email. In addition, they highlight important issues that may be relevant to

other Semantic Web agents, because many such agents face the same general challenges of

generality, safety, and understandability in interacting with non-technical people.

In this chapter, our discussion is motivated primarily by our design principles of gradual

adoption and ease of use. For instance, originators should be able to easily and safely specify

a new SEP without needing any specialized training or software, and participants should

receive understandable requests from the SEP manager. In addition, the template language

that we discuss also helps to support instant gratification, by facilitating the development

of a number of pre-existing SEPs with a wide range of functionality.

The next section gives a brief overview of SEP creation, while Section 5.3 describes our

template language and a complete example. Sections 5.4 and 5.5 examine the problems

of instantiation safety and explanation generation that were discussed above. Finally, Sec-

105

p�q�r str u*vtw xkq

y.z*{|0}�~ �&� �B��� y.z*{�c�M��� � �G~ � y*z�{���B� � �M� �B~�� �
}

��� w �*x,q

� uc�kw v,u.w r vcw r xcu�T�
�� �&� �
���,u��,q�vtw r x,u��� w ��x,q�r ucs

� xkq������cu*�kq�vtw x,q

Figure 5.1: The creation of a Semantic Email Process (SEP). Initially, an “Author” authors a SEP
template and this template is used to generate an associated web form. Later, this web form is used
by the “Originator” to instantiate the template. Typically, a template is authored once and then
instantiated many times.

tion 5.6 considers related work and Section 5.7 concludes with implications of our results

for both SEPs and other types of agents.

5.2 Overview of SEP Creation

Figure 5.1 demonstrates how a template is used to create a new SEP. Initially, someone

who is assumed to have some knowledge of RDF/OWL and semantic email authors a new

template using an editor (most likely by modifying an existing template). We call this person

the SEP author. The template is written in OWL based on an ontology that describes the

possible questions, goals, and notifications for a SEP; Section 5.3 describes this in more

detail. For instance, a balanced potluck template defines some general balance constraints,

but has placeholders for parameters such as the participants’ addresses, the specific choices

to offer, and how much imbalance to permit. Associated with each template is a simple web

form that describes each needed parameter; Section 5.4 describes a tool to automatically

generate such forms. An untrained originator finds an appropriate web form from a public

library and fills it out with values for each parameter, causing the corresponding template to

be instantiated into a SEP declaration. The semantic email server executes the declaration

directly, using appropriate algorithms to direct the SEP outcome via message rejections and

suggestions, as explained in Chapter 4.

5.3 Concise and Tractable Representation of Templates

Our first challenge is to ensure that a template can concisely represent a broad range of

possible uses while still ensuring the tractability of SEP reasoning (e.g., for checking the

106

acceptability of a participant’s response). This section describes our language for specifying

templates, presents a complete example for the balanced potluck, and discusses how the

language meets this challenge.

5.3.1 Components of a SEP template

A SEP template is a (parameterized) OWL document that includes:

• a preamble that identifies the participants,

• questions to ask the participants,

• goals to pursue over the participants’ responses, and

• notifications to send to the originator and/or participants at appropriate times.

Below we describe each of these components in more detail, and relate them to the logical

and decision-theoretic models of Chapter 4.

Preamble: the set of participants and a prompt to be sent with the initial request (e.g.,

“You have been invited to the following potluck...”). This corresponds to the participant

set P for the L-SEP and D-SEP models.

Questions: the set of questions to ask each participant. For instance, a potluck SEP might

ask each participant for the food item and the number of guests that they are bringing.

Each question defines a variable name for later use and the type of valid responses to that

question (e.g., integer, boolean, etc.). Questions may also specify further restrictions on

what responses are considered valid (e.g., NumGuests must be non-negative). Finally, each

question item provides an RDQL query that specifies the semantic meaning of the requested

information and is used to map the participant’s textual response to RDF (see Section 4.5.2).

The questions effectively define the possible responses of the participants, and thus

correspond to the responses R for L-SEPs and the values V for D-SEPs. In addition, the

RDQL query defines a mapping of responses to RDF that corresponds to the mapping of

responses to relations of the supporting data set D for L-SEPs or the specific states S of a

D-SEP.

107

Goals: the originator’s goals for the process. For the logical model, the goals correspond to

the constraints CD of an L-SEP. For the necessity case, we define a MustConstraint, which

is a constraint that must be satisfied at every point in time. For the possibly case, we define a

PossiblyConstraint, which is a constraints that should, if possible, be ultimately satisfied

by the final process outcome. Alternatively, for a D-SEP, the goals can be expressed via

a utility function over the eventual process outcome. We refer to this type of goal as a

TradeoffGoal because it strives to balance the utility U of the expected process outcome

against the costs of actions taken to achieve that outcome. Currently, the SEP author

must also encode information about the expected participant behavior (e.g., the transition

function T of the D-SEP model) when specifying a TradeoffGoal, but future work could

use the techniques described in Section 4.4.4 to compute this automatically.

The manager uses the process’s goals to decide when to make a rejection or suggestion.

Goals may also specify some text to explain these interventions to the participants. This

text may be static or dynamically generated based on the current state (e.g., “Sorry, we

already have 5 more Appetizers than Desserts”). Providing enough detail in the messages

so that they are understandable to the participants (supporting ease of use and also helping

to produce the desired cooperation) can be a challenge for the SEP author. Section 5.5

discusses techniques for automatically constructing these explanations.

The constraints or utility functions are written as expressions involving arbitrary arith-

metic functions over constants and variables. There are three classes of variables:

• Parameters: a value provided by the originator when instantiating the template (e.g.,

Choices, the options to offer the participants).

• Author-defined: any variable explicitly defined by the SEP author. These variables

may represent common subexpressions or may be used as quantification variables (e.g.,

to consider each value of Choices, verifying that none violate the constraints). In

addition, these variables may be queries over a supporting data set that contains the

responses of each participant to the originator’s request. For convenience, these RDF

responses are mapped to a virtual relational table that may be queried via SQL.

108

Table 5.1: Trigger conditions for a SEP notification.

Trigger name Description
OnAllResponsesReceived Fires once when the expected number of responses have been received.
OnMessageReceived Fires every time a message is received.
OnMessageAccepted Fires every time a message is accepted.
OnMessageRejected Fires every time a message is rejected.
OnDateTime Fires once when the current time equals the specifed time. Used primarily

for reminders.
OnConditionSatisfied Fires when the given condition (usually based on a query of the current state)

is satisfied, but was not true in the previous state. Useful for sending a
message such as “Enough participants have RVSP’d for the game” that should
be sent only once unless the truth-value of the condition changes.

OnConditionSatisfiedFirstTime Fires when the given condition is satisifed, but only if this is the first such
occurrence in the life of the process. Useful for sending a message such as
“All the tickets have been claimed” that should be sent to everyone exactly
once.

OnConditionSatisfiedAnyTime Fires when the given condition is satisfied, after any change in the state of the
process. Because this generates very frequent messages, it is useful primarily
for updating the process summary.

• Pre-defined: variables automatically computed by the manager (e.g., NumResponses,

the total number of responses received so far). The system also provides a few common

queries over the supporting data set (e.g., Bringing.Entree.count() is the number of

“Entree” responses received).

Notifications: a set of email messages to send when some condition is satisfied. The target

of a notification may be an arbitrary list of email recipients (possibly from a query over

the underlying data set). Alternatively, the target may be the Originator, Responders,

NonResponders (particularly useful for sending a reminder to respond after a few days),

or AllParticipants. Finally, sending a notification to the virtual target ProcessSummary

adds the notification text to a process-specific web page. This web page contains a table

with the response of each participant; adding ProcessSummary notifications is useful for

displaying further summary information over this data (e.g., to show the most popular

response to a vote).

A notification may be triggered by the conditions listed in Table 5.1. For instance,

OnAllResponsesReceived may be used to notify the originator or the participants of the

final process outcome, or OnConditionSatisfied may be used to trigger a notification

instead when the number of guests reaches a certain level. The OnDateTime condition is

useful for sending a reminder to the participants that have not yet responded after a few

days. Reminder notifications may be set to automatically repeat after every T seconds until

a designated point in time. In addition to the notifications specified in the template, our

109

implementation allows the originator to easily create an arbitrary number of OnDateTime

“reminders” when instantiating the process or viewing its results later.

Notifications have some overlap with the set of messages M (for L-SEPs) and the set

of actions A (for D-SEPs) that the manager may use to direct the outcome of a SEP.

For instance, reminder notifications can be also be considered to be in these sets. Other

notifications (e.g., detecting when the number of guests reaches some value) do not have a

direct analogue in the L-SEP or D-SEP model, but are introduced to make SEPs more

practical.

5.3.2 Template Example

Figure 5.2 shows a complete SEP template for our example balanced potluck. Parameters

that must be instantiated by the originator are shown in bold; other variables such as

TotalGuests will be evaluated as the SEP is executed. The declaration follows the four

main parts described above. First, the template specifies the participants and a suitable

prompt for the initial message. Second, the template defines two questions. The Bringing

question indicates that a valid response to this question must be in the (originator-provided)

set Choices. Here the query property provides the aforementioned RDQL query. The

NumGuests question is “guarded” so that it applies only if the parameter AskForNumGuests

is true; if so, this question will accept only non-negative integers. Because a question defines

data that may be accessed in multiple other locations in the template, it is important to be

able to reason about whether its guard might evaluate to false. Section 5.4 considers this

issue in more detail.

Third, the template specifies one MustConstraint goal. The constraint is evaluated

over every possible (x,y) where x and y are in the set (Choices - OptOut); OptOut is for

choices such as “Not Coming” that should be excluded from the constraints. The constraint

requires that the number of responses x (e.g., Appetizer) must differ from the number of

responses y (e.g., Dessert) by no more than MaxImbalance. The message property provides

an explanation to send to a participant if their response is rejected because of this constraint.

110

:participants "$ParticipantsList$";
:prompt "You’re invited to the following potluck. Please use the form below to indicate what you are

bringing. To ensure that our meal selection is balanced, you may be asked to modify your choice.
Description: $PromptDescription$
Date and Time: $PromptDateTime.toUserFriendly()$";

:questions (
[a :StringQuestion;
:name "Bringing";
:query "WHERE (?process, <rdfcal:attendee>, ?x1),

(?x1, <rdfcal:calAddress>, ?EMAIL),
(?x1, <uw:bringing>, ?Bringing)
USING rdfcal FOR <http://www.w3.org/2002/12/cal/ical#>,
uw FOR <http://www.cs.washington.edu/research/semweb/vocab#v1_0>";

:enumeration "$Choices$"]

[a :IntegerQuestion;
:guard "$AskForNumGuests$";
:name "NumGuests";
:query "WHERE (?process";
:minInclusive "0";]);

:goals (
Reject the message if it results in too much inbalance between any two pairs
[a :MustConstraint;
:forAll ([:name "x"; :range "$Choices$-$OptOut$"]

[:name "y"; :range "$Choices$-$OptOut$"]);
:suchThat "x != y";
:enforce "abs($Bringing.{$x$}.count()$ - $Bringing.{$y$}.count()$) <= $MaxImbalance$";
:message "Your request to bring a $Bringing.last()$ could not be accepted.

Choices that could be accepted right now are $Bringing.acceptable()$.";]);

:notifications (
Notify the owner if the number of guests crosses a threshold (ignore if $GuestThreshold$ is zero)
[a :OnConditionSatisfied;
:guard "$GuestThreshold$!= 0";
:define ([:name "TotalGuests"; :value "[SELECT SUM(NumGuests) FROM CURR_STATE]"]);
:condition "$TotalGuests$ >= $GuestThreshold$";
:notify :Originator;
:message "Currently, $TotalGuests$ guests are expected.";]

Update the process summary
[a :OnMessageReceived;
:notify :ProcessSummary;
:message ("Here’s how many of each choice confirmed so far:"

[:forAll ([:name "x"; :range "$Choices$"]);
:evaluate "x: $Bringing.{$x$}.count()$";])])

Figure 5.2: SEP template for a “Balanced Potluck” process. The template is shown in N3 for-
mat [16], which is an alternative syntax for writing RDF. Variables in bold (e.g., $Choices$) are
parameters provided by the originator when instantiating the template. Other variables are defined
inside the declaration (e.g., x, $TotalGuests$) or are automatically computed by the system
(e.g., $Bringing.acceptable()$).

This message utilizes the predefined variable Bringing.acceptable(), which is explained

in Section 5.5.

Finally, the template specifies two notifications. The first notifies the originator as soon

as the total number of expected guests (computed via a SQL query over the supporting

data set) reaches GuestThreshold. The other notification updates the process summary to

include counts of each type of response received. Notice the use of the forAll property to

iterate over the possible responses, similar to its use in the MustConstraint.

The above example demonstrated the use of a MustConstraint goal; the same properties

may be used to define a PossiblyConstraint instead. A TradeoffGoal follows the same

111

general form but instead of an enforce property it provides a utility expression via an

optimize property, along with additional properties to describe the associated costs and

probabilities. Appendix B provides a complete description of the allowable properties in a

SEP template and explains their interpretations once instantiated as a declaration.

5.3.3 Discussion

The example above illustrates two different ways for accessing the data collected by the SEP:

via a pre-defined variable (e.g., Bringing.last(),Bringing.x.count()) or, less com-

monly, by utilizing an explicit SQL query over the RDF data (e.g., as with TotalGuests).

The former method is more convenient and allows the author to easily specify decisions

based on a variety of views of the underlying data. More importantly, if the goals refer

to response data only through such pre-defined variables, then they are guaranteed to be

constant-bounded (for L-SEPs) or K-partitionable (for D-SEPs), because they enable the

SEP to summarize all of the responses that have been received with a set of counters, where

the number of counters is independent of the number of participants.1 Recall that for these

types of goals (which still enable many useful SEPs), the optimal message handling policy

can be computed in polynomial time (Theorems 4.3.2 and 4.4.2). Thus, the language en-

ables more complex data access mechanisms as necessary but helps authors to write SEPs

that are computationally tractable.

This example also highlights additional key features of our language, including:

• Guards extend the L-SEP and D-SEP model to enable optional functionality, e.g., to

ask a question only if the parameter $AskForNumGuests$ is true.

• Sets and universal quantification, together with set manipulation, make it possible

to expand single template elements into multiple elements of the L-SEP or D-SEP

1This restriction effectively limits a SEP to counting responses according to a bounded number of equality
predicates (e.g., how many have Bringing = Dessert). Thus, Definition 4.4.1 directly implies that a D-
SEP utility function will be K-partitionable. Likewise, this restriction ensures that L-SEP constraints will
be constant-bounded, though for this case Definition 4.3.5 also permits counting responses via inequality
predicates (e.g., how many have NumGuests > 3). Note also that this restriction is necessary only for
goals, not for notifications (which require only current evaluation, not reasoning over future states).

112

model. For instance, the example quantified MustConstraint automatically expands

to produce an L-SEP constraint for each possibility in the set $Choices$-$OptOut$.

• Question types and restrictions enable the author to limit the valid type (e.g.,

IntegerQuestion) and range of responses (e.g., with minInclusive).

• Multiple goal types provide access to both L-SEP (e.g., MustConstraint,

PossiblyConstraint) and D-SEP (e.g., TradeoffGoal) functionality.

• Mathematical functions and comparisons enable the expression of complex goals

and conditions (e.g., abs(x-y) <= $MaxImbalance$).

• Pre-defined queries over the supporting data set make it convenient to access the

data and use it in helpful ways (e.g., the use of $Bringing.last()$ in the explanatory

message). In addition, these queries facilitate the specification of goals in terms of

aggregates of the data (e.g., $Bringing.$x$.count()$).

Among other advantages, guards, sets, and universal quantification enable a single, concise

SEP template to be instantiated with many different choices and configurations. Likewise,

question types and restrictions reduce template complexity by ensuring that responses are

well-formed. Finally, multiple goal/notification types, mathematical functions, and pre-

defined queries simplify the process of making decisions based on the responses that are

received. Overall, these features make it substantially easier to author useful SEPs with

potentially complex functionality.

Using this template language, we have authored and deployed a number of SEPs for sim-

ple tasks such as collecting RSVPs, giving tickets away (first-come, first-served), scheduling

meetings, and balancing a potluck. This experience has demonstrated that the language is

sufficient for specifying a wide range of useful SEPs.

In addition, we benefited from an unintended experiment that highlights the advan-

tages of specifying SEP templates and declarations declaratively. As a proof-of-concept, we

originally implemented SEPs procedurally, using Java functions and manually constructed

HTML forms for each type of SEP. Later, we re-implemented our SEPs using the declara-

113

Table 5.2: Comparison of the size (in number of lines) of different ways of specifying a SEP. For the
procedural prototype, the first numerical section displays the size of the Java code for encoding the
SEP functionality, size of the HTML for acquiring parameters from the originator, and the total of
these two. For the declarative approach, the second section displays the size of the template (OWL,
in N3 format), size of the parameter description (see Section 5.4), and the total. The final column
shows the percentage reduction in the size of a SEP when changing from the procedural approach
to the declarative approach.

Procedural approach Declarative approach Size Reduction
SEP name Java code Forms Total Template Forms Total for Declarative
Balanced Potluck 1283 397 1680 113 57 170 90%
First-come, First-served 301 235 536 66 33 99 82%
Meeting Coordination 471 272 743 60 22 82 89%
Request Approval 772 286 1058 80 29 109 90%
Auction 392 111 503 55 43 98 81%

tive language described above, producing much simpler and more concise specifications. In

particular, Table 5.2 displays the number of lines of OWL needed for a number of sample

SEP templates vs. the number of lines of Java/HTML needed in our original prototype.

Overall, the declarative approach requires about 80-90% fewer lines than the procedural ap-

proach. There are also additional advantages of declarativism. For instance, a declarative

template greatly simplifies the deployment of a new SEP, both because no programming is

required and because authors need not run their own server (since shared servers can accept

and execute OWL declarations from anyone, something they are unlikely to do for arbitrary

code). An additional advantage of declarative specifications is that they could enable future

work that automatically composes several SEPs to accomplish more complex goals. Finally,

this approach enables the use of a variety of automated reasoning procedures to ensure that

a SEP declaration is valid. After introducing template instantiation, the next section will

describe one important instance of such reasoning.

5.4 Template Instantiation and Verification

To provide ease of use, the second major challenge for template-based specifications is to

ensure that originators can easily and safely instantiate a template into a SEP declaration

that will accomplish their goals. This section first briefly describes how to acquire and

validate instantiation parameters from the originator. We then examine in more detail the

problem of ensuring that a template cannot be instantiated into an invalid declaration.

114

:parameters (
[a :TypeStringSet;
:name "Choices";
:prompt "Choices for the recipients to choose from"]

[a :TypeStringSet;
:name "OptOut";
:prompt "Choices to exclude from these restrictions";
:subsetOf "$Choices$"]

[a :TypeBoolean;
:name "AskForNumGuests";
:choices (
[:value :True; :prompt "Yes, ask how many guests each person is bringing"]
[:value :False; :prompt "No, don’t ask about guests"])]

[a :TypeInteger;
:name "GuestThreshold";
:prompt "Notify me when the number of guests reaches (enter 0 to ignore):";
:minInclusive "0"]

)

Figure 5.3: Part of a parameter description for the potluck template of Figure 5.2. Additional
elements for variables such as MaxImbalance are not shown.

5.4.1 Parameter Descriptions

Each SEP template must be accompanied by a web form that enables originators to provide

the parameters needed to instantiate the template into a declaration. To automate this

process, our implementation provides a tool that generates such a web form from a simple

OWL parameter description:

Definition 5.4.1 (parameter description) A parameter description φ for a template τ

is a set {R1, ..., RM} where each Ri provides, for each parameter Pi in τ , a name, prompt,

type, and any restrictions on the legal values of Pi. Parameters may have a simple type

(Boolean, Integer, Double, String, Email address) or a set type (i.e., a set of simple types).

Possible restrictions are: (for simple types) enumeration, minimal or maximal value, and

(for sets) non-empty, or a subset relationship to another set parameter. 2

Figure 5.3 shows a partial example for our example balanced potluck. For instance, the

first parameter block specifies that Choices is a set of strings, while the second parameter

indicates that OptOut is a set of strings that must be a subset of Choices. The last two

parameters relate to asking participants about the number of guests that they will bring

to the potluck. The ontology for parameter descriptions also contains elements for adding

descriptive text, and for specifying layout information (e.g., to group similar items together).

Appendix B presents the complete ontology.

115

The form generator tool takes a parameter description and template as input and outputs

a form for the originator to fill out and submit. If the submitted variables comply with

all parameter restrictions, the template is instantiated with the corresponding values and

the resulting declaration is forwarded to the manager for execution. Otherwise, the tool

redisplays the form with errors indicated and asks the originator to try again.

5.4.2 Instantiation Safety

Unfortunately, not every instantiated template is guaranteed to be executable. For instance,

consider instantiating the potluck template of Section 5.3 with the following (partial list of)

parameters:

AskForNumGuests = False

GuestThreshold = 50

In this case the notification given in Section 5.3 is invalid, since it refers to a question symbol

NumGuests that does not exist because the parameter AskForNumGuests is false. Thus, the

declaration is not executable and must be refused by the server. This particular problem

could be addressed either in the template (by adding an additional guard on the notification)

or in the parameter description (by adding a parameter restriction on GuestThreshold).

However, this leaves open the general problem of ensuring that every instantiation results

in a valid declaration:

Definition 5.4.2 (valid declaration) An instantiated template δ is a valid declaration if:

1. Basic checks: δ must validate without errors against the SEP ontology, and every

expression e ∈ δ must evaluate to a valid numerical or set result.

2. Enabled symbols: For every expression e ∈ δ that is enabled (i.e., does not have an

unsatisfied guard), every symbol in e is defined once by some enabled node.

3. Non-empty enumerations: For every enabled enumeration property p ∈ δ, the

object of p must evaluate to a non-empty set. 2

116

Definition 5.4.3 (instantiation safety) Let τ be a template and φ a parameter descrip-

tion for τ . τ is instantiation safe w.r.t. φ if, for all parameter sets ξ that satisfy the

restrictions in φ, instantiating τ with ξ yields a valid declaration δ. 2

Instantiation safety is of significant practical interest for two reasons. First, if errors are

detected in the declaration, any error message is likely to be very confusing to the originator

(who knows only of the web form, not the declaration). Thus, to ensure ease of use an

automated tool is desirable to verify that a deployed template is instantiation safe. Second,

constructing instantiation safe templates can be very onerous for authors, since it may

require considering a large number of possibilities. Even when this is not too difficult,

having an automated tool to ensure that a template remains instantiation safe after a

modification would be very useful.

Some parts of verifying instantiation safety are easy to perform. For instance, checking

that every declaration will validate against the SEP ontology can be performed by checking

the template against the ontology, and other checks (e.g., for valid numerical results) are

similar to static compiler analyses. However, other parts (e.g., ensuring that a symbol will

always be enabled when it is used) are substantially more complex because of the need to

consider all possible instantiations permitted by the parameter description φ. Consequently,

in general verifying instantiation safety is difficult:

Theorem 5.4.1 Given τ , an arbitrary SEP template, and φ, a parameter description for

τ , then determining instantiation safety is co-NP-complete in the size of φ.

This theorem is proved by a reduction from SAT . Intuitively, given a specific counter-

example it is easy to demonstrate that a template is not instantiation safe, but proving

that a template is safe potentially requires considering an exponential number of parameter

combinations. In practice, φ may be small enough that the problem is feasible. Furthermore,

in certain cases this problem is computationally tractable:

117

Theorem 5.4.2 Let τ be a SEP template and φ a parameter description for τ . Determin-

ing instantiation safety is polynomial time in the size of τ and φ if:

• each forAll and enumeration statement in τ consists of a bounded number of set

parameters combined with any set operator, and

• each guard consists of conjunctions and disjunctions of a bounded number of

terms (which are boolean parameters, or compare a non-set parameter with a con-

stant/parameter).

These restrictions are quite reasonable and still enable us to specify all of the SEPs de-

scribed in this work. Note that they do not restrict the total number of parameters, but

rather bound the number that may appear in any one of the identified statements. The

restrictions ensure that only a polynomial number of cases need to be considered for each

goal/notification item, and the proof relies on a careful analysis to show that each such

item can be checked independently while considering at most one question at a time. See

Appendix C for details on the proof.

5.4.3 Discussion

In our implementation, we provide a tool that approximates instantiation safety testing via

limited model checking. The tool operates by instantiating τ with all possible parameters

in φ that are boolean or enumerated (these most often correspond to general configuration

parameters). For each possibility, the tool chooses random values that satisfy φ for the

remaining parameters. If any instantiation is found to be invalid, then τ is known to be not

instantiation safe. Extending this approximate algorithm to perform the exact, polynomial-

time (but more complex) testing of Theorem 5.4.2 is future work.

Clearly nothing in our analysis relied upon the fact that our SEPs are email-based.

Instead, similar issues will arise whenever 1.) an author is creating a template that is

designed to be used by other people (especially untrained people), and 2.) for flexibility,

this template may contain a variety of configuration options. A large number of agents,

such as the RCal meeting scheduler [146], Berners-Lee et al.’s appointment coordinator [15],

and McIlraith et al.’s travel planner [132], have the need for such flexibility and could be

118

profitably implemented with templates. This flexibility, however, can lead to unexpected or

invalid agents, and thus produces the need to verify various safety properties such as “doing

no harm” [180] or the instantiation safety discussed above. Our results highlight the need

to carefully design the template language and appropriate restrictions so that such safety

properties can be verified in polynomial time.

5.5 Automatic Explanation Generation

While executing, the manager utilizes rejections or suggestions to influence the eventual

SEP outcome. However, the success of these interventions depends on the extent to which

they are understood by the participants. For instance, the rejection “Sorry, the only dates

left are May 7 and May 14” is much more likely to elicit cooperation from a participant in a

seminar scheduling SEP than the simpler rejection “Sorry, try again.” For a particular set

of goals, the author of a SEP could manually specify how to create such explanations, but

this task can be very difficult when goals interact or depend on considering possible future

responses. Thus, below we consider techniques for automatically generating explanations

based on what responses are acceptable now and why the participant’s original response was

not acceptable.

We begin by defining more precisely a number of relevant terms. For a SEP, the cur-

rent state D is the state of the supporting data set given all of the responses that have

been received so far. We assume that the number of participants is known and that each

will eventually respond to the initial request and to any interventions. Recall that in our

implementation the manager intervenes only with rejections in the logical case (L-SEPs),

and only with suggestions in the decision-theoretic case (D-SEPs).

For D-SEP goals, our template language utilizes TradeoffGoals. For L-SEPs, recall

that we allow both MustConstraints and PossiblyConstraints, corresponding to the

necessity and possibly conditions discussed in Chapter 4. We now define the difference

between these two more precisely:

Definition 5.5.1 (MustConstraint) A MustConstraint C is a constraint that is satisfi-

able in state D iff evaluating C over D yields True. 2

119

Definition 5.5.2 (PossiblyConstraint) A PossiblyConstraint C is a constraint that

is ultimately satisfiable in state D if there exists a sequence of responses from the remaining

participants that leads to a state D′ so that evaluating C over D′ yields True. 2

For simplicity, we assume that the constraints CD are either all MustConstraints or all

PossiblyConstraints, though our results for PossiblyConstraints also hold when CD

contains both types.

5.5.1 Acceptable Responses

Often the most practical information to provide to a participant whose response led to

an intervention is the set of responses that would be “acceptable” (e.g., “An Appetizer or

Dessert would be welcome” or “Sorry, I can only accept requests for 2 tickets or fewer now”).

This section briefly considers how to calculate this acceptable set for L-SEPs, then extends

this notion to D-SEPs.

Definition 5.5.3 (L-SEP acceptable set) Let Λ be an L-SEP with current state D

and constraints CD on D. Then, the acceptable set A of Λ is the set of legal responses r

such that D would still be satisfiable (for MustConstraints) or ultimately satisfiable (for

PossiblyConstraints) w.r.t. CD after accepting r. 2

For a MustConstraint, this satisfiability testing is easy to do and we can com-

pute the acceptable set by testing some small set of carefully chosen responses. For a

PossiblyConstraint, the situation is more complex:

Theorem 5.5.1 Let Λ be an L-SEP with N participants and current state D. If the

constraints CD may be any set of PossiblyConstraints permitted by the language C, then

computing the acceptable set A of Λ is NP-hard in N .

Theorem 5.5.2 Let Λ be an L-SEP with N participants and current state D. If CD

consists of bounded PossiblyConstraints, then this problem is polynomial time in N , |A|,

and |CD|.

120

In this case we can again compute the acceptable set by testing satisfiability over some

small set of carefully chosen values; this testing is polynomial if CD is bounded (Theo-

rem 4.3.2). In addition, if we represent A via a set of ranges of acceptable values, instead

of explicitly listing every acceptable value, then the total time is polynomial in only N and

|CD|.

For a D-SEP (i.e., a TradeoffGoal), we define an “acceptable” response as one that

is “good enough” so that the manager will not respond with a change suggestion. We

might also be interested in computing responses that are “better” than others, e.g., those

which result in an expected utility in the top 25% compared to other possible responses.

This information could be used when making a suggestion (“Please consider one of these

values...”), or could be displayed as part of the process summary to assist participants that

have yet to respond.

Both of these problems can be solved by comparing the expected utility of a small

number of states of the D-SEP (e.g., considering all possible responses from a given initial

state). Computing these utilities is intractable in general (Theorem 4.4.1), but in many

cases can be computed efficiently:

Theorem 5.5.3 Let δ be a D-SEP with N participants where the utility function U(s, a)

is K-partitionable for some constant K and where the system is permitted to send at most

one suggestion to any participant. Then the expected utility of δ for every possible state of

the D-SEP can be computed in time polynomial in N .

This result follows from the proof of Theorem 4.4.2, since computing the optimal policy

in this case involves computing and comparing the expected utility of all possible states.

Our implementation currently computes and makes available the acceptable set for

MustConstraints and TradeoffGoals (see the use of Bringing.acceptable() in Fig-

ure 5.2). Extending this computation to support PossiblyConstraints is future work.

5.5.2 Explaining L-SEP Interventions

In some cases, the acceptable set alone may not be enough to construct a useful explanation:

121

Example 5.5.1 Suppose a SEP invites 4 professors and 20 students to a meeting, with

the following (informally specified) constraints:

• CP : At least three professors must attend.

• CQ: For quorum, at least 10 persons (students or professors) must attend.

Imagine that, in the current state, one professor has said Yes, one professor has said No,

three students have said Yes, and one student has said No. Now suppose that a new No

response from a professor arrives. Since one professor has already said No, the SEP should

ask the latest respondent to change their answer. However, when requesting this change,

explaining why the change is needed (e.g., “We need you to reach the required 3 professors”)

is much more effective than simply informing them of what response is desired (e.g., “Please

change to Yes”). A clear explanation both motivates and rules out alternative reasons for

the request (e.g., “We need your help reaching quorum”) that may be less persuasive (e.g.,

because many students could also help reach quorum). More detailed responses might also

be helpful (e.g., “We need one more professor to attend, and the other professors have

already responded.”). 2

For L-SEPs, this section discusses how to generate such explanations for an interven-

tion based on identifying the constraint(s) that led to the intervention (e.g., “CP ”); the

next section considers the corresponding problem for D-SEPs. We do not discuss the ad-

ditional problem of translating these constraints/utilities into a natural language suitable

for sending to a participant, but note that even fairly simple explanations (e.g., “Too many

Appetizers (10) vs. Desserts (3)”) are much better than no explanation.

Conceptually, the manager decides to reject a response for an L-SEP based on con-

structing a proof tree that shows that some response r would prevent constraint satisfaction.

However, this proof tree may be much too large and complex to serve as an explanation

for a participant. This problem has been investigated before for expert systems [140, 169],

constraint programming [96], description logic reasoning [130], and more recently in the con-

text of the Semantic Web [131]. These systems assumed proof trees of arbitrary complexity

and handled a wide variety of possible deduction steps. To generate useful explanations,

key techniques included abstracting multiple steps into one using rewrite rules [130, 131],

122

describing how general principles were applied in specific situations [169], and customizing

explanations based on previous utterances [29].

In our context, the proof trees have a much simpler structure that we can exploit. In

particular, proofs are based only on constraint satisfiability (over one state or all possible

future states), and each child node adds one additional response to the parent’s state in a

very regular way. Consequently, we will be able to summarize the proof tree with a very

simple type of explanation. These proof trees are defined as follows:

Definition 5.5.4 (L-SEP proof tree) Given an L-SEP Λ, current state D, constraints

CD, and a response r, we say that P is a proof tree for rejecting r on D iff:

• P is a tree where the root is the initial state D.

• The root has exactly one child Dr, representing the state of D after adding r.

• If CD is all MustConstraints, then Dr is the only non-root node.

• If CD is all PossiblyConstraints, then for every node n that is Dr or one of its

descendants, n has all children that can be formed by adding a single additional response

to the state of n. Thus, the leaf nodes are only and all those possible final states (e.g.,

where every participant has responded) reachable from Dr.

• For every leaf node l, evaluating CD over the state of l yields False. 2

Figure 5.4A illustrates a proof tree for MustConstraints. Because accepting r leads to

a state where some constraint (e.g., CT) is not satisfied, r must be rejected. Likewise,

Figure 5.4B shows a proof tree for PossiblyConstraints, where CP and CQ represent the

professor and quorum constraints from Example 5.5.1. Since we are trying to prove that

there is no way for the constraints to be ultimately satisfied (by any outcome), this tree

must be fully expanded. For this tree, every leaf (final outcome) does not satisfy some

constraint, so r must be rejected.

We now define a simpler explanation based upon the proof tree:

123

���,�&���

�

 0¡�¢$£ ¤t£ ¥$£ ¦�§M¨B¥;¦k¥;©tª

 �«

�2¬ �2¬B�&�� �2¬

�

 3¡\¢�£ ¤�£ ¥$£ ¦"§G¨M¥J¦,¥J©tª

 «

®�¯�°7°e± ²�³ ´µ ± ¶¸·�³�°7¹ ·e¹ ´�°

º¼» ½.¾À¿tÁcÂ9Ã�Ä ÅcÁ*Â7Æ�Ç"È ÅcÂ ÉR» ½"Ê3Ä.ÁtÁ"È Ë/Ì Í�ÃRÄ ÅtÁkÂ¸Æ�Ç.ÈJÅkÂ

Figure 5.4: Examples of proof trees for rejecting response r. Each node is a possible state of the
data set, and node labels are constraints that are not satisfied in that state. In both cases, response
r must be rejected because every leaf node (shaded above) does not satisfy some constraint.

Definition 5.5.5 (L-SEP sufficient explanation) Given an L-SEP Λ, current state D,

constraints CD, and a response r such that a proof tree P exists for rejecting r on D, we

say that E is a sufficient explanation for rejecting r iff,

• E is a conjunction of constraints that appear in CD, and

• for every leaf node l in P , evaluating E over the state of l yields False. 2

Intuitively, a sufficient explanation E justifies rejecting r because E covers every leaf

node in the proof tree, and thus precludes ever satisfying CD. Note that while the proof

tree for rejecting r is unique (modulo the ordering of child nodes), an explanation is not.

For instance, an explanation based on Figure 5.4A could be CS , CT , or CS ∧CT . Likewise,

a valid explanation for Figure 5.4B is CP ∧ CQ (e.g., no way satisfy both the professor

and quorum constraints) but a more precise explanation is just CP (e.g., no way to satisfy

the professor constraint). The smaller explanation is often more compelling, as we argued

for the meeting example, and thus to be preferred [42]. In general, we wish to find an

explanation of minimum size (i.e., with the fewest conjuncts):

124

Theorem 5.5.4 Given an L-SEP Λ with N participants, current state D, constraints

CD, and a response r, if CD consists of MustConstraints, then finding a minimum suf-

ficient explanation E for rejecting r is polynomial time in N and |CD|. If CD consists of

PossiblyConstraints, then this problem is NP-hard in N and NP-hard in |CD|.

Thus, computing a minimum explanation is feasible for MustConstraints but likely

to be intractable for PossiblyConstraints. For the latter, the difficulty arises from two

sources. First, checking if any particular E is a sufficient explanation is NP-hard in N (based

on a reduction from ultimate satisfiability); this makes scaling SEPs to large numbers

of participants difficult. Second, finding a minimum such explanation is NP-hard in the

number of constraints (by reduction from SET-COVER [93]). Note that this number can be

significant because we treat each forAll quantification as a separate constraint; otherwise,

the sample potluck described in Section 5.3 would always produce the same (complex)

constraint for an explanation. Fortunately, in many common cases we can simplify this

problem to permit a polynomial time solution:

Theorem 5.5.5 Given an L-SEP Λ with N participants, current state D, constraints CD,

and a response r, if CD is bounded and the size of a minimum explanation is no more than

some constant J , then computing a minimum explanation E is polynomial time in N and

|CD|.

This theorem holds because a candidate explanation E can be checked in polynomial time

when the constraints are bounded (Theorem 4.3.2), and restricting E to at most size J means

that the total number of explanations that must be considered is polynomial in the number

of constraints. Both of these restrictions are quite reasonable. As previously mentioned,

bounded constraints permit a wide range of functionality. Likewise, SEP explanations

are most useful to the participants when they contain only a small number of constraints,

and this is adequate for many SEPs (as in the meeting example above). If no sufficient

explanation of size J exists, the system could either choose the best explanation of size J

(to maintain a simple explanation), approximate the minimum explanation with a greedy

125

algorithm, or fall back on just providing the participant with the acceptable set described

in the previous section.

Many different types of agents can describe their goals in terms of a set of con-

straints [115, 139], and often need to explain their actions to users. Our results show

that while generating such explanations can be intractable in general, the combination of

simple explanations and modest restrictions on the constraint system can enable explanation

generation in polynomial time.

5.5.3 Explaining D-SEP Interventions

As with L-SEPs, we would like to be able to automatically generate explanations for the

manager’s interventions. Below we briefly consider this problem in the context of D-SEPs.

Compared to L-SEPs, it is more difficult for a D-SEP to single out specific terms that

are responsible for a manager’s suggestion, because every term contributes to the process

utility to some extent, either positively or negatively. Note, though, that if the manager

decides to make a suggestion, then the expected improvement must outweigh the certain

cost of this action. Thus, for non-zero costs, there must be a significant difference in the

utility of the state where the manager requested a switch (Ssw) vs. where the manager did

not (S0).

We seek to identify the terms that explain most of this difference. In particular, given

a M-term additive utility function

U(s) = u1(s) + ... + uM (s)

we define the change δu in each utility term as

δu = u(Ssw) − u(S0).

We wish to identify an explanation as follows:

126

Definition 5.5.6 (D-SEP sufficient explanation) Given a D-SEP δ with an M-term

additive utility function U , a constant β (0 ≤ β ≤ 1), and two states Ssw and S0, a sufficient

explanation is a set E ⊆ {u1, .., ..uM} such that

∑

u∈E

δu ≥ β[U(Ssw) − U(S0)]

(i.e., so that the terms in E explain at least β of the change). 2

As before, we are interested in finding the explanation of minimal size (i.e., the smallest

such set):

Theorem 5.5.6 Let δ be a D-SEP with N participants and M-term additive utility function

U . If U is K-partitionable and the manager is permitted to make only a bounded number of

suggestions to each participant, then computing the minimal sufficient explanation between

two states Ssw and S0 is polynomial time in N and M .

This theorem can be proved in two steps. First, if the utility function is K-partitionable

and the number of suggestions is bounded (and hence we can compute the optimal policy in

polynomial time), then we can also compute each δu in time polynomial in N by applying

Theorem 5.5.3. Second, given the values for δu, a greedy algorithm can find the explanation

E of guaranteed minimal size: set E to ∅, then incrementally add to E the term with the

largest (most positive) δu until E explains at least β of the total change. Sorting the M δu

terms can be done in time polynomial in M , so the total algorithm runs in time polynomial

in N and M .

Note that this procedure will never produce an explanation with a term δu where δu ≤ 0,

since such a term could always be removed and still yield a sufficient explanation. This makes

sense so long as we are primarily interested in explanations that justify why a switch is bene-

ficial, i.e., where δu > 0. If we wish to consider utility terms with both positive and negative

changes, then this problem becomes more challenging (cf., Klein and Shortliffe [101]).

127

5.6 Related Work

Other projects have considered how to simplify the authoring of Semantic Web applications.

For instance, Jena [123] and Kaon [175] offer programmers standard APIs for manipulating

RDF, whereas Haystack provides the Adenine programming language to simplify these

tasks [151]. Adenine resembles our template language in that it can be compiled into RDF

for portability and contains a number of high-level primitives, though Adenine incorporates

many more imperative features and does not support the types of declarative reasoning that

we describe. Finally, languages such as DAML-S and OWL-S [40] enable the description of

an application as a Semantic Web service. These languages, however, focus on providing

details needed to discover and invoke a relevant service, and model every participant as

another web service. Our work instead concisely specifies a SEP in enough detail so that

it can be directly executed in contexts involving untrained end users.

More generally, SEP templates could be viewed as an instance of program schemas

[45, 65] that encapsulate a general class of behavior, e.g., for automated program synthe-

sis [65] or software reuse [45, 6]. Similarly, McIlraith et al. [132] propose the use of generic

procedures that can be instantiated to produce different compositions of web services. Con-

cepts similar to our definition of instantiation safety naturally arise in this setting; pro-

posals for ensuring this safety have included manually-generated proofs [45], automatically-

generated proofs [65], and language modification [6]. Our work focuses on the need for such

schemas to be safely usable by ordinary people and demonstrates that the required safety

properties can be verified in polynomial time.

Recent work on the Inference Web [131] has focused on the need to explain a Semantic

Web system’s conclusions in terms of base data and reasoning procedures. In contrast, we

deal with explaining the SEP’s actions in terms of existing responses and the expected

impact on the goals. In this sense our work is similar to prior research that sought to

explain decision-theoretic advice (cf., Horvitz et al. [87]). For instance, Klein and Short-

liffe [101] describe the VIRTUS system that can present users with an explanation for why

one action is provided over another. Note that this work focuses on explaining the rela-

tive impact of multiple factors on the choice of some action, whereas we seek the simplest

128

possible reason why some action could not be chosen (i.e., accepted). Other relevant work

includes Druzdzel [53], which addresses the problem of translating uncertain reasoning into

qualitative verbal explanations.

For constraint satisfaction problems (CSPs), a nogood [158] is a reason that no cur-

rent variable assignment can satisfy all constraints. In contrast, our explanation for a

PossiblyConstraint is a reason that no future assignment can satisfy the constraints,

given the set of possible future responses. Potentially, our problem could be reduced to no-

good calculation, though a direct conversion would produce a problem that might take time

that is exponential in N , the number of participants. However, for bounded constraints, we

could create a CSP with variables based on the aggregates of the responses, rather than their

specific values, as described in Chapter 4. Using this simpler CSP, we could then exploit

existing, efficient nogood-based solvers (e.g., [95, 99, 94]) to find candidate explanations in

time polynomial in N . Note though that most applications of nogoods have focused on

their use for developing improved constraint solving algorithms [158, 99] or for debugging

constraint programs [143], rather than on creating explanations for average users. One

exception is Jussien and Ouis [96], who describe how to generate user-friendly nogood ex-

planations, though they require that a designer explicitly model a user’s perception of the

problem as nodes in some constraint hierarchy.

Finally, we assumed that users were best served by a single, minimal explanation, which

we defined to be the explanation with the fewest conjuncts. In some cases, however, it may

make sense to provide users with more information, e.g., all reasons why a response could

not be accepted, or a more sophisticated summary of these reasons. For this task, related

work on the problem of computing all minimal explanations may be useful [42].

5.7 Summary and Implications for Agents

This chapter examined how to specify SEPs that are usable by ordinary people. We adopted

a template-based approach that shifts most of the complexity of SEP specification from

untrained originators onto a much smaller set of trained authors. We then examined the

three key challenges of generality, safety, and understandability that arise in this approach.

129

In particular, we discussed how high-level features of our template language enable the con-

cise specification of complex behavior while maintaining the tractable reasoning described

in Chapter 4. We also demonstrated that it is possible to verify the instantiation safety

of a template in polynomial time, and showed how to generate explanations for the SEP’s

actions in polynomial time. Together, these techniques both simplify the task of the SEP

author and improve the overall execution quality for the originator and participants of a

SEP. In addition, our polynomial time results ensure that these features can scale to SEPs

with large numbers of participants, choices, and goals. Consistent with our gradual adoption

and ease of use principles, these features facilitate the development of a range of broadly-

applicable, explainable SEPs that are guaranteed to be safely invocable by non-technical

users via generic web browsers.

Our results for semantic email are also relevant to other agent systems. Many other

agents (e.g., [15, 146, 132]) can be viewed as having an author, originator, and participants.

Each participant may be a human or another agent, and may require some explanation for

an intervention. For instance, RCal [146] presents users with a finite number of interactions

that they may originate, and explanation would be a useful addition to the system (e.g., to

justify meeting rescheduling). Likewise, McIlraith et al. [132] propose the use of a number

of template-like generic procedures for travel planning, and it would be useful to be able to

generate explanations, both for the originator (why can’t I return home on Friday?) and

for other participants, such a booking agents (what about the proposed itinerary is unsatis-

factory?). We showed that generating explanations can be NP-hard in general, but that the

combination of simple explanations and modest goal restrictions may enable explanation

generation in polynomial time.

In addition, such agents frequently require a fair amount of flexibility in the specification

of their goals, e.g., to support trips with variable numbers of destinations or meetings with

variable attendance and RSVP requirements. We showed how a high-level, declarative tem-

plate language could support a wide range of functionality, and explored how to ensure the

safety of each possible use. There are several different types of safety to consider, including

that of doing no permanent harm [180], minimizing unnecessary side-effects [180], and ac-

curately reflecting the originator’s preferences [23]. We motivated the need for instantiation

130

safety, a type that has been previously examined to some extent [65, 6], but is particularly

challenging when the instantiators are non-technical users. Our results also highlight the

need to carefully design template languages that balance behavior flexibility with the ability

to efficiently verify such safety properties.

Thus, many agents could benefit from a high-level, declarative template language with

automatic safety testing and explanation generation. Collectively, these features would

simplify the creation of an agent, broaden its applicability, enhance its interaction with the

originator and other participants, and increase the likelihood of satisfying the originator’s

goals.

131

Chapter 6

CONCLUSIONS

Our goal was to discover how to enable and motivate non-technical people to both utilize

and contribute content to the Semantic Web. This chapter summarizes the contributions of

this dissertation towards that goal and points to the many opportunities for future work.

6.1 Contributions

This dissertation proposed the use of three key design principles for Semantic Web systems,

then described novel mechanisms and theory that support these principles in the construc-

tion of two new systems. Below we briefly examine these principles. Next, we discuss the

contributions made in applying these principles to our two systems. Finally, we consider

additional contributions related to the field of intelligent agents.

We proposed three design principles that should be followed by any Semantic Web system

that seeks to have participation by non-technical people. First, the instant gratification

principle requires that both application usage and content creation provide immediate,

tangible benefit to the user. Applying this principle carefully not only forces designers to

ensure that applications and authoring are well motivated, but also provides a metric for

quickly ruling out a wide variety of previously-used techniques (e.g., aggregation solely via

periodic web crawls, publication only after moderator approval) that impede this motivation.

Next, the gradual adoption principle addresses the common chicken-and-egg problem of

Semantic Web systems by ensuring that applications can be profitably invoked even when

there are few existing system users and that content can be incrementally provided from

previous representations. This principle thus serves to prime the network effect that helped

to make the original web so successful. Finally, the ease of use principle insists that the basic

system be as simple as possible to use, ideally requiring no special knowledge, training, or

132

software. This principle is essential given our desire to motivate the initial participation of

non-technical people, but still permits more advanced interfaces for users that have become

convinced of the system’s utility. Together, these principles both simplify the development

of a Semantic Web system (by focusing attention on its most important features) and greatly

increase the chances of its adoption by non-technical persons.

6.1.1 Contributions of the Mangrove System

The first of our implemented Semantic Web systems, Mangrove, motivates the annota-

tion of existing HTML content. Mangrove’s key contributions — its architecture, services,

and MTS annotation syntax — directly support our three design principles. In particular,

Mangrove’s architecture provides instant gratification with a loop that takes freshly pub-

lished content to semantic services, and then back to the user through the service feedback

mechanism. We described several such services that motivate the annotation of HTML

content by consuming semantic information, and explained how Mangrove’s declarative

approach can boost this motivation by leveraging the same content across multiple services.

Second, Mangrove enables gradual adoption by seeding its services with initial content

and by enabling authors to incrementally annotate existing content with our MTS syntax.

We showed how Mangrove could utilize such incomplete content and thus provide tangi-

ble benefit to authors even when pages are only sparsely annotated. Finally, Mangrove

supports ease of use by providing a simple graphical annotation tool, deferring integrity

constraints to the services, and reusing familiar interfaces and methods of determining the

trustworthiness of data.

These contributions in Mangrove have led to service execution and content creation

by a variety of people with no knowledge of semantic representation. Thus, Mangrove’s

design represents a concrete path for enticing ordinary people to contribute their existing

content to the Semantic Web.

133

6.1.2 Contributions of the Semantic Email System

Our second implemented system introduced a paradigm for Semantic Email and described

a broad class of semantic email processes (SEPs). In support of instant gratification, these

automated processes offer tangible productivity gains on a wide variety of email-mediated

tasks. We presented a formalization that teases out the issues involved, and used this

formalization to explore several central inference questions. In particular, we defined and

explored two useful models for specifying the goals of a process and formalizing when and

how the manager of the process should intervene. For our logical model we showed how

the problem of deciding whether a response was acceptable relative to a set of ultimately

desired constraints could be solved in polynomial time for bounded constraints. In addition,

with our decision-theoretic model we addressed several shortcomings of the logical model

and demonstrated conditions in which the optimal policy for this model could be computed

in polynomial time. In both cases we identified restrictions that greatly improved the

tractability of the key reasoning problems while still enabling a large number of useful

processes to be represented.

We also explored how to assist the adoption of Semantic Email by simplifying the task of

specifying a new SEP. In particular, we designed a template-based approach that shifts most

of the complexity of SEP specification from untrained originators onto a much smaller set

of trained authors. We then addressed a number of challenges that arise in this approach. In

particular, we discussed how high-level features of our template language enable the concise

specification of complex SEP behavior. We also demonstrated conditions in which it is

possible to verify the instantiation safety of such a template in polynomial time. Moreover,

we described how to automatically generate explanations for the manager’s interventions

and identified cases where these explanations can be computed in polynomial time. These

techniques both simplify the task of the SEP author and improve the overall execution

quality for the originator and the participants of a SEP. In addition, our polynomial time

results ensure that these features can scale to SEPs with large numbers of participants,

choices, and goals.

Finally, we described our publicly available Semantic Email system and how it satisfies

134

Table 6.1: Summary of the roles of each person (or other agent) involved in the execution of an
agent, and how they would benefit from a high-level, declarative template language with safety
testing and explanation generation. This table shows that these types of features could benefit a
broad range of agent systems, both email-based and otherwise.

Person and Role Benefits described in this dissertation

Author: writes template
using editor, often by modi-
fying existing template.

• Template approach: allows authoring agent once for many uses
• High-level language primitives: enables easy specification of

complex goals and behavior
• Instantiation-safety testing: eliminates need to exhaustively

consider many possible template instantiations.
• Automatic explanation generation: simplifies specification of

high-quality agents

Originator: fills out form • Template approach: permits agent instantiation via form, no
need to understand RDF or programming

• Declarative templates: allows any template to be instantiated
on any agent server, no need to install procedural code

• Instantiation-safety testing: ensures that any agent the origi-
nator instantiates will be executable

Participants: respond to
requests

• Automatic explanation generation: explains reasons for inter-
ventions and how to successfully respond

the principles of gradual adoption and ease of use via its server-based implementation,

simple web forms for SEP instantiation, and text messages that can be handled by any

client without any software installation. The combination of these features with useful,

flexible SEPs provides a platform enabling ordinary people to easily leverage lightweight

semantics to accomplish common email-mediated tasks.

6.1.3 Implications for Intelligent Agents

Our results for semantic email are also relevant to other agent systems. Many other agents

(e.g., [15, 146, 132]) can be viewed as having an author, originator, and participants. For

such agents, Table 6.1 summarizes how a high-level, declarative template language with

safety testing and explanation generation would benefit the author, originator, and par-

ticipants. Collectively, these features would simplify the creation of an agent, broaden its

applicability, enhance its interaction with the originator and participants, and increase the

likelihood of satisfying the originator’s goals. Our results both demonstrate the general

importance of these different features as well as provide specific results (e.g., regarding the

tractability of explanation generation for simple constraint systems) that may be directly

applicable to other agent environments.

135

6.2 Future Directions

Despite the significant progress we have achieved, there remains room for much future work.

This section details many such opportunities, beginning with extensions to the two example

systems described in this dissertation and concluding with some broader themes.

6.2.1 Extensions to Mangrove

Our goal in designing Mangrove and deploying it locally was to test our design on today’s

HTML web against the requirements of ordinary users. Clearly, additional deployments

in different universities, organizations, and countries are necessary to further refine and

validate Mangrove’s design. In addition, new instant gratification services are necessary

to drive further adoption and to explore what features are necessary in different domains.

For instance, Mangrove could benefit from a semantic browser that was able to profitably

combine semantic data with ordinary HTML content. Likewise, there is the potential for

interesting applications that aggregate community advice and recommendations.

Considering applications, Mangrove’s service construction template greatly simplifies

the task of implementing robust services that can give immediate feedback to the author.

Creating such services, however, still requires a fair amount of technical sophistication. We

see two avenues for simplifying this process. First, we could expand our search service’s

query language to enable many more services to be written just as simple queries. Second, we

could imitate our success with semantic email and create a higher-level, declarative language

for constructing Mangrove services. Creating such a language may be challenging because

of the need to carefully express how to query for and cache data, what data transformations

and cleaning to apply, and how to produce suitable outputs. Success in this endeavor,

however, could greatly increase the number of Mangrove applications and the number of

people capable of producing such applications.

One obvious limitation of the current system is that all queries are processed by a single

centralized database. As explained in Section 3.1.5, Mangrove could be extended through

the use of a peer-to-peer network for distributed content aggregation and querying. Future

work should investigate this approach more fully and explore the importance of caching for

136

reducing system load and query latency. To better support scalability, we propose to make

only a “best effort” to provide correct, complete, and fresh results. For instance, we expect

that a more distributed system will have weaker guarantees on data freshness in general,

but will continue to provide prompt access to newly published data for local services or for

remote services that a user has specifically identified. This approach ensures that users can

continue to get instant gratification when annotating their pages with a particular service

in mind, yet weakens other, less critical, freshness guarantees to support scalability.

Finally, in this dissertation we strove to both enable and motivate non-technical users

to contribute content to the Semantic Web. Overall, because of the larger amount of other

research related to annotation, in Mangrove we focused more on motivating rather than

enabling such motivation. Hence, Mangrove supports annotation via a text editor or

a graphical annotation tool, but both methods have their shortcomings. In particular, if

existing HTML authoring tools (e.g., FrontPage) are used on annotated pages, annotations

may sometimes be discarded or corrupted. This problem could be remedied by incorporating

annotation features directly into standard HTML editors, though at significant cost. Partial

solutions could include having a separate Mangrove service that automatically detects

(and offers to correct) annotations that are lost from a previously published page, and

improving the semantic parser to be more robust to malformed annotations.

6.2.2 Extensions to Semantic Email

There are a number of ways to improve how SEPs relate to authors, originators, and

participants. We examine each in turn and then consider some additional opportunities for

semantic email in general.

First, our declarative language greatly simplifies the task of authoring SEPs compared

to the original procedural approach. However, it still requires writing a formal specification

and hence a fair amount of technical skill. To simplify this task, we could instead treat this

language as an intermediate representation that is the output of a graphical design tool.

Authors could use this tool to construct a template by combining different building blocks

for gathering information, enforcing goals, and sending notifications. Potentially, this tool

137

could even allow authors to automatically compose different SEPs together. One could

even imagine advanced originators using the tool to directly create fully instantiated SEPs

for a single-use, instead of creating parameterized templates.

Second, as discussed in Chapter 4, we think that even with our webform-based instan-

tiation, invoking a new SEP still requires too much upfront work for originators. We could

address this problem by providing basic versions of SEPs that provide defaults for almost

all parameters, allowing rapid instantiation for common tasks. An additional improvement

would be to allow originators to modify parameters while a process is executing. This both

eliminates the need for upfront work and simplifies appropriate parameter selection, since

the originator can delay this task until a few illustrative responses have arrived. Finally, we

expect that integrating tools for launching a new SEP into common email clients, while still

enabling participants to respond with any client, would ease SEP instantiation for many

users.

Third, making SEPs even easier to use for participants is an important issue. For

instance, SEPs currently require participants to respond using a fixed vocabulary. We could

support more flexibility by incorporating recent work on schema and ontology mapping [48].

In addition, for responses we chose to use plain text forms for simplicity and interoperability.

These forms, however, are sometimes misunderstood by participants. Sending participants

a link to an appropriate web form to use for their responses might be a more attractive and

reliable technique.

There are also a number of interesting ways to extend the basic model of SEPs. For

instance, we identified specific cases where our reasoning is tractable, but how does increas-

ing the expressive power of our constraint and utility language impact the tractability of

inference and policy selection? Likewise, we described a model of SEPs with a very simple

control flow structure, where the originator asks a single set of questions that are answered

by a single set of participants. Clearly, richer models of collaboration are sometimes needed,

e.g., to deal with multiple rounds of querying, intermediate decisions, and changing sets of

participants (or where the number of participants is not known). Extending SEPs to sup-

port such flexibility, while maintaining their understandability and tractability, would be

very useful.

138

Finally, the SEPs we focused on in this work are only one instantiation of semantic

email, which far from exhausts its potential. For instance, semantic email could be used to

update data sources or to pose/answer general questions, as briefly discussed in Section 4.1.

Exploring these other avenues for semantic email seems like a promising direction for future

work.

6.2.3 Interaction between Mangrove and Semantic Email

Although Mangrove and Semantic Email have been described separately, they are actually

implemented within the same system. This provides us with a single RDF-based infrastruc-

ture for managing data and for potentially integrating email data with web-based data

sources and services. Currently, only very basic interactions are performed. For instance,

the Mangrove web calendar accepts event information via email or from a web page. In

the future, however, we would like to leverage Mangrove’s data to aid semantic email

reasoning. For example, Mangrove provides an RDF data source about courses, people,

etc. that could be used to support the prediction of likely responses by the manager dis-

cussed in Section 4.2. Likewise, a semantic email client could utilize data from Mangrove

to answer common questions. When previously unknown questions are answered manually

by the user, these responses could be stored for future use, thus enabling the automatic

acquisition of semantic knowledge over time. Enabling such interactions is an important

area of future work.

6.2.4 Collaborative Ontology Development and Evolution

Just as the web evolved in ways that its creators never anticipated, a Semantic Web system

must permit uses never imagined when initially deployed. Thus, in Mangrove annotators

may immediately utilize new MTS tags simply by referencing a web-accessible schema

document that they control. Future work, however, is necessary to permit users to declare

the relationships between different tags, and to enable other users to discover the existence

of new tags (cf., TRELLIS’s ontology search techniques [20]). For instance, we intend to

encourage schema convergence by maintaining statistics about tag usage, and promoting

139

popular tags to “primary status.” When tagging, users may then choose a schema view

with all available tags or, for simplicity, just the primary ones. These techniques permit

complete flexibility for users while encouraging schema re-use wherever possible. Related

techniques are also needed to enable SEP originators to easily create or select appropriate

semantic terms for instantiating a general SEP template, as discussed in Section 4.5.2.

6.2.5 Semantic Web Agents

The vision of the Semantic Web has always encompassed not only the declarative represen-

tation of data but also the development of intelligent agents that can consume this data

and act upon their owner’s behalf. The combination of Mangrove and Semantic Email

represent a first step in this direction, as knowledge obtained with Mangrove can be ap-

plied towards concrete information-management tasks mediated via email. This is only a

first step, however, and there is much potential for agents to exploit other domains and

communication mediums. For instance, practical agents are needed that can interact with

web services for reservations, purchasing, and querying. Likewise, we could profitably im-

plement semantic agents on other types of computing devices, such as cell phones, PDAs,

or even common household appliances [15]. This is clearly a large field with substantial

prior work, but there remains significant opportunity to make the application of semantics

to these domains practical, perhaps based on extending the general SEP model.

6.2.6 Exploring other Information Sources

We’ve described a set of key design principles designed to help motivate users to structure

their data, and deployed two systems that target existing web and email data. However,

many other data sources exist. For instance, many users have significant amounts of data in

relational databases, spreadsheets, contact lists, text files, bookmarks, etc. that they may

be willing to structure and share under appropriate circumstances. In the future, we intend

to extend our systems to such data sources and identify motivating applications for the

structuring of data in these realms.

140

6.2.7 User Studies

Finally, we return to the impact of all this work on actual people. Our goal was to enable

and motivate non-technical people to participate in the Semantic Web. Both Mangrove

and Semantic Email are fully deployed systems that can be used by such people in a variety

of ways, and thus offer the potential to answer tangible questions about their modes of

participation. To date, examination of these questions has been limited because the systems

have reached a relatively small number of people. Yet, these systems could potentially

attract many more users. For instance, with a little publicity and fine-tuning Semantic

Email might easily reach thousands of users.

Thus, with a larger user base and some additional logging features installed, both Man-

grove and Semantic Email could enable a number of interesting user studies. For instance,

when annotating content for Mangrove, what quantity and types of annotations are used?

Do users repeatedly annotate and publish just to fix errors or does seeing tangible results

motivate the annotation of fundamentally new content? What fraction of people utilizing

Mangrove services such as the calendar also contribute content? Likewise, how do people

make use of Semantic Email? Do originators exploit a wide range of SEPs, or do a few

popular ones constitute the vast majority of use? How many participants are typically in-

volved in a SEP, how quickly do they respond, and how do they react to the manager’s

interventions? In addition, how likely are previously unknown participants to later become

originators themselves? Answering these questions would provide very useful information

for the further development of both these systems and the Semantic Web in general.

141

BIBLIOGRAPHY

[1] http://www.bibserv.org.

[2] Skical. http://www.skical.org/.

[3] Serge Abiteboul, Victor Vianu, Bradley S. Fordham, and Yelena Yesha. Relational

transducers for electronic commerce. In PODS, 1998.

[4] S. Adali, K. Candan, Y. Papakonstantinou, and V.S. Subrahmanian. Query caching

and optimization in distributed mediator systems. In Proc. of SIGMOD, pages 137–

148, Montreal, Canada, 1996.

[5] Sanjay Agrawal, Surajit Chaudhuri, and Vivek Narasayya. Automated selection of

materialized views and indexes in Microsoft SQL Server. In Proc. of VLDB, pages

496–505, Cairo, Egypt, 2000.

[6] Eric E. Allen. A First-Class Approach to Genericity. PhD thesis, Rice University,

Houston, TX, 2003.

[7] A. Ankolenkar, M. Burstein, J. Hobbs, O. Lassila, D. Martin, S. McIlraith,

S. Narayanan, M. Paolucci, T. Payne, K. Sycara, and H. Zeng. DAML-S: A seman-

tic markup language for web services. In Proceedings of the Semantic Web Working

Symposium, pages 411–430, 2001.

[8] Franz Baader and Ulrike Sattler. Description logics with concrete domains and ag-

gregation. In Proeedings of the European Conference on Artificial Intelligence, pages

336–340, 1998.

[9] Dave Banks, Steve Cayzer, Ian Dickinson, and Dave Reynolds. The ePerson Snippet

Manager: a semantic web application. Number HPL-2002-328, 2002.

142

[10] Tom Barrett, David Jones, Jun Yuan, John Sawaya, Mike Uschold, Tom Adams, and

Deborah Folger. RDF representation of metadata for semantic integration of corporate

information resources. In WWW2002 Workshop on Real World RDF and Semantic

Web Applications, 2002.

[11] Robert Baumgartner, Sergio Flesca, and Georg Gottlob. Visual web information

extraction with Lixto. In VLDB 0́1, 2001.

[12] Sean Bechhofer and Carole Goble. Towards annotation using DAML+OIL. In K-CAP

2001 Workshop on Knowledge Markup and Semantic Annotation, 2001.

[13] B. Benatallah, M. Hacid, C. Rey, and F. Toumani. Request rewriting-based web

service discovery. In Second International Semantic Web Conference, October 2003.

[14] V. Richard Benjamins and Dieter Fensel. Community is knowledge! in (KA)2. In

Eleventh Workshop on Knowledge Acquisition, Modeling and Management, 1998.

[15] T. Berners-Lee, J. Hendler, and O. Lassila. The Semantic Web. Scientific American,

May 2001.

[16] Tim Berners-Lee. Notation 3. http://www.w3.org/DesignIssues/Notation3.

[17] Abraham Bernstein and Mark Klein. Towards high-precision service retrieval. In First

International Semantic Web Conference, Sardinia, Italy, June 2002.

[18] D. Bertsekas. Dynamic programming and optimal control. Athena Scientific, 1995.

[19] Mikhail Bilenko, Raymond Mooney, William Cohen, Pradeep Ravikumar, and

Stephen Fienberg. Adaptive name matching in information integration. IEEE In-

telligent Systems Special Issue on Information Integration on the Web, September

2003.

143

[20] Jim Blythe and Yolanda Gil. Incremental formalization of document annotations

through ontology-based paraphrasing. In Proc. of the Thirteenth Int. WWW Confer-

ence, 2004.

[21] Blai Bonet and Hector Geffner. Planning with incomplete information as heuristic

search in belief space. In Artificial Intelligence Planning Systems, pages 52–61, 2000.

[22] Anthony J. Bonner. Workflow, transactions, and datalog. In PODS, pages 294–305,

1999.

[23] Craig Boutilier. A POMDP formulation of preference elicitation problems. In AAAI-

02, pages 239–246, 2002.

[24] Craig Boutilier, Thomas Dean, and Steve Hanks. Decision-theoretic planning: Struc-

tural assumptions and computational leverage. Journal of Artificial Intelligence Re-

search, 11:1–94, 1999.

[25] Craig Boutilier, Richard Dearden, and Moise’s Goldszmidt. Exploiting structure in

policy construction. In Proc. of IJCAI-14, 1995.

[26] Justin A. Boyan and Michael L. Littman. Exact solutions to time-dependent MDPs.

In Advances in Neural Information Processing Systems 13 (NIPS), pages 1026–1032,

2000.

[27] J. Broekstra, A. Kampman, and F. van Harmelen. Sesame: An architecture for storing

and querying RDF data and schema information, 2001.

[28] Christoph Bussler, Dieter Fensel, and Alexander Maedche. A conceptual architecture

for semantic web enabled web services. ACM SIGMOD Record, 31(4):24–29, 2002.

[29] Giuseppe Carenini and Johanna D. Moore. Generating explanations in context. In

Intelligent User Interfaces, pages 175–182, 1993.

144

[30] Michael J. Carey and Donald Kossmann. Reducing the braking distance of an SQL

query engine. In Proceedings of the Twenty-fourth International Conference on Very

Large Databases, pages 158–169, New York City, USA, 1998. VLDB Endowment,

Saratoga, Calif.

[31] Jeremy Carroll. Matching rdf graphs. In First International Semantic Web Confer-

ence, Sardinia, Italy, June 2002.

[32] Damianos Chatziantoniou and Kenneth A. Ross. Groupwise processing of relational

queries. In VLDB, pages 476–485, 1997.

[33] Surajit Chaudhuri, Kris Ganjam, Venkatesh Ganti, and Rajeev Motwani. Robust and

efficient fuzzy match for online data cleaning. In Proc. of SIGMOD, 2003.

[34] Sudarshan Chawathe, Hector Garcia-Molina, Joachim Hammer, Kelly Ireland, Yannis

Papakonstantinou, Jeffrey Ullman, and Jennifer Widom. The TSIMMIS project: In-

tegration of heterogeneous information sources. In proceedings of IPSJ, Tokyo, Japan,

October 1994.

[35] L. Chen, N.R. Shadbolt, C. Goble, F. Tao, S.J. Cox, C. Puleston, and P. Smart.

Towards a knowledge-based approach to semantic service composition. In Second

International Semantic Web Conference, October 2003.

[36] Rada Chirkova, Alon Halevy, and Dan Suciu. A formal perspective on the view

selection problem. In Proc. of VLDB, 2001.

[37] S. Cohen, W. Nutt, and A. Serebrenik. Rewriting aggregate queries using views. In

Proc. of PODS, pages 155–166, 1999.

[38] William Cohen. Integration of heterogeneous databases without common domains

using queries based on textual similarity. In Proc. of SIGMOD, Seattle, WA, 1998.

145

[39] Dan Connolly. A knowledge base about internet mail.

http://www.w3.org/2000/04/maillog2rdf/email.html.

[40] DAML Services Coalition. DAML-S and OWL-S. http://www.daml.org/services.

[41] John Davies, Richard Weeks, and Uwe Krohn. QuizRDF: Search technology for the

semantic web. In Workshop on Real World RDF and Semantic Web Applications,

2002.

[42] Maria Garcia de la Banda, Peter J. Stuckey, and Jeremy Wazny. Finding all minimal

unsatisfiable subsets. In Proceedings of the 5th ACM SIGPLAN international confer-

ence on Principles and practice of declarative programming, pages 32–43. ACM Press,

2003.

[43] M. Dean, D. Connolly, F. van Harmelen, J. Hendler, I. Horrocks, D. McGuinness,

P. Patel-Schneider, and L. Stein. OWL web ontology language 1.0 reference, 2002.

Manuscript available from http://www.w3.org/2001/sw/WebOnt/.

[44] S. Decker, M. Erdmann, D. Fensel, and R. Studer. Ontobroker: Ontology based

access to distributed and semi-structured information. In Eighth Working Conference

on Database Semantics (DS-8), pages 351–369, 1999.

[45] Nachum Dershowitz. Program abstraction and instantiation. ACM Trans. Program-

ming. Language Systems, 7(3):446–477, 1985.

[46] Alin Deutsch, Liying Sui, and Victor Vianu. Specification and verification of data-

driven web services. In PODS, 2004.

[47] Anhai Doan, Pedro Domingos, and Alon Halevy. Reconciling schemas of disparate

data sources: a machine learning approach. In Proc. of SIGMOD, 2001.

[48] Anhai Doan, Jayant Madhavan, Pedro Domingos, and Alon Halevy. Learning to map

between ontologies on the semantic web. In Proc. of the Int. WWW Conf., 2002.

146

[49] S. A. Dobson and V. A. Burrill. Lightweight databases. Computer Networks and

ISDN Systems, 27(6):1009–1015, 1995.

[50] Xin Dong, Alon Halevy, Ema Nemes, Stephan B. Sigurdsson, and Pedro Domingos.

SEMEX: toward on-the-fly personal information integration. In IWEB 2004, 2004.

[51] Xin Dong, Alon Y. Halevy, Jayant Madhavan, Ema Nemes, and Jun Zhang. Similarity

search for web services. In Proc. of VLDB, 2004.

[52] Robert B. Doorenbos, Oren Etzioni, and Daniel S. Weld. A scalable comparison-

shopping agent for the world-wide web. In Proceedings of the First International

Conference on Autonomous Agents, 1997.

[53] M. Druzdzel. Qualitative verbal explanations in bayesian belief networks. Artificial

Intelligence and Simulation of Behaviour Quarterly, 94:43–54, 1996.

[54] Oliver M. Duschka and Michael R. Genesereth. Answering recursive queries using

views. In Proc. of PODS, pages 109–116, Tucson, Arizona., 1997.

[55] Martin Dzbor, John Domingue, and Enrico Motta. Magpie — towards a semantic

web browser. In Second International Semantic Web Conference, October 2003.

[56] Oren Etzioni, Alon Halevy, Hank Levy, and Luke McDowell. Semantic email: Adding

lightweight data manipulation capabilities to the email habitat. In Sixth Int. Workshop

on the Web and Databases, 2003.

[57] Ronald Fagin, Joseph Y. Halpern, Yoram Moses, and Moshe Y. Vardi. Reasoning

About Knowledge. M.I.T Press, 1995.

[58] Alexander Felfernig, Gerhard Friedrich, Dietmar Jannach, and Markus Zanker. Se-

mantic configuration web services in the cawicoms project. In First International

Semantic Web Conference, Sardinia, Italy, June 2002.

147

[59] Ivan P. Fellegi and Alan B. Sunter. A theory for record linkage. Journal of the

Americal Statistical Association, 64(328):1183–1210, December 1969.

[60] Dieter Fensel, Jrgen Angele, Stefan Decker, Michael Erdmann, Hans-Peter Schnurr,

Rudi Studer, and Andreas Witt. On2broker: Lessons learned from applying AI to the

web. Technical Report Institute AIFB Research report no. 383, 1998.

[61] Dieter Fensel, Jurgen Angele, Stefan Decker, Michael Erdmann, Hans-Peter Schnurr,

Steffen Staab, Rudi Studer, and Andreas Witt. On2broker: Semantic-based access to

information sources at the WWW. In WebNet (1), pages 366–371, 1999.

[62] Mary Fernandez, Daniela Florescu, Alon Levy, and Dan Suciu. Declarative specifica-

tion of web sites with strudel. VLDB Journal, 9(1):38–55, 2000.

[63] Francisco Ferreira, Daniel Schwabe, and Carlos Lucena. Using semantic web services

now. In IX Brazilian Symp. on Hypermedia and Multimedia, 2003.

[64] C. Fillies, G. Wood-Albrecht, and F. Weichardt. A pragmatic application of the

semantic web using SemTalk. In WWW, pages 686–692, 2002.

[65] P. Flener, K.-K. Lau, M. Ornaghi, and J. Richardson. An abstract formalisation of

correct schemas for program synthesis. Journal of Symbolic Computation, 30(1):93–

127, July 2000.

[66] Helena Galhardas, Daniela Florescu, Dennis Shasha, Eric Simon, and Cristian-

Augustin Saita. Declarative data cleaning: Language, model, and algorithms. In

VLDB, pages 371–380, 2001.

[67] H. Garcia-Molina, Y. Papakonstantinou, D. Quass, A. Rajaraman, Y. Sagiv, J. Ull-

man, and J. Widom. The TSIMMIS project: Integration of heterogeneous information

sources. Journal of Intelligent Information Systems, 8(2):117–132, March 1997.

148

[68] Yolanda Gil and Varun Ratnakar. Trusting information sources one citizen at a time.

In First International Semantic Web Conference, Sardinia, Italy, June 2002.

[69] Jim Gray, Adam Bosworth, Andrew Layman, and Hamid Pirahesh. Data cube: A

relational aggregation operator generalizing group-by, cross-tab and sub-totals. In

Proc. of ICDE, pages 152–159, 1996.

[70] G. AA. Grimnes, S. Chalmers, P. Edwards, and A. Preece. Granitenights - a multi-

agent visit scheduler utilising semantic web technology. In Seventh International

Workshop on Cooperative Information Agents, pages 137–151, 2003.

[71] Stephane Grumbach and Leonardo Tininini. On the content of materialzed aggregate

views. In Proc. of PODS, 2000.

[72] N. Guarino, C. Masolo, and G. Vetere. Ontoseek: Content-based access to the web,

1999.

[73] R. Guha and Rob McCool. Tap: A semantic web platform.

http://tap.stanford.edu/tap/papers.html.

[74] R. Guha, Rob McCool, and Eric Miller. Semantic search. In World Wide Web, 2003.

[75] Laura Haas, Donald Kossmann, Edward Wimmers, and Jun Yang. Optimizing queries

across diverse data sources. In Proc. of VLDB, Athens, Greece, 1997.

[76] A. Halevy, O. Etzioni, A. Doan, Z. Ives, J. Madhavan, L. McDowell, and I. Tatarinov.

Crossing the structure chasm. In First Biennial Conferenece on Innovative Data

Systems Research, Asilomar, CA, January 5-8, 2003.

[77] Alon Y. Halevy, Zachary G. Ives, Peter Mork, and Igor Tatarinov. Piazza: Data

management infrastructure for semantic web applications. In World Wide Web, 2003.

149

[78] Siegfried Handschuh and Steffen Staab. Authoring and annotation of web pages in

CREAM. In World Wide Web, pages 462–473, 2002.

[79] Siegfried Handschuh, Steffen Staab, and Fabio Ciravegna. S-cream - semi-automatic

creation of metadata. In EKAW, pages 358–372, 2002.

[80] Siegfried Handschuh, Steffen Staab, and Raphael Volz. On deep annotation. In WWW,

2003.

[81] S. Haustein and J. Pleumann. Is participation in the semantic web too difficult? In

First International Semantic Web Conference, Sardinia, Italy, June 2002.

[82] J. Heflin and J. Hendler. A portrait of the semantic web in action. IEEE Intelligent

Systems, 16(2), 2001.

[83] Jeff Heflin, James Hendler, and Sean Luke. SHOE: A knowledge representation lan-

guage for internet applications. Technical Report CS-TR-4078, 1999.

[84] Jeff Heflin, James A. Hendler, and Sean Luke. Applying ontology to the web: A case

study. In IWANN (2), pages 715–724, 1999.

[85] Andreas Heß and Nicholas Kushmerick. Learning to attach semantic metadata to web

services. In Second International Semantic Web Conference, October 2003.

[86] I. Horrocks, F. van Harmelen, and P. Patel-Schneider. DAML+OIL.

http://www.daml.org/2001/03/daml+oil-index.html, March 2001.

[87] E. J. Horvitz, J. S. Breese, and M. Henrion. Decision theory in expert systems and

artificial intelligence. International Journal of Approximate Reasoning, 2:247–302,

1988.

[88] Andreas Hotho, Alexander Maedche, Steffen Staab, and Rudi Studer. SEAL-II - the

soft spot between richly structured and unstructured knowledge. Journal of Universal

Computer Science, 7(7):566–590, 2001.

150

[89] Richard Hull, Michael Benedikt, Vassilis Christophides, and Jianwen Su. E-Services:

A look behind the curtain. In PODS, 2003.

[90] David Huynh, David Karger, and Dennis Quan. Haystack: A platform for creating,

organizing and visualizing information using RDF.

[91] Zachary Ives, Daniela Florescu, Marc Friedman, Alon Levy, and Dan Weld. An

adaptive query execution engine for data integration. In Proc. of SIGMOD, pages

299–310, 1999.

[92] K. Jensen. Coloured Petri nets: A high-level language for system design and analysis.

In G. Rozenberg, editor, Advances in Petri Nets 1990, pages 342–416. Springer-Verlag,

1990. (Lecture Notes in Computer Science 483).

[93] David S. Johnson. Approximation algorithms for combinatorial problems. Journal of

Computer and System Sciences, 9:256–278, 1974.

[94] Ulrich Junker. QUICKXPLAIN: Conflict detection for arbitrary constraint propa-

gation algorithms. In IJCAI’01 Workshop on Modelling and Solving problems with

constraints, Seattle, WA, USA, August 2001.

[95] Narendra Jussien and Vincent Barichard. The PaLM system: explanation-based con-

straint programming. In Proceedings of TRICS: Techniques foR Implementing Con-

straint programming Systems, a post-conference workshop of CP 2000, pages 118–133,

Singapore, September 2000.

[96] Narendra Jussien and Samir Ouis. User-friendly explanations for constraint program-

ming. In ICLP 11th Workshop on Logic Programming Environments, Paphos, Cyprus,

Dec. 2001.

[97] Jose Kahan and Marja-Ritta Koivunen. Annotea: an open RDF infrastructure for

shared web annotations. In World Wide Web, pages 623–632, 2001.

151

[98] Aditya Kalyanpur, Bijan Parsia, James Hendler, and Jennifer Golbeck. SMORE -

semantic markup, ontology, and RDF editor. http://www.mindswap.org/papers/.

[99] George Katsirelos and Fahiem Bacchus. Unrestricted nogood recording in csp search.

In Principles and Practice of Constraint Programming, October 2003.

[100] Ralph Kimball and Kevin Strehlo. Why decision support fails and how to fix it.

SIGMOD Record, 24(3):92–97, 1995.

[101] David A. Klein and Edward H. Shortliffe. A framework for explaining decision-

theoretic advice. Artificial Intelligence, 67(2):201–243, 1994.

[102] Subhash Kumar, Anugeetha Kunjithapatham, Mithun Sheshagiri, Tim Finin, Anu-

pam Joshi, Yun Peng, and R. Scott Cost. A personal agent application for the semantic

web. In AAAI Fall Symposium on Personalized Agents, 2002.

[103] N. Kushmerick, R. Doorenbos, and D. Weld. Wrapper induction for information

extraction. In Proceedings of the 15th International Joint Conference on Artificial

Intelligence, 1997.

[104] Cody Kwok, Oren Etzioni, and Dan Weld. Scaling question answering to the web. In

Proc. of the Int. WWW Conf., pages 150–161, 2001.

[105] editor L. Fischer. Workflow Handbook 2001, Workflow Management Coalition. Light-

house Point, Florida. Future Strategies, 2001.

[106] Eric Lambrecht, Subbarao Kambhampati, and Senthil Gnanaprakasam. Optimizing

recursive information gathering plans. In Proceedings of the 16th International Joint

Conference on Artificial Intelligence, pages 1204–1211, 1999.

[107] O. Lassila and R. Swick. Resource description framework (RDF) model and syntax

specification. http://www.w3.org/TR/REC-rdf-syntax/, 1999. W3C Recommenda-

tion.

152

[108] Alon Y. Levy, Inderpal Singh Mumick, and Yehoshua Sagiv. Query optimization by

predicate move-around. In Proc. of VLDB, pages 96–107, 1994.

[109] Alon Y. Levy, Anand Rajaraman, and Joann J. Ordille. Querying heterogeneous

information sources using source descriptions. In Proc. of VLDB, pages 251–262,

Bombay, India, 1996.

[110] Gangmin Li, Victoria Uren, Enrico Motta, Simon Buckingham Shum, and John

Domingue. Claimaker: Weaving a semantic web of research papers. In First In-

ternational Semantic Web Conference, Sardinia, Italy, June 2002.

[111] Thorsten Liebig. The travel agent of the next generation web. In Poster presentation

at the First International Semantic Web Conference, 2002.

[112] Michael L. Littman. Probabilistic propositional planning: Representations and com-

plexity. In Proce. of (AAAI-97), 1997.

[113] Michael L. Littman, Thomas L. Dean, and Leslie Pack Kaelbling. On the complexity

of solving Markov decision problems. In Proc. of (UAI–95), 1995.

[114] Ling Liu, Calton Pu, and Wei Han. XWRAP: An XML-enabled wrapper construction

system for web information sources. In ICDE ’00, pages 611–621, 2000.

[115] Alan K. Mackworth. Constraint-based agents: The ABC’s of CBA’s. In Constraint

Programming, pages 1–10, 2000.

[116] Alexander Maedche, Steffen Staab, Rudi Studer, York Sure, and Raphael Volz. SEAL

- tying up information integration and web site management by ontologies. IEEE

Data Engineering Bulletin, 25(1):10–17, 2002.

[117] Thomas Malone, Kenneth Grant, Franklyn Turbak, Stephen Brobst, and Michael

Cohen. Intelligent information-sharing systems. Comm. of the ACM, 30(5):390–402,

1987.

153

[118] Ioana Manolescu, Daniela Florescu, and Donald Kossmann. Answering xml queries

on heterogeneous data sources. In Proc. of VLDB, pages 241–250, 2001.

[119] P. Martin and P. Eklund. Manageable approaches to the semantic web. In World

Wide Web, 2002.

[120] P. Martin and P. W. Eklund. Embedding knowledge in web documents. WWW8 /

Computer Networks, 31(11-16):1403–1419, 1999.

[121] P. Martin and P. W. Eklund. Large-scale cooperatively-built KBs. In ICCS, pages

231–244, 2001.

[122] m.c. schraefel, Nigel R Shadbolt, Nicholas Gibbins, Hugh Glaser, and Stephen Harris.

Cs aktive space: Representing computer science in the semantic web. In Proc. of the

Thirteenth Int. WWW Conference, 2004.

[123] Brian McBride. Jena: Implementing the RDF model and syntax specification. In

Proceedings of the 2001 Semantic Web Workshop, 2001.

[124] Andrew K. McCallum and Ben Wellner. Toward conditional models of identity un-

certainty with application to proper noun coreference. In IJCAI Workshop on Infor-

mation Integration on the Web, 2003.

[125] Luke McDowell, Oren Etzioni, Steven D. Gribble, Alon Halevy, Henry Levy, William

Pentney, Deepak Verma, and Stani Vlasseva. Evolving the semantic web with Man-

grove. Technical Report UW-CSE-03-02-01, February 2003.

[126] Luke McDowell, Oren Etzioni, Steven D. Gribble, Alon Halevy, Henry Levy, William

Pentney, Deepak Verma, and Stani Vlasseva. Mangrove: Enticing ordinary people

onto the semantic web via instant gratification. In Second International Semantic

Web Conference, October 2003.

154

[127] Luke McDowell, Oren Etzioni, Alon Halevey, and Hank Levy. Semantic email. In

Proc. of the Thirteenth Int. WWW Conference, 2004.

[128] Luke McDowell, Oren Etzioni, and Alon Halevy. The specification of agent behavior

by ordinary people: A case study. In Third International Semantic Web Conference,

November 2004.

[129] Luke McDowell, Oren Etzioni, and Alon Halevy. Specifying semantic email processes.

In WWW2004 Workshop on Application Design, Development and Implementation

Issues in the Semantic Web, 2004.

[130] Deborah L. McGuinness and Alexander Borgida. Explaining subsumption in descrip-

tion logics. In IJCAI (1), pages 816–821, 1995.

[131] Deborah L. McGuinness and Paulo Pinheiro da Silva. Infrastructure for web expla-

nations. In Second International Semantic Web Conference, October 2003.

[132] S. McIlraith, T. Son, and H. Zeng. Semantic web services. IEEE Intelligent Systems.

Special Issue on the Semantic Web, 16(2):46–53, March/April 2001.

[133] S. A. McIlraith, T. C. Son, and H. Zeng. Mobilizing the semantic web with daml-

enabled web services. In Proceedings of the 2001 Semantic Web Workshop, 2001.

[134] Robin Milner. A Calculus of Communicating Systems, volume 92 of Lecture Notes in

Computer Science. Springer, 1980.

[135] C. Mohan. Workflow management in the internet age.

www.almaden.ibm.com/u/mohan/workflow.pdf, 1999.

[136] B. Motik, A. Maedche, and R. Volz. A conceptual modeling approach for building

semantics-driven enterprise applications. In First International Conference on On-

tologies, Databases and Application of Semantics (ODBASE), 2002.

155

[137] Saikat Mukherjee, Hasan Davulcu, Michael Kifer, Pinar Senkul, and Guizhen Yang.

Logic based approaches to workflow modeling and verification. In Logics for Emerging

Applications of Databases, 2003.

[138] A. Naeve. The concept browser - a new form of knowledge management tool. In

2nd European Web-based Learning Environments Conference (WBLE 2001), Lund,

Sweden.

[139] Alexander Nareyek. Constraint-Based Agents, volume 2062 of Lecture Notes in Com-

puter Science. Springer, 2001.

[140] Robert Neches, William R. Swartout, and Johanna D. Moore. Explainable (and

maintainable) expert systems. In IJCAI, pages 382–389, 1985.

[141] Wolfgang Nejdl, Boris Wolf, Changtao Qu, Stefan Decker, Michael Sintek, Ambjrn

Naeve, Mikael Nilsson, Matthias Palmr, and Tore Risch. Edutella: a P2P networking

infrastructure based on RDF. In WWW, pages 604–615, 2002.

[142] Ontoprise. Demo applications. http://www.ontoprise.de/com/co produ appl2.htm.

[143] Samir Ouis, Narendra Jussien, and Patrice Boizumault. k-relevant explanations for

constraint programming. In FLAIRS’03: Sixteenth International Florida Artificial

Intelligence Research Society Conference, St. Augustine, Florida, USA, May 2003.

AAAI press.

[144] Massimo Paolucci, Takahiro Kawamura, Terry R. Payne, , and Katia Sycara. Se-

mantic matching of web services capabilities. In First International Semantic Web

Conference, Sardinia, Italy, June 2002.

[145] A. Patil, S. Oundhakar, A. Sheth, and K. Verma. METEOR-S web service annotation

framework. In Proc. of the Thirteenth Int. WWW Conference, 2004.

156

[146] Terry Payne, Rahul Singh, and Katia Sycara. Calendar agents on the semantic web.

IEEE Intelligent Systems, 17(3):84–86, 2002.

[147] Terry R. Payne, Rahul Singh, and Katia P. Sycara. RCal: a case study on semantic

web agents. In AAMAS, pages 802–803, 2002.

[148] Filip Perich, Lalana Kagal, Harry Chen, Sovrin Tolia, Youyong Zou, Timothy W.

Finin, Anupam Joshi, Yun Peng, R. Scott Cost, and Charles Nicholas. ITTALKS: An

application of agents in the semantic web. In ESAW, pages 175–194, 2001.

[149] Amir Pnueli. The temporal logic of programs. In Proc. of the 18th Annual IEEE

Symposium on Foundations of Computer Science, 1977.

[150] Martin Puterman. Markov decision processes. Wiley Inter-science, 1994.

[151] Dennis Quan, David Huynh, and David R. Karger. Haystack: A platform for au-

thoring end user semantic web applications. In Second International Semantic Web

Conference, October 2003.

[152] Dennis Quan and David R. Karger. How to make a semantic web browser. In Proc.

of the Thirteenth Int. WWW Conference, 2004.

[153] Vijayshankar Raman and Joseph M. Hellerstein. Potter’s wheel: An interactive data

cleaning system. In VLDB, pages 381–390, 2001.

[154] Dave Reynolds. RDF-QBE: a Semantic Web building block.

http://www.hpl.hp.com/semweb/publications.htm.

[155] Kenneth Ross, Divesh Srivastava, Peter Stuckey, and S. Sudarshan. Foundations

of aggregation constraints. In Principles and Practice of Constraint Programming.

LNCS, 874. Springer Verlag, 1994.

157

[156] Arnaud Sahuguet and Fabien Azavant. Building light-weight wrappers for legacy web

data-sources using W4F. In VLDB ’99, pages 738–741, 1999.

[157] Hiroyuki Sato, Yutaka Abe, and Atsushi Kanai. Hyperclip: A tool for gathering and

sharing metadata on userś activities by using peer-to-peer technology. In Workshop

on Real World RDF and Semantic Web Applications, 2002.

[158] Thomas Schiex and Girard Verfaillie. Nogood Recording fot Static and Dynamic Con-

straint Satisfaction Problems. International Journal of Artificial Intelligence Tools,

3(2):187–207, 1994.

[159] H. Schnurr, S. Staab, and R. Studer. Ontology-based process support. In AAAI99

workshop on Exploring Synergies of Knowledge Management and Case-Based Reason-

ing.

[160] Pinar Senkul, Michael Kifer, and Ismail H. Toroslu. A logical framework for scheduling

workflows under resource allocation constraints. In VLDB, 2002.

[161] William M. Shaw Jr., Robert Burgin, and P. Howell. Performance standards and eval-

uations in IR test collections: Cluster-based retrieval models. Information Processing

and Management, 33(1):1–14, 1997.

[162] A. Sheth, C. Bertram, D. Avant, B. Hammond, K. Kochut, and Y. Warke. Se-

mantic content management for enterprises and the web. IEEE Internet Computing,

July/August 2002.

[163] Bernd Simon, Zoltan Miklos, Wolfgang Nejdl, Michael Sintek, and Joaquin Salvachua.

Elena: A mediation infrastructure for educational services. In World Wide Web, 2003.

[164] Evren Sirin, James Hendler, and Bijan Parsia. Semi-automatic composition of web

services using semantic descriptions. In ICEIS2003 workshop on Web Services: Mod-

eling, Architecture and Infrastructure, 2003.

158

[165] Stephen Soderland. Learning to extract text-based information from the World Wide

Web. In Knowledge Discovery and Data Mining, pages 251–254, 1997.

[166] M. Solanki, A. Cau, and H. Zedan. Augmenting semantic web service description with

compositional specification. In Proc. of the Thirteenth Int. WWW Conference, 2004.

[167] Steffen Staab, Jrgen Angele, Stefan Decker, Michael Erdmann, Andreas Hotho,

Alexander Maedche, Hans-Peter Schnurr, Rudi Studer, and York Sure. Semantic

community web portals. WWW9 / Computer Networks, 33(1-6):473–491, 2000.

[168] Larry J. Stockmeyer and Ashok K. Chandra. Provably difficult combinatorial games.

SIAM Journal on Computing, 8(2):151–174, 1979.

[169] W. Swartout, C. Paris, and J. Moore. Design for explainable expert systems. IEEE

Expert, 6(3):58–647, 1991.

[170] V. Tamma, M. Wooldridge, and I. Dickinson. An ontology-based approach to auto-

mated negotiation. In AMEC-2002, 2002.

[171] David Trastour, Claudio Bartolini, and Chris Preist. Semantic web support for the

business-to-business e-commerce lifecycle. In WWW, pages 89–98, 2002.

[172] Olga De Troyer, Jo De Greef, and Peter Stuer. Web-for-web: A tool for evolving

data-driven web applications.

[173] W.M.P. van der Aalst, A.H.M. ter Hofstede, B. Kiepuszewski, and A.P. Barros. Work-

flow patterns. Distributed and Parallel Databases, 14(3):5–51, July 2003.

[174] M. Vargas-Vera, E. Motta, J. Domingue, S. Buckingham Shum, and M. Lanzoni.

Knowledge extraction by using an ontology-based annotation tool. In K-CAP 2001

workshop on Knowledge Markup and Semantic Annotation, Victoria, 2001.

159

[175] Raphael Volz, Daniel Oberle, Steffen Staab, and Boris Motik. Kaon server - a semantic

web management system. In Alternate Track of WWW2003. ACM, May 2003.

[176] W3C. RDF calendar workspace. http://www.w3.org/2002/12/cal/.

[177] W3C. W3C issues recommendation for resource description framework (RDF). W3C

press release 24 February 1999. http://www.w3.org/Press/1999/RDF-REC.

[178] W3C. Web-ontology (webont) working group.

http://www.w3.org/2001/sw/WebOnt/.

[179] W3C. XML digital signatures activity statement.

http://www.w3.org/Signature/Activity.html, 2002.

[180] Daniel Weld and Oren Etzioni. The first law of robotics (a call to arms). In Proc. of

AAAI, 1994.

[181] Dell Zhang and Wee Sun Lee. Web taxonomy integration using support vector ma-

chines. In Proceedings of the 13th conference on World Wide Web, pages 472–481.

ACM Press, 2004.

160

Appendix A

MANGROVE SCHEMA

Below we describe the schema used for annotating HTML documents in Mangrove.

This schema is formatted as an XML DTD for simplicity, and contains embedded comments

that is used to automatically generate both HTML documentation for the schema and a

definition file that is used to present the schema in the graphical annotation tool. The

comments used for the HTML generation are XML comments that precede each XML

ELEMENT. For instance, the workAddress element has the documentation “Work mailing

address.”

<!-- ** -->

<!-- FACULTY MEMBER ELEMENT -->

<!-- ** -->

<!-- facultyMember Annotates semantic information about a faculty member. -->

<!ELEMENT facultyMember (#PCDATA | name | portrait | jobTitle | university | department |

workAddress | office | workPhone | fax | workEmail | workHomepage |

assistant |

homeAddress | homePhone | cellphone | pager | personalEmail | personalHomepage |

researchInterests | project |

advisedStudent | publication | officeHours | value | ignore)*>

<!-- name Name of a person, project, course, etc.-->

<!ELEMENT name (#PCDATA | value | ignore)*>

<!-- portrait Person’s photo. -->

<!ELEMENT portrait (#PCDATA | value | ignore)*>

<!-- jobTitle Job title (position) in the department (e.g., associate professor, research assistant professor, ect.) or in a company. -->

<!ELEMENT jobTitle (#PCDATA | value | ignore)*>

<!-- university University name.-->

<!ELEMENT university (#PCDATA | value | ignore)*>

<!-- department Department name. -->

<!ELEMENT department (#PCDATA | value | ignore)*>

<!-- workAddress Work mailing address. -->

<!ELEMENT workAddress (#PCDATA | value | ignore)*>

<!-- homeAddress Home mailing address. -->

<!ELEMENT homeAddress (#PCDATA | value | ignore)*>

<!-- office Office number. -->

<!ELEMENT office (#PCDATA | value | ignore)*>

161

<!-- workPhone Work phone number. -->

<!ELEMENT workPhone (#PCDATA | value | ignore)*>

<!-- homePhone Home phone number. -->

<!ELEMENT homePhone (#PCDATA | value | ignore)*>

<!-- fax Fax number. -->

<!ELEMENT fax (#PCDATA | value | ignore)*>

<!-- workEmail Work (professional) e-mail address. -->

<!ELEMENT workEmail (#PCDATA | value | ignore)*>

<!-- personalEmail Personal e-mail address. -->

<!ELEMENT personalEmail (#PCDATA | value | ignore)*>

<!-- workHomepage Work (professional) homepage URL. -->

<!ELEMENT workHomepage (#PCDATA | value | ignore)*>

<!-- personalHomepage Personal homepage URL. -->

<!ELEMENT personalHomepage (#PCDATA | value | ignore)*>

<!-- assistant Staff assistant. -->

<!ELEMENT assistant (#PCDATA | name | portrait | workEmail | workPhone | workHomepage | office | value | ignore)*>

<!-- cellphone Cell phone number. -->

<!ELEMENT cellphone (#PCDATA | value | ignore)*>

<!-- pager Pager number. -->

<!ELEMENT pager (#PCDATA | value | ignore)*>

<!-- researchInterests Research interests. -->

<!ELEMENT researchInterests (#PCDATA | value | ignore)*>

<!-- project Research project. -->

<!ELEMENT project (#PCDATA | name | homepage | summary | participant | publication | value | ignore)*>

<!-- homepage Homepage URL; for person’s homepage please see workHomepage and personalHomepage. -->

<!ELEMENT homepage (#PCDATA | value | ignore)*>

<!-- participant Project participant. -->

<!ELEMENT participant (#PCDATA | name | portrait | jobTitle | organization | university | department |

workAddress | office | workPhone | fax | workEmail | workHomepage |

homeAddress | homePhone | cellphone | pager | personalEmail | personalHomepage |

researchInterests | project | publication |

yearOfStudy | undergradUniversity |

degreeCompleted | degreeGoal | programStatus |

advisor | thesisTopic |

birthday | sportsPlayed | hobbies | otherInterests |

assistant |

advisedStudent | officeHours | value | ignore)*>

<!-- summary Summary. -->

<!ELEMENT summary (#PCDATA | value | ignore)*>

<!-- advisedStudent Student advised by that faculty member. -->

<!ELEMENT advisedStudent (#PCDATA | name | portrait | university | department |

workAddress | office | workPhone | fax | workEmail | workHomepage |

homeAddress | homePhone | cellphone | pager | personalEmail | personalHomepage |

yearOfStudy | undergradUniversity |

degreeCompleted | degreeGoal | programStatus |

researchInterests | advisor | project | thesisTopic |

publication | birthday | sportsPlayed | hobbies | otherInterests |

jobTitle | organization | value | ignore)*>

<!-- publication Publication (e.g., TR, paper, etc.). -->

<!ELEMENT publication (#PCDATA | author | publicationTitle | forumName | forumType |

162

forumLocation | year | publisher | file | value | ignore)*>

<!-- author Author of a publication. -->

<!ELEMENT author (#PCDATA | value | ignore)*>

<!-- publicationTitle Title of a publication. -->

<!ELEMENT publicationTitle (#PCDATA | value | ignore)*>

<!-- forumName Forum name. -->

<!ELEMENT forumName (#PCDATA | value | ignore)*>

<!-- forumType Forum type, e.g., conference, workshop, etc. -->

<!ELEMENT forumType (#PCDATA | value | ignore)*>

<!-- forumLocation Forum location. -->

<!ELEMENT forumLocation (#PCDATA | value | ignore)*>

<!-- file Link to the file containing that publication/paper. -->

<!ELEMENT file (#PCDATA | value | ignore)*>

<!-- publisher Publisher name. -->

<!ELEMENT publisher (#PCDATA | value | ignore)*>

<!-- officeHours Office hours (location and/or time). -->

<!ELEMENT officeHours (#PCDATA | value | ignore)*>

<!-- value Represents the value of the tag. -->

<!ELEMENT value (#PCDATA | value | ignore)*>

<!-- ignore Explicitly annotates that that piece of data should be ignored by the applications. -->

<!ELEMENT ignore (#PCDATA | value | ignore)*>

<!-- ** -->

<!-- GRAD STUDENT ELEMENT -->

<!-- ** -->

<!-- gradStudent Annotates semantic information about a graduate student. -->

<!ELEMENT gradStudent (#PCDATA | name | portrait | university | department |

workAddress | office | workPhone | fax | workEmail | workHomepage |

homeAddress | homePhone | cellphone | pager | personalEmail | personalHomepage |

yearOfStudy | undergradUniversity |

degreeCompleted | degreeGoal | programStatus |

researchInterests | advisor | project | thesisTopic |

publication | birthday | sportsPlayed | hobbies | otherInterests |

jobTitle | organization | value | ignore)*>

<!-- yearOfStudy Year of study (e.g., first year grad student). -->

<!ELEMENT yearOfStudy (#PCDATA | value | ignore)*>

<!-- undergradUniversity The name of the university where the student earned his/her undergrad degree. -->

<!ELEMENT undergradUniversity (#PCDATA | value | ignore)*>

<!-- degreeCompleted Degree completed. -->

<!ELEMENT degreeCompleted (#PCDATA | value | ignore)*>

<!-- degreeGoal Degree pursued. -->

<!ELEMENT degreeGoal (#PCDATA | value | ignore)*>

<!-- programStatus Student status, i.e., Pre-Quals, Post-Generals, Ph.D. -->

<!ELEMENT programStatus (#PCDATA | value | ignore)*>

<!-- advisor Student’s advisor. -->

<!ELEMENT advisor (#PCDATA | name | portrait | jobTitle | university | department |

workAddress | office | workPhone | fax | workEmail | workHomepage |

assistant |

homeAddress | homePhone | cellphone | pager | personalEmail | personalHomepage |

163

researchInterests |

project | advisedStudent | publication | value | ignore)*>

<!-- thesisTopic Topic of the thesis. -->

<!ELEMENT thesisTopic (#PCDATA | value | ignore)*>

<!-- birthday Birthday (month and day). -->

<!ELEMENT birthday (#PCDATA | value | ignore)*>

<!-- sportsPlayed Sports played. -->

<!ELEMENT sportsPlayed (#PCDATA | value | ignore)*>

<!-- hobbies Hobbies. -->

<!ELEMENT hobbies (#PCDATA | value | ignore)*>

<!-- otherInterests Other interests. -->

<!ELEMENT otherInterests (#PCDATA | value | ignore)*>

<!-- organization Current affiliation, e.g., company name. -->

<!ELEMENT organization (#PCDATA | value | ignore)*>

<!-- ** -->

<!-- COURSE ELEMENT -->

<!-- ** -->

<!-- course Annotates semantic information about a course or seminar (in a course web page). -->

<!ELEMENT course (#PCDATA |

courseCode | name | schoolQuarter | year |

description | instructor | teachingAssistant | credits | textbook |

startDate | endDate | time | location | event | value | ignore)*>

<!-- courseCode Course code, e.g., "cse590s". -->

<!ELEMENT courseCode (#PCDATA | value | ignore)*>

<!-- schoolQuarter Quarter when the seminar/course is offered. -->

<!ELEMENT schoolQuarter (#PCDATA | value | ignore)*>

<!-- year Year. -->

<!ELEMENT year (#PCDATA | value | ignore)*>

<!-- description Short description of the course. -->

<!ELEMENT description (#PCDATA | value | ignore)*>

<!-- instructor Instructor of a course/seminar. -->

<!ELEMENT instructor (#PCDATA | name | portrait | jobTitle | university | department |

workAddress | office | workPhone | fax | workEmail | workHomepage |

assistant |

homeAddress | homePhone | cellphone | pager | personalEmail | personalHomepage |

researchInterests | project |

advisedStudent | publication | officeHours | value | ignore)*>

<!-- teachingAssistant Teaching Assistant. -->

<!ELEMENT teachingAssistant (#PCDATA | name | portrait | university | department |

section | officeHours |

workAddress | office | workPhone | fax | workEmail | workHomepage |

homeAddress | homePhone | cellphone | pager | personalEmail | personalHomepage |

yearOfStudy | undergradUniversity |

degreeCompleted | degreeGoal | programStatus |

researchInterests | advisor | project | thesisTopic |

publication | birthday | sportsPlayed | hobbies | otherInterests |

jobTitle | organization |

value | ignore)*>

<!-- section Which section the teaching assistant is teaching. -->

<!ELEMENT section (#PCDATA | value | ignore)*>

164

<!-- credits Course credits. -->

<!ELEMENT credits (#PCDATA | value | ignore)*>

<!-- textbook Course textbook. -->

<!ELEMENT textbook (#PCDATA | bookTitle | author | edition |

publisher | year | value | ignore)*>

<!-- bookTitle Title of a book.-->

<!ELEMENT bookTitle (#PCDATA | value | ignore)*>

<!-- edition Edition of a book. -->

<!ELEMENT edition (#PCDATA | value | ignore)*>

<!-- time When the course meets (e.g., "W 4:30 - 5:20", "10:30 a.m."). -->

<!ELEMENT time (#PCDATA | value | ignore)*>

<!-- location Where the course/seminar meets (e.g., "EE1 031"). -->

<!ELEMENT location (#PCDATA | value | ignore)*>

<!-- event Represents a lecture, a seminar or other event. -->

<!ELEMENT event (#PCDATA | date | startDate | endDate | time | location |

typeLecture | typeSection | presenter | topic | paper | slides | readings |

remarks | value | ignore)*>

<!-- date Date (e.g., "Jul 21, 2002", "10/13/2002"). -->

<!ELEMENT date (#PCDATA | value | ignore)*>

<!-- startDate Start date for a reoccurring event. -->

<!ELEMENT startDate (#PCDATA | value | ignore)*>

<!-- endDate End date for a reoccurring event. -->

<!ELEMENT endDate (#PCDATA | value | ignore)*>

<!-- typeLecture Standalone tag classifying a given event as a ’lecture’. -->

<!ELEMENT typeLecture (#PCDATA | value | ignore)*>

<!-- typeSection Standalone tag classifying a given event as a ’section’. -->

<!ELEMENT typeSection (#PCDATA | value | ignore)*>

<!-- presenter Presenter’s name. -->

<!ELEMENT presenter (#PCDATA | value | ignore)*>

<!-- topic Topic of a presentation, a lecture, a talk. -->

<!ELEMENT topic (#PCDATA | value | ignore)*>

<!-- paper Paper. -->

<!ELEMENT paper (#PCDATA | author | paperTitle | forumName | forumType |

forumLocation | year | publisher | file | value | ignore)*>

<!-- paperTitle Title of a paper. -->

<!ELEMENT paperTitle (#PCDATA | value | ignore)*>

<!-- slides Lecture/seminar slides. -->

<!ELEMENT slides (#PCDATA | value | ignore)*>

<!-- readings Lecture/seminar readings. -->

<!ELEMENT readings (#PCDATA | value | ignore)*>

<!-- remarks Additional notes and remarks. -->

<!ELEMENT remarks (#PCDATA | value | ignore)*>

<!-- ** -->

<!-- STAFF MEMBER ELEMENT -->

<!-- ** -->

<!-- staffMember Annotates semantic information about a staff member. -->

165

<!ELEMENT staffMember (#PCDATA | name | portrait | jobTitle | university | department |

workAddress | office | workPhone | fax | workEmail | workHomepage |

homeAddress | homePhone | cellphone | pager | personalEmail | personalHomepage |

project | publication |

value | ignore)*>

<!-- ** -->

<!-- UNDERGRAD STUDENT ELEMENT -->

<!-- ** -->

<!-- undergradStudent Annotates semantic information about a undergraduate student. -->

<!ELEMENT undergradStudent (#PCDATA | name | portrait | university | department |

workAddress | workPhone | workEmail | workHomepage |

homeAddress | homePhone | cellphone | pager | personalEmail | personalHomepage |

yearOfStudy | degreeCompleted | degreeGoal |

researchInterests | advisor | project | publication |

birthday | sportsPlayed | hobbies | otherInterests |

value | ignore)*>

166

Appendix B

SEMANTIC EMAIL DECLARATIONS AND TEMPLATES

This appendix provides some technical details on the language used to represent SEP

declarations and templates. First, Section B.1 gives an overview of how a completed SEP

declaration is interpreted by the manager for execution. Next, Sections B.2 and B.3 define

the ontology used for specifying a SEP template and SEP parameter declaration, respec-

tively.

B.1 Interpretation of SEP Declarations

In this section we assume the manager has a been given a complete SEP declaration δ,

and explain how the manager executes this declaration. The declaration is used for three

primary purposes: 1.) sending the initial messages to the participants, 2.) processing

responses received from the participants, and 3.) handling notifications. Below we first

describe some general rules that apply to all of these situations, then explain each of these

three cases in more detail. Note that this section describes the error-free execution of a

SEP — see the proof of Theorem 5.4.2 for details on the template checking that is needed

to ensure this occurs.

General rules: We make use of the following recursive definition:

Definition B.1.1 (forward-reachable) A statement s is forward-reachable from a re-

source r iff the subject of s is r, or the subject of s is forward-reachable from r. 2

Intuitively, a statement s is forward-reachable from r if s can be found by starting from r

and traversing statements in the subject to object direction.

A SEP declaration uses RDF resources to represent key elements such as questions,

goals, and notifications, as well as lower-level primitives such as variable definitions. Every

such resource r is processed using the following steps:

167

1. Evaluate any global defines. Using these defines, recursively substitute their values

into any variable references (e.g., $NumExpected$) that are found in any statement

that is forward-reachable from r.

2. Evaluate any guard statements whose subject is r. If the object of any such statement

evaluates to false, stop (i.e., proceed as if this resource did not exist).

3. Evaluate the forAll statement whose subject is r. (If there is no such statement,

proceed as if there were such a statement with a single possibility that defined no

relevant variables). For each possibility defined by this quantification(s), repeat the

following steps:

(a) Evaluate the variables defined by the define statement whose subject is r, if

any. Then use the resultant definitions, along with any variables defined by

the current forAll instantiation, to again substitute variable references in any

statement that is forward-reachable from r.

(b) Evaluate any suchThat properties whose subject is r. If the object of any such

statement evaluates to false, skip to Step (d).

(c) Otherwise, perform the specific action indicated by r with this possibility. If r has

any statements pointing to additional resources that need to be evaluated first,

then execute this entire procedure beginning with Step 2 for each such resource

r′.

(d) After completely processing the quantification, revert any statements that were

changed in Step (a) back to their unmodified state.

4. After completing processing this resource, revert any statements that were modified

in Step 1 back to their original state.

In practice, instead of reverting statements, our implementation makes shadow copies of ev-

ery statement before modifying them with variable substitutions, then discards the modified

statements when they are no longer needed.

168

Sending initial messages to the participants: When a SEP is initially invoked, the

manager parses the declaration and extracts the originator, participants, and initial prompt.

The manager uses the prompt to compose a tentative message to the participants. To aid

later interpretation of the responses, the manager also assigns a unique SEP identifier to

the new process and includes this identifier in the message. The manager then parses the

list of questions. For each question, the manager adds text to the message, asking the

participant for the value desired by the question and providing a text form (with multiple

choice options for enumerated questions) for the participant to use in their response. If

a question is quantified (e.g., to ask for yes/no responses to a series of options that is

provided by the originator), then the manager repeats this process for each option. Finally,

the manager combines the RDQL queries from each question into a single RDQL query

that is attached to the bottom of the message. The entire message is then sent to the

participants.

Processing responses from the participants: When a message is received from a

participant, the manager first uses the SEP identifier included in the message to identify the

appropriate SEP and retrieve its declaration. The message’s semantic response is extracted

from the message using the associated RDQL query, and the resultant RDF is tentatively

stored in the manager’s RDF database.

The manager then evaluates each SEP goal in turn. For an L-SEP, if the constraint

was previously satisfiable, but can no longer be satisfied by the new state of the database,

then the response must be rejected. It is removed from the database and a message is sent

to the participant notifying them of the rejection, possibly accompanied by an explanation

associated with the goal. For a D-SEP, the message is always accepted. However, the

manager will now evaluate the optimal policy choice given the current state of the database

(this policy is calculated once for all possible states when the first response is received,

then cached for later use). Based on this policy, the manager may choose to send a sug-

gestion to the participant, asking them to change their response. In our current semantic

email implementation, such suggestions are only sent immediately following a response by

a participant.

169

Handling notifications: The manager processes notifications whenever a new response

is handled (as described above) and periodically, to check for notifications triggered by

a OnDateTime condition. If a response has just been accepted, then the data set used

to compute values for the notification will include the new data. For each notification

in the SEP’s notification list, the manager checks to see if the corresponding condition

has been satisfied. If so, the manager computes the message requested by the notification

and sends it to the requested recipients. Alternatively, if the notification states that the

ProcessSummary should be notified, then the manager uses the result to update a cached

document that summarizes the responses received by a SEP along with any such SEP-

specific notifications. The text of a notification may also make use of pre-defined variables

(e.g., Bringing.acceptable()) that reasons about what responses are acceptable given the

SEP’s goals and current responses.

B.2 Ontology for Describing SEP Templates

At the highest level, a SEP template (of type SemanticEmailProcess in the ontology below)

specifies a title of the process, a textual summary of what it does, a set of parameters to

be used for instantiation (described in the next section), and a formal definition. The

latter definition specifies the originator and participants, a prompt to send with the

initial message, and RDF lists of questions, goals, and notifications. The complete

ontology is given below, in N3 format.

Where appropriate, the ontology identifies cardinality restrictions. For instance, a

TradeoffGoal must have exactly one optimize property (specified via a owl:cardinality

property). In addition, because TradeoffGoal is a sub-class of Goal, it must have at

most one message property (specified via a owl:maxCardinality property). Note, how-

ever, many such properties (e.g., forAll, define) point to a RDF list of resources, thus

permitting an arbitrary number of quantifications, definitions, etc. per resource.

@prefix a: <http://www.cs.washington.edu/research/semweb/semantic_email#> .

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

@prefix : <#> .

@prefix owl: <http://www.w3.org/2002/07/owl#> .

170

a:OnConditionSatisfiedFirstTime

a owl:Class ;

rdfs:comment """Fires when the given condition is satisifed, but only if

this is the first such occurrence in the life of the process.""" ;

rdfs:subClassOf a:Notification ;

owl:equivalentClass

[a owl:Class ;

owl:intersectionOf ([a owl:Restriction ;

owl:cardinality "1"^^<http://www.w3.org/2000/10/XMLSchema#nonNegativeInteger> ;

owl:onProperty a:condition

])

] .

a:parameters

a owl:ObjectProperty ;

rdfs:comment """Points to a list of parameter descriptions that the form

generator will use to create a form for instantiating

this process.""" ;

rdfs:domain a:SemanticEmailProcess ;

rdfs:range a:ParameterList .

a:value

a owl:DatatypeProperty ;

rdfs:comment """Defines the object to be used a variable

assignment.""" ;

rdfs:domain a:DefineNode .

a:notifications

a owl:ObjectProperty ;

rdfs:comment "Points to a list of notifications for this process" ;

rdfs:domain a:SemanticEmailProcessDefinition .

a:guard

a owl:DatatypeProperty ;

rdfs:comment """This property is evaluated first when a new resource is encountered,

before any new variables are defined. If it evaluates to non-zero,

then this resource is processed, otherwise it is ignored.""" ;

rdfs:domain a:Question , a:DefineNode , a:Notification , a:EvaluateNode , a:Goal .

a:DefineNode

a owl:Class ;

owl:equivalentClass

[a owl:Class ;

owl:intersectionOf ([a owl:Restriction ;

owl:cardinality "1"^^<http://www.w3.org/2000/10/XMLSchema#nonNegativeInteger> ;

owl:onProperty a:name

] [a owl:Restriction ;

owl:maxCardinality "1"^^<http://www.w3.org/2000/10/XMLSchema#nonNegativeInteger> ;

owl:onProperty a:forAll

])

] ;

owl:equivalentClass

[a owl:Class ;

owl:unionOf ([a owl:Restriction ;

owl:cardinality "1"^^<http://www.w3.org/2000/10/XMLSchema#nonNegativeInteger> ;

owl:onProperty a:product

] [a owl:Restriction ;

owl:cardinality "1"^^<http://www.w3.org/2000/10/XMLSchema#nonNegativeInteger> ;

owl:onProperty a:value

] [a owl:Restriction ;

owl:cardinality "1"^^<http://www.w3.org/2000/10/XMLSchema#nonNegativeInteger> ;

owl:onProperty a:string

] [a owl:Restriction ;

owl:cardinality "1"^^<http://www.w3.org/2000/10/XMLSchema#nonNegativeInteger> ;

owl:onProperty a:min

] [a owl:Restriction ;

171

owl:cardinality "1"^^<http://www.w3.org/2000/10/XMLSchema#nonNegativeInteger> ;

owl:onProperty a:max

] [a owl:Restriction ;

owl:cardinality "1"^^<http://www.w3.org/2000/10/XMLSchema#nonNegativeInteger> ;

owl:onProperty a:sum

])

] .

a:Goal

a owl:Class ;

rdfs:comment "A goal to be pursued by the process" ;

owl:equivalentClass

[a owl:Class ;

owl:intersectionOf ([a owl:Restriction ;

owl:maxCardinality "1"^^<http://www.w3.org/2000/10/XMLSchema#nonNegativeInteger> ;

owl:onProperty a:define

] [a owl:Restriction ;

owl:maxCardinality "1"^^<http://www.w3.org/2000/10/XMLSchema#nonNegativeInteger> ;

owl:onProperty a:forAll

] [a owl:Restriction ;

owl:maxCardinality "1"^^<http://www.w3.org/2000/10/XMLSchema#nonNegativeInteger> ;

owl:onProperty a:message

])

] .

a:forAll

a owl:ObjectProperty ;

rdfs:comment """Points to a list of variable quantifications. The system will

evaluate all possible combinations of each that are consistent

with the ’suchThat’ properties, if any are present.""" ;

rdfs:domain a:Question , a:DefineNode , a:Notification , a:EvaluateNode , a:Goal .

a:intervalSeconds

a owl:DatatypeProperty ;

rdfs:comment "Specifies the number of seconds between repeats" ;

rdfs:domain a:RepeatNode .

a:sum

a owl:ObjectProperty ;

rdfs:comment """Operator in define statement. Points to a resource,

will evaluate all possible quantifications for that resource and

return the sum of all of them""" ;

rdfs:domain a:DefineNode ;

rdfs:range a:EvaluateNode .

a:title

a owl:DatatypeProperty ;

rdfs:comment "Title of the SEP" ;

rdfs:domain a:SemanticEmailProcess .

a:enumeration

a owl:DatatypeProperty ;

rdfs:comment """Restricts the legal answers to this question to be one of the string

identified in this expression, which follows the set syntax.""" ;

rdfs:domain a:StringQuestion .

a:OnAllResponsesReceived

a owl:Class ;

rdfs:comment "Fires once when the expected number of responses have been received" ;

rdfs:subClassOf a:Notification .

a:MustConstraint

a owl:Class ;

rdfs:comment "A constraint to be enforced so that every outcome of the process is guaranteed to satisify this constraint." ;

rdfs:subClassOf a:Constraint .

172

a:untilDateTime

a owl:DatatypeProperty ;

rdfs:comment """Specifies the time after which a reminder will not repeat.

In the same format as a ’dateTime’ property""" ;

rdfs:domain a:RepeatNode .

a:ProbabiliitiesSimple

a owl:Class ;

rdfs:comment "Basic mechanism for expressing probabilities associated with a TradeoffGoal" ;

rdfs:subClassOf a:ProbabilitiesNode .

a:costs

a owl:ObjectProperty ;

rdfs:comment "Points to a list of cost information for a Tradeoff goal." ;

rdfs:domain a:TradeoffGoal .

a:enforce

a owl:DatatypeProperty ;

rdfs:domain a:Constraint .

a:SemanticEmailProcessDefinition

a owl:Class ;

owl:equivalentClass

[a owl:Class ;

owl:intersectionOf ([a owl:Restriction ;

owl:maxCardinality "1"^^<http://www.w3.org/2000/10/XMLSchema#nonNegativeInteger> ;

owl:onProperty a:questions

] [a owl:Restriction ;

owl:cardinality "1"^^<http://www.w3.org/2000/10/XMLSchema#nonNegativeInteger> ;

owl:onProperty a:subject

] [a owl:Restriction ;

owl:cardinality "1"^^<http://www.w3.org/2000/10/XMLSchema#nonNegativeInteger> ;

owl:onProperty a:prompt

] [a owl:Restriction ;

owl:cardinality "1"^^<http://www.w3.org/2000/10/XMLSchema#nonNegativeInteger> ;

owl:onProperty a:participants

] [a owl:Restriction ;

owl:maxCardinality "1"^^<http://www.w3.org/2000/10/XMLSchema#nonNegativeInteger> ;

owl:onProperty a:notifications

] [a owl:Restriction ;

owl:cardinality "1"^^<http://www.w3.org/2000/10/XMLSchema#nonNegativeInteger> ;

owl:onProperty a:originator

] [a owl:Restriction ;

owl:maxCardinality "1"^^<http://www.w3.org/2000/10/XMLSchema#nonNegativeInteger> ;

owl:onProperty a:goals

])

] .

a:ProbabilitiesNode

a owl:Class ;

rdfs:comment """Abstract class for describing the probabilities governing

expected participant behavior in a TradeoffGoal.""" ;

owl:equivalentClass

[a owl:Class ;

owl:intersectionOf ([a owl:Restriction ;

owl:maxCardinality "1"^^<http://www.w3.org/2000/10/XMLSchema#nonNegativeInteger> ;

owl:onProperty a:define

])

] .

a:define

a owl:ObjectProperty ;

rdfs:comment "Points to a list of definitions for later use." ;

rdfs:domain a:ProbabilitiesNode , a:Notification , a:CostsNode , a:EvaluateNode , a:Goal .

a:DefineList

173

a owl:Class ;

rdfs:comment "RDF list of define nodes" .

a:string

a owl:DatatypeProperty ;

rdfs:comment """Defines a literal string to be used as the object

in a variable definition or an output statement.""" ;

rdfs:domain a:DefineNode .

a:OnMessageReceived

a owl:Class ;

rdfs:comment "Fires every time a message is received" ;

rdfs:subClassOf a:Notification .

a:min

a owl:ObjectProperty ;

rdfs:comment """Operator in define statement. Points to a resource,

will evaluate all possible quantifications for that resource and

return the minimum one.""" ;

rdfs:domain a:DefineNode ;

rdfs:range a:EvaluateNode .

a:False

a owl:Thing .

a:product

a owl:ObjectProperty ;

rdfs:comment """Operator in define statement. Points to a resource,

will evaluate all possible quantifications for that resource and

return the product of all of them.""" ;

rdfs:domain a:DefineNode ;

rdfs:range a:EvaluateNode .

a:OnMessageAccepted

a owl:Class ;

rdfs:comment "Fires every time a message is accepted" ;

rdfs:subClassOf a:Notification .

a:ParameterList

a owl:Class ;

rdfs:comment """RDF list of parameter nodes.

These nodes are given in a separate ontology:

http://www.cs.washington.edu/research/semweb/params#""" .

a:Boolean

a owl:Class ;

owl:oneOf (a:True a:False) .

a:prompt

a owl:DatatypeProperty ;

rdfs:domain a:SemanticEmailProcessDefinition .

a:TradeoffGoal

a owl:Class ;

rdfs:comment """A goal to pursue some utility function, subject to given costs

of making suggestions.""" ;

rdfs:subClassOf a:Goal ;

owl:equivalentClass

[a owl:Class ;

owl:intersectionOf ([a owl:Restriction ;

owl:cardinality "1"^^<http://www.w3.org/2000/10/XMLSchema#nonNegativeInteger> ;

owl:onProperty a:probabiliities

] [a owl:Restriction ;

owl:cardinality "1"^^<http://www.w3.org/2000/10/XMLSchema#nonNegativeInteger> ;

owl:onProperty a:costs

] [a owl:Restriction ;

174

owl:cardinality "1"^^<http://www.w3.org/2000/10/XMLSchema#nonNegativeInteger> ;

owl:onProperty a:optimize

])

] .

a:dateTime

a owl:DatatypeProperty ;

rdfs:comment """String representing date and time in ISO 8601 format.

e.g., 2004-07-16T19:20:30+01:00""" ;

rdfs:domain a:OnDateTime .

a:minInclusive

a owl:DatatypeProperty ;

rdfs:comment "Minimum legal value for the response to a question" ;

rdfs:domain a:DoubleQuestion , a:IntegerQuestion .

a:originator

a owl:DatatypeProperty ;

rdfs:domain a:SemanticEmailProcessDefinition .

a:condition

a owl:DatatypeProperty ;

rdfs:comment "Specifies a condition on which a notification depends" ;

rdfs:domain a:OnConditionSatisfiedAnyTime , a:OnConditionSatisfiedFirstTime , a:OnConditionSatisfied .

a:participants

a owl:DatatypeProperty ;

rdfs:domain a:SemanticEmailProcessDefinition .

a:BooleanQuestion

a owl:Class ;

rdfs:comment "Question to ask the participants, of type boolean" ;

rdfs:subClassOf a:Question .

a:repeat

a owl:ObjectProperty ;

rdfs:comment """Points to a resource describing how often a OnDateTime notification

should repeat""" ;

rdfs:domain a:OnDateTime ;

rdfs:range a:RepeatNode .

a:Constraint

a owl:Class ;

rdfs:comment "A constraint type of goal" ;

rdfs:subClassOf a:Goal ;

owl:equivalentClass

[a owl:Class ;

owl:intersectionOf ()

] .

a:OnMessageRejected

a owl:Class ;

rdfs:comment "Fires every time a message is rejected" ;

rdfs:subClassOf a:Notification .

a:query

a owl:DatatypeProperty ;

rdfs:comment """A RDQL query specifying the semantic interpretation of the results

of this question.""" ;

rdfs:domain a:Question .

a:IntegerQuestion

a owl:Class ;

rdfs:comment "Question to ask the participants, of type integer" ;

rdfs:subClassOf a:Question ;

owl:equivalentClass

175

[a owl:Class ;

owl:intersectionOf ([a owl:Restriction ;

owl:maxCardinality "1"^^<http://www.w3.org/2000/10/XMLSchema#nonNegativeInteger> ;

owl:onProperty a:maxInclusive

] [a owl:Restriction ;

owl:maxCardinality "1"^^<http://www.w3.org/2000/10/XMLSchema#nonNegativeInteger> ;

owl:onProperty a:minInclusive

])

] .

a:name

a owl:DatatypeProperty ;

rdfs:comment "Variable name for a question or a define node" ;

rdfs:domain a:Question , a:DefineNode .

a:probFreeChoice

a owl:DatatypeProperty ;

rdfs:comment """Points to expression representing probability of participant

initially responding with some choice that is not bound by the goal

(e.g., Not Coming)""" ;

rdfs:domain a:ProbabiliitiesSimple .

a:SemanticEmailProcess

a owl:Class ;

owl:equivalentClass

[a owl:Class ;

owl:intersectionOf ([a owl:Restriction ;

owl:cardinality "1"^^<http://www.w3.org/2000/10/XMLSchema#nonNegativeInteger> ;

owl:onProperty a:definition

])

] .

a:suchThat

a owl:DatatypeProperty ;

rdfs:comment """Like a guard statement, the subject resource is evalauted only if all ’suchThat’

properties evaluate to non-zero. However, this kind of property is evaluated after

new variables are defined for the current resource.""" ;

rdfs:domain a:Question , a:DefineNode , a:Notification , a:EvaluateNode , a:Goal .

a:probSwitchRefuse

a owl:DatatypeProperty ;

rdfs:comment """Expression representing probability that participant will

refuse to switch their response when asked.""" ;

rdfs:domain a:ProbabiliitiesSimple .

a:OnConditionSatisfied

a owl:Class ;

rdfs:comment """Fires when the given condition (usually based on a query of the current state)

is satisfied, but was *not* true in the previous state.""" ;

rdfs:subClassOf a:Notification ;

owl:equivalentClass

[a owl:Class ;

owl:intersectionOf ([a owl:Restriction ;

owl:cardinality "1"^^<http://www.w3.org/2000/10/XMLSchema#nonNegativeInteger> ;

owl:onProperty a:condition

])

] .

a:OnDateTime

a owl:Class ;

rdfs:comment "Fires once when the current time equals the specifed time." ;

rdfs:subClassOf a:Notification ;

owl:equivalentClass

[a owl:Class ;

owl:intersectionOf ([a owl:Restriction ;

owl:cardinality "1"^^<http://www.w3.org/2000/10/XMLSchema#nonNegativeInteger> ;

176

owl:onProperty a:dateTime

] [a owl:Restriction ;

owl:maxCardinality "1"^^<http://www.w3.org/2000/10/XMLSchema#nonNegativeInteger> ;

owl:onProperty a:repeat

])

] .

a:Responders

a owl:Thing .

a:PossiblyConstraint

a owl:Class ;

rdfs:comment """Constraint enforced as follows: if after accepting a message it is still possible for

the constraints to be satisfied after all messages have been received, then it is acceptable

with respect to this constraint.""" ;

rdfs:subClassOf a:Constraint .

a:costSwitchRequest

a owl:DatatypeProperty ;

rdfs:comment """Points to literal expression representing the cost of asking a

participant to switch their response to something else.""" ;

rdfs:domain a:CostsSimple .

a:maxInclusive

a owl:DatatypeProperty ;

rdfs:comment "Maximum legal value for the response to a question" ;

rdfs:domain a:DoubleQuestion , a:IntegerQuestion .

a:probSwitchFree

a owl:DatatypeProperty ;

rdfs:comment """Expression representing probability that, when asked

to switch, participant switches to a free choice

(e.g., Not Coming)""" ;

rdfs:domain a:ProbabiliitiesSimple .

a:True

a owl:Thing .

a:EvaluateNode

a owl:Class ;

rdfs:comment """A resource that should specifies some value with

an ’evaluate’ property, possibly assisted by quantifications

and variable definitions.""" ;

owl:equivalentClass

[a owl:Class ;

owl:intersectionOf ([a owl:Restriction ;

owl:maxCardinality "1"^^<http://www.w3.org/2000/10/XMLSchema#nonNegativeInteger> ;

owl:onProperty a:forAll

] [a owl:Restriction ;

owl:cardinality "1"^^<http://www.w3.org/2000/10/XMLSchema#nonNegativeInteger> ;

owl:onProperty a:evaluate

] [a owl:Restriction ;

owl:maxCardinality "1"^^<http://www.w3.org/2000/10/XMLSchema#nonNegativeInteger> ;

owl:onProperty a:define

])

] .

a:definition

a owl:ObjectProperty ;

rdfs:domain a:SemanticEmailProcess ;

rdfs:range a:SemanticEmailProcessDefinition .

a:probBoundChoice

a owl:DatatypeProperty ;

rdfs:comment """Points to expression representing probability of a participant

initially responding with a choice that is constrained by the goal.

177

If both are specified, this value must be (1 - probFreeChoice)""" ;

rdfs:domain a:ProbabiliitiesSimple .

a:evaluate

a owl:DatatypeProperty ;

rdfs:comment """Points to an expression to be evaluated and then

used as the value of this property’s subject.""" ;

rdfs:domain a:EvaluateNode .

<http://www.cs.washington.edu/research/semweb/semantic_email>

a owl:Ontology .

a:max

a owl:ObjectProperty ;

rdfs:comment """Operator in define statement. Points to a resource,

will evaluate all possible quantifications for that resource and

return the maximum one.""" ;

rdfs:domain a:DefineNode ;

rdfs:range a:EvaluateNode .

a:Question

a owl:Class ;

rdfs:comment "An abstract question to ask the participants" ;

owl:equivalentClass

[a owl:Class ;

owl:intersectionOf ([a owl:Restriction ;

owl:maxCardinality "1"^^<http://www.w3.org/2000/10/XMLSchema#nonNegativeInteger> ;

owl:onProperty a:forAll

] [a owl:Restriction ;

owl:maxCardinality "1"^^<http://www.w3.org/2000/10/XMLSchema#nonNegativeInteger> ;

owl:onProperty a:query

] [a owl:Restriction ;

owl:cardinality "1"^^<http://www.w3.org/2000/10/XMLSchema#nonNegativeInteger> ;

owl:onProperty a:name

])

] .

a:AllParticipants

a owl:Thing .

a:StringQuestion

a owl:Class ;

rdfs:comment "Question to ask the participants, of type string" ;

rdfs:subClassOf a:Question ;

owl:equivalentClass

[a owl:Class ;

owl:intersectionOf ([a owl:Restriction ;

owl:maxCardinality "1"^^<http://www.w3.org/2000/10/XMLSchema#nonNegativeInteger> ;

owl:onProperty a:freeChoices

] [a owl:Restriction ;

owl:maxCardinality "1"^^<http://www.w3.org/2000/10/XMLSchema#nonNegativeInteger> ;

owl:onProperty a:freeChoices

])

] .

a:CostsSimple

a owl:Class ;

rdfs:comment "Basic mechanism for expressing costs for a TradeoffGoal" ;

rdfs:subClassOf a:CostsNode ;

owl:equivalentClass

[a owl:Class ;

owl:intersectionOf ([a owl:Restriction ;

owl:cardinality "1"^^<http://www.w3.org/2000/10/XMLSchema#nonNegativeInteger> ;

owl:onProperty a:costSwitchRequest

])

] .

178

a:message

a owl:DatatypeProperty ;

rdfs:comment """A string message to send to a participant in case this goal

causes their message to be rejected/suggested against.""" ;

rdfs:domain a:Notification , a:Goal .

a:OnConditionSatisfiedAnyTime

a owl:Class ;

rdfs:comment """Fires when the given condition is satisfied, after any change in the state

of the process.""" ;

rdfs:subClassOf a:Notification ;

owl:equivalentClass

[a owl:Class ;

owl:intersectionOf ([a owl:Restriction ;

owl:cardinality "1"^^<http://www.w3.org/2000/10/XMLSchema#nonNegativeInteger> ;

owl:onProperty a:condition

])

] .

a:summary

a owl:DatatypeProperty ;

rdfs:comment "Overall summary of the SEP" ;

rdfs:domain a:SemanticEmailProcess .

a:notify

a owl:DatatypeProperty ;

rdfs:comment "Specifies how to send a notification to when it is triggered." ;

rdfs:domain a:Notification .

a:includeForm

a owl:ObjectProperty ;

rdfs:comment """If true, specifies that the notification should include a form

for creating responses in the notification. Useful for

reminder-like messages.""" ;

rdfs:domain a:Notification ;

rdfs:range a:Boolean .

a:questions

a owl:ObjectProperty ;

rdfs:comment "List of questions to ask the participants" ;

rdfs:domain a:SemanticEmailProcessDefinition .

a:goals

a owl:ObjectProperty ;

rdfs:comment "Points to a list of goals to pursue" ;

rdfs:domain a:SemanticEmailProcessDefinition .

a:optimize

a owl:DatatypeProperty ;

rdfs:comment "Points to an expression representing the utility function for a TradeOff goal." ;

rdfs:domain a:TradeoffGoal .

a:freeChoices

a owl:DatatypeProperty ;

rdfs:comment """Specifies that the elements in this expression (a set) are choices

that must always be accepted (e.g., ’Not Coming’). This is

used in conjunction with ’enumeration’""" ;

rdfs:domain a:StringQuestion .

a:Originator

a owl:Thing .

a:Notification

a owl:Class ;

rdfs:comment "A notification to be triggered when some condition is satisfied." ;

179

owl:equivalentClass

[a owl:Class ;

owl:intersectionOf ([a owl:Restriction ;

owl:cardinality "1"^^<http://www.w3.org/2000/10/XMLSchema#nonNegativeInteger> ;

owl:onProperty a:notify

] [a owl:Restriction ;

owl:maxCardinality "1"^^<http://www.w3.org/2000/10/XMLSchema#nonNegativeInteger> ;

owl:onProperty a:forAll

] [a owl:Restriction ;

owl:cardinality "1"^^<http://www.w3.org/2000/10/XMLSchema#nonNegativeInteger> ;

owl:onProperty a:message

] [a owl:Restriction ;

owl:cardinality "1"^^<http://www.w3.org/2000/10/XMLSchema#nonNegativeInteger> ;

owl:onProperty a:define

])

] .

a:RepeatNode

a owl:Class ;

rdfs:comment "Gives info about how often and until when a reminder should repeat." ;

owl:equivalentClass

[a owl:Class ;

owl:intersectionOf ([a owl:Restriction ;

owl:cardinality "1"^^<http://www.w3.org/2000/10/XMLSchema#nonNegativeInteger> ;

owl:onProperty a:untilDateTime

] [a owl:Restriction ;

owl:cardinality "1"^^<http://www.w3.org/2000/10/XMLSchema#nonNegativeInteger> ;

owl:onProperty a:intervalSeconds

])

] .

a:NotificationTarget

a owl:Class ;

rdfs:comment "A possible target for a notification" , "The possible target of a notification" ;

owl:oneOf (a:AllParticipants a:Originator a:NonResponders a:Responders) .

a:probabiliities

a owl:ObjectProperty ;

rdfs:comment """Points to a list of probability information for a TradeoffGoal.

These encode expected participant behavior.""" ;

rdfs:domain a:TradeoffGoal .

a:CostsNode

a owl:Class ;

rdfs:comment """Abstract class for describing costs associated with

the actions of a TradeoffGoal.""" ;

owl:equivalentClass

[a owl:Class ;

owl:intersectionOf ([a owl:Restriction ;

owl:maxCardinality "1"^^<http://www.w3.org/2000/10/XMLSchema#nonNegativeInteger> ;

owl:onProperty a:define

])

] .

a:DoubleQuestion

a owl:Class ;

rdfs:comment "Question to ask the participants, of type double" ;

rdfs:subClassOf a:Question ;

owl:equivalentClass

[a owl:Class ;

owl:intersectionOf ([a owl:Restriction ;

owl:maxCardinality "1"^^<http://www.w3.org/2000/10/XMLSchema#nonNegativeInteger> ;

owl:onProperty a:maxInclusive

] [a owl:Restriction ;

owl:maxCardinality "1"^^<http://www.w3.org/2000/10/XMLSchema#nonNegativeInteger> ;

owl:onProperty a:minInclusive

180

])

] .

a:subject

a owl:DatatypeProperty ;

rdfs:domain a:SemanticEmailProcessDefinition .

a:NonResponders

a owl:Thing .

B.3 Ontology for Describing SEP Parameter Descriptions

A SEP parameter description (of type ParameterList in the ontology below) consists of a

RDF list of ParameterNodes. ParameterNodes are either a Description node (providing

some explanatory text), or are a subclass of InteractiveParameterNode. The latter specify

a parameter whose value should be collected from the originator; each must specify a name

for that parameter and optionally a prompt and a default value.

In our implementation, a SEP template identifies its associated parameter description

via a parameter property that points to a ParameterList. Thus, the form generator can

process a single URL that contains both the template and the parameter description.

The form generator creates a form by processing the ParameterList one at a time,

generating HTML that places each ParameterNode in sequence. The author can place some

control over this layout with horizSubelementGroup and vertSubelementGroup properties;

these specify another ParameterList of elements that should be grouped together. If these

properties are placed inside a ChoiceNode element (e.g., if a choice is offered between “strict”

and “flexible” constraint enforcement), then any subelements are required to be filled in only

if that particular choice is selected by the originator. The complete ontology is given below.

@prefix a: <http://www.cs.washington.edu/research/semweb/params#> .

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

@prefix b: <http://www.cs.washington.edu/research/semweb/semantic_email#> .

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

@prefix : <#> .

@prefix owl: <http://www.w3.org/2002/07/owl#> .

a:showallChoices

a owl:ObjectProperty ;

rdfs:comment """Applies where there is an enumeration property. If true,

the form will show all choices at the same time, otherwise

a drop-down may be used.""" ;

rdfs:domain a:InteractiveParameterNode ;

181

rdfs:range b:Boolean .

a:ChoiceList

a owl:Class ;

rdfs:comment "RDF list of enumerated choices for a parameter value." .

a:enumeration

a owl:ObjectProperty ;

rdfs:comment "Points to a RDF list specifying choices for this parameter." ;

rdfs:domain a:InteractiveParameterNode ;

rdfs:range a:ChoiceList .

a:name

a owl:DatatypeProperty ;

rdfs:comment "Variable name for this property" ;

rdfs:domain a:InteractiveParameterNode .

a:TypeInteger

a owl:Class ;

rdfs:subClassOf a:InteractiveParameterNode .

a:TypeEmail

a owl:Class ;

rdfs:subClassOf a:InteractiveParameterNode .

a:content

a owl:DatatypeProperty ;

rdfs:comment "The text to display" ;

rdfs:domain a:Description .

b:ParameterList

a owl:Class .

a:TypeDouble

a owl:Class ;

rdfs:subClassOf a:InteractiveParameterNode .

a:ParameterNode

a owl:Class .

a:minInclusive

a owl:DatatypeProperty ;

rdfs:comment "Restriction on the legal values of an entered value." ;

rdfs:domain a:TypeDouble , a:TypeInteger .

b:Boolean

a owl:Class .

a:ChoiceNode

a owl:Class ;

rdfs:comment "A possible enumerated choice for a parameter." .

a:TypeString

a owl:Class ;

rdfs:subClassOf a:InteractiveParameterNode .

a:prompt

a owl:DatatypeProperty ;

rdfs:domain a:ChoiceNode , a:InteractiveParameterNode .

a:value

a owl:DatatypeProperty ;

rdfs:comment "The value of an enumerated choice" ;

rdfs:domain a:ChoiceNode .

a:InteractiveParameterNode

182

a owl:Class ;

rdfs:comment "A node that the originator could enter a value for." ;

rdfs:subClassOf a:ParameterNode .

a:TypeEmailSet

a owl:Class ;

rdfs:comment "Gets a comma-separated set of email addresses." ;

rdfs:subClassOf a:InteractiveParameterNode .

a:default

a owl:DatatypeProperty ;

rdfs:comment "The default value for a parameter" ;

rdfs:domain a:ChoiceNode , a:InteractiveParameterNode .

a:TypeStringSet

a owl:Class ;

rdfs:subClassOf a:InteractiveParameterNode .

a:optional

a owl:ObjectProperty ;

rdfs:comment """Explicit specification of whether a value is required for

this parameter.""" ;

rdfs:domain a:InteractiveParameterNode ;

rdfs:range b:Boolean .

a:TypeBoolean

a owl:Class ;

rdfs:subClassOf a:InteractiveParameterNode .

a:vertSubelementGroup

a owl:ObjectProperty ;

rdfs:comment """Points to a RDF list of parameter node that should be

grouped together vertically.""" ;

rdfs:domain a:ParameterNode , a:ChoiceNode ;

rdfs:range b:ParameterList .

a:maxInclusive

a owl:DatatypeProperty ;

rdfs:comment "Restriction on the legal values of an entered value." ;

rdfs:domain a:TypeDouble , a:TypeInteger .

a:horizSubelementGroup

a owl:ObjectProperty ;

rdfs:comment """Points to a RDF list of parameter node that should be

grouped together horizontally.""" ;

rdfs:domain a:ParameterNode , a:ChoiceNode , a:InteractiveParameterNode ;

rdfs:range b:ParameterList .

a:Description

a owl:Class ;

rdfs:comment "A static text field" ;

rdfs:subClassOf a:ParameterNode .

a:subsetOf

a owl:DatatypeProperty ;

rdfs:comment """Restriction on the legal values of an entered value.

Here, the value entered must be a set that is a subset of the

object of this statement.""" ;

rdfs:domain a:TypeStringSet , a:TypeEmailSet .

<http://www.cs.washington.edu/research/semweb/params>

a owl:Ontology .

183

Appendix C

PROOFS

This appendix provides more details on the proofs for each of this dissertation’s theorems,

presented in the order they appear in the body. Throughout, we assume that a SEP has

N participants. For the logical model, we assume that an L-SEP Λ has a current state D,

constraints CD, and that CD refers to at most some constant H number of attributes. For

the decision-theoretic model, we assume that each participant in a D-SEP δ will eventually

send an original response, then only sends further messages if they receive a suggestion

(which they will also eventually respond to). For convenience, we define the following

notation: OptPolicy(δ) is the problem of determining the optimal policy π? for a given

D-SEP δ. OptUtility(δ,θ) is the problem of determining if the expected total utility of

π? for a given D-SEP δ exceeds some constant θ.

C.1 Proof of Theorem 4.3.1

We first show that ultimate satisfiability is NP-complete in the general case. Then the next

section shows how this problem can be solved in polynomial time when the constraints are

either domain-bounded or constant-bounded.

NP-complete for arbitrary constraints: First, observe that ultimate satisfiability is in

NP – given an L-SEP Λ and a response r, we can guess a possible outcome of D that is

consistent with r, then verify that the outcome satisfies the constraints.

Second, we show that ultimate satisfiability is NP-hard via a reduction from 3-SAT.

Assume we are given a boolean formula φ of the form φ = L1 ∧ L2 ∧ ... ∧ Lm where

Li = (wi1 ∨ wi2 ∨ wi3) for 1 ≤ i ≤ m, and each wij equals some variable xk or xk for

1 ≤ k ≤ n. The 3-SAT problem is to determine if φ is satisfiable for some assignment to

the variables of w.

184

Given φ, we construct an L-SEP Λ where:

• Participants P = {p0, p1, p2, ..., pn}

• Data set D is a single table with one attribute value

• Responses R = {nil, r1, r2, ...rn}

• Constraints CD = φ, with vij substituted for each wij where

if wij = xk, then we set vij = [(SELECT COUNT(*) WHERE value = rk) > 0]

otherwise wij = xk, and vij = [(SELECT COUNT(*) WHERE value = rk) = 0]

This construction is polynomial in the size of φ. In the resulting Λ, there are n + 1 partici-

pants that may each respond with one of n + 1 values.

Given this constructed Λ, we now show that the 3-SAT formula φ is satisfiable iff an

initially empty D for Λ is ultimately satisfiable w.r.t. CD given response nil. First, given

an assignment x1, ..., xn that satisfies φ, a final state of D that satisfies CD is as follows:

p0 responds nil, pk responds rk if xk is true, otherwise pk responds nil. This will set

the corresponding xk’s in CD to true, and since φ is satisfied, CD will be satisfied in the

resultant state, demonstrating that D is ultimately satisfiable given an initial response nil.

Alternatively, if D is ultimately satisfiable given initial response nil, we can take a final state

of D that satisfies CD and construct an assignment x1, ..., xk that satisfies φ as follows: if

any participant has responded with value rk, then xk is true; otherwise, xk is false. Thus,

any 3-SAT problem with N variables can be solved by reduction to ultimate satisfiability

with N + 1 participants. Since 3-SAT is NP-complete in N , ultimate-satisfiability must be

NP-hard in N .

C.2 Proof of Theorem 4.3.2

Polynomial-time when constraints are domain-bounded: In this case, the constraints

refer to attributes whose domain size is at most some constant L. Since there are most H

attributes, there are thus a total of LH possible responses.

We evaluate the constraints over D′, a data set that distinguishes only representative

185

states that are different with respect to the constraints. In particular, all that matters for

D′ is the number of each type of response that has been received (i.e., aggregates of the

responses). The number of possible states of D ′ is thus the number of ways of dividing N

participants among LH + 1 possible responses (LH choices plus a “no response” option):

|D′| =

(

N + LH

LH

)

= O(NLH)

To determine ultimate satisfiability of D given r, we construct a data set Dr that is D

augmented with the given response r. We then iterate over all possible values d of D ′. For

each value, if d is inconsistent with Dr (i.e., for some response type Ri, Dr shows more such

responses than d does), we discard d. Otherwise, we evaluate CD over d – this requires time

linear in N and |CD| given a particular d. Given this procedure, D is ultimately satisfiable

for r iff some d is consistent with Dr and satisfies CD. Each step requires linear time, and

there are a polynomial number of iterations (O(N LH)), so the total time is polynomial in

N and |CD|.

Polynomial-time when constraints are constant-bounded: This case uses a similar

algorithm as when the constraints are domain-bounded. However, since each attribute may

have a potentially infinite domain, we must keep track of the possible states differently. Here,

we allow only COUNT aggregations, which may be of the form: COUNT(*) WHERE value

= vi or an inequality like COUNT(*) WHERE value > vi.

If CD is constant-bounded, then there are most K constants v1, ..., vk used in these

aggregations. These constants divide the domain of each attribute into at most K + 1

regions. Thus, there are K + 1 possibilities for each of the H attributes of a response,

yielding a total of O(KH) possible responses. As with the analysis above, the number of

possible states in the representative data set D ′ is thus O(NKH), and the time to evaluate

each state is linear. Since H and K are assumed to be constants, then the total time to

check ultimate satisfiability is polynomial in both N and |CD|.

186

C.3 Proof of Theorem 4.4.1 – bounded suggestions

For this first case, we assume that the manager can send at most some constant L mes-

sages to each participant. Below we prove that in this case OptUtility(δ,θ) is PSPACE-

complete, then use this result to prove that OptPolicy(δ) is PSPACE-hard.

OptUtility(δ,θ) is PSPACE-complete: First, we show that OptUtility(δ,θ) is in

PSPACE. Given δ, consider the tree representing all possible executions, where the root of

the tree is the initial state and each leaf represents a possible halted state. From any state

in the tree, the next state may result either from the manager making a suggestion or from

receiving a response from some participant. Hence, the branching factor of the tree is O(N).

In addition, since the manager may make at most LN suggestions and each participant may

send up to L + 1 responses, the tree is acyclic and has total height O(LN). Consequently,

we can determine the expected utility of the optimal policy via a suitable depth-first search

of the tree. Since the utility of a child node can be discarded once the expected utility of

its parent is known, the total space needed is just O(LN). Thus, OptUtility(δ,θ) is in

PSPACE.

Second, we show that OptUtility(δ,θ) is PSPACE-hard by a reduction from QBF

(quantified boolean formula). A QBF problem specifies a formula ϕ of the form:

ϕ = ∃x1∀y1...∃xk∀yk φ

where φ is a 3-CNF boolean formula over the xi’s and yi’s. The computational problem is

to determine if ϕ is true.

Given ϕ, we construct a corresponding D-SEP δ as follows:

• Participants: P = {A1, ..., Ak, B1, ..., Bk}, for a total of N = 2k participants.

• States: A state s = (a1, ..., ak, b1, ..., bk) where the ai’s and bi’s indicate each par-

ticipant’s current response (True, False, or NoneY et). The ai’s and bi’s correspond

directly to the xi’s and yi’s in the formula φ. Thus, we say “φ is satisfied in s” if no ai

or bi has the value NoneY et and evaluating φ by substituting corresponding values for

the xi’s and yi’s yields true.

187

• Values: V = {True, False}.

• Actions: A = {NoOp,Halt, SWp,true, SWp,false}, where p ∈ P .

• Transitions: We construct T () so that the following steps will occur in order:

1. Choice: In the initial state the manager may either perform NoOp (to wait for

responses) or Halt (if it has no winning strategy).

2. A-Turn: A1 sends a False response. The manager may choose either to execute

NoOp (thus accepting a1 = False) or to suggest a change to A1, in which case A1

immediately agrees (so a1 = True).

3. B-Turn: The manager performs NoOp, and receives an random original response

(either True or False) from B1. B1 refuses any suggestions.

4. Repeat: Repeat A-Turn and B-Turn for (A2, B2) ... (Ak, Bk), then Halt.

• Utilities: the only non-zero utilities are as follows:

U(s0,Halt) = 1 (quitting from the initial state)

U(s,Halt) = 1 + ε if s 6= s0 and φ(s) = True

where ε represents an infinitesimally small, positive value. Note that this use of ε does

not introduce any serious computational difficulties. The expected utility of each state

may be maintained in the form (c+dε) – addition, multiplication, and comparison (over

a total order) are easily defined for such values. In addition, since ε appears only in the

utility function, higher-order values such as ε2 do not arise.

The size of this D-SEP is polynomial in N and the whole reduction can be done in poly-

nomial time. In particular, while an explicit representation of the transition and utility

functions for every possible state would be exponential in N , the rules above allow all of

the necessary functionality to be encoded concisely in terms of the current responses. For

instance, the utility function representing one possibility for a B-turn (where bi changes

from NoneY et to True) is:

188

T (s ,NoOp, s′) = 0.5 where

s = {a1, ..., ai,Nonei+1, ...,Nonek, b1, ..., bi−1,Nonei,Nonei+1...,Nonek}

s′ = {a1, ..., ai,Nonei+1, ...,Nonek, b1, ..., bi−1,True,Nonei+1, ...,Nonek}

Note also that in several steps above we made statements like “The manager performs action

NoOp,” when really at each step the manager has a choice to make. However, since we can

construct the transition function in any desired fashion, we can “force” the manager into

any needed behavior by setting the transition probability for executing any other action to

zero. The same control over the probabilities permits us to ensure that participants behave

in certain ways and that messages arrive in a certain order.

We now demonstrate an additional result needed to complete the proof:

Definition C.3.1 (guaranteed satisfying policy) Given a D-SEP δ constructed from

ϕ as above, a guaranteed satisfying policy is a policy that, if followed by the manager,

guarantees that the SEP will terminate in a state that satisfies φ. 2

Claim: A guaranteed satisfying policy for δ exists iff the expected utility of the optimal

policy π? for δ is greater than 1 (e.g., OptUtility(δ,θ = 1) is true).

Proof: Clearly, the expected utility of a guaranteed satisfying policy for δ is 1 + ε, so any

optimal policy must have utility at least this large, which is greater than 1. In the other

direction, by examining the utility function we see that the only way for π? to obtain a

utility greater than 1 is for the SEP to halt with φ satisfied, yielding reward 1 + ε. If this

outcome occurs with any probability Pφ < 1 for π?, then the total expected utility will be

less than 1. Thus, if the expected utility of π? is greater than 1, some guaranteed satisfying

policy must exist. 2

Finally, we show that the QBF formula ϕ is true iff a guaranteed satisfying policy for

δ exists. In the D-SEP, the manager can choose whether to set each ai true or false by

making a suggestion or not when Ai sends its response. This corresponds to the “exists”

quantifications in ϕ – when trying to prove the formula true, we can choose any desired

189

value for xi. On the other hand, the manager cannot influence the values of bi – these

are chosen at random. Thus, the manager will have a guaranteed satisfying policy iff it’s

policy can handle all possible choices of the bi’s. This corresponds exactly to the “for

all” quantifications of the yi’s. Note that we don’t depend on the precise values of the

probabilities – all that matters is that both true and false can occur for each bi with some

positive probability. Thus, a guaranteed satisfying policy for δ exists iff the QBF formula

is true. Since the latter problem is PSPACE-complete, then the problem of determining

if δ has a guaranteed satisfying policy is PSPACE-hard, and hence (by the above claim)

OptUtility(δ,θ) for a bounded number of suggestions must also be PSPACE-hard.

OptPolicy(δ) is PSPACE-hard: We show that OptPolicy(δ) is PSPACE-hard by

reducing from OptUtility(δ,θ). Given a D-SEP δ, we construct δ’ to be the same as

δ except that it has a new initial state s′0. From s′0, the manager may choose Halt in

order to end the process and gain utility θ + ε, or may choose NoOp, in which case the

process transitions to the original initial state s0. This construction is easy to do and runs

in polynomial time. The original D-SEP δ has an expected utility for π? that exceeds θ iff

the optimal policy for δ’ specifies that the manager should perform the initial action NoOp.

This follows since if the expected utility of δ is θ or less, the optimal decision is to Halt

immediately, taking the utility θ + ε. Thus, since OptUtility(δ,θ) is PSPACE-complete

for a bounded number of suggestions, the corresponding problem of OptPolicy(δ) must

be PSPACE-hard.

C.4 Proof of Theorem 4.4.1 – unlimited suggestions

For this second case, we assume that the manager may make an unlimited number of sugges-

tions to any participant. Below we prove that in this case OptUtility(δ,θ) is EXPTIME-

complete, then use this result to prove that OptPolicy(δ) is EXPTIME-hard.

OptUtility(δ,θ) is EXPTIME-complete : First, we show that OptUtility(δ,θ) is in

EXPTIME. Given a D-SEP δ, we can convert δ into a Markov Decision Process (MDP)

with O(N) possible actions and one state for each state in δ. The MDP can be then solved

with techniques such as linear programming that run in time polynomial in the number of

190

states [113]. For δ, the number of states is exponential in N , so the total time is exponential.

Then the expected utility of π? for δ exceeds θ iff the optimal value of the initial state of

the MDP exceeds θ.

Second, we show that OptUtility(δ,θ) is EXPTIME-hard by a reduction from the

game G4 [168]. This game operates as follows (description from [112]): The “board” is a

13-DNF (disjunctive normal form) formula ϕ with a set of assignments to its 2k boolean

variables. One set of variables x1, ..., xk belong to player 1 and the rest y1, ..., yk to player 2.

Players take turns flipping the assignment of one of their variables. The game is over when

the 13-DNF formula evaluates to true with the winner being the player whose move caused

this to happen. The computational problem is to determine whether there is a winning

strategy for player 1 for a given formula from a given initial assignment of the variables.

Without loss of generality, below we assume that the original formula has been transformed

so that the corresponding initial assignment sets all variables to false.

Given an instance of the game G4 over some 13-DNF formula ϕ, we construct a corre-

sponding D-SEP δ as follows:

• Participants: P = {A1, ..., Ak, B1, ..., Bk}, for a total of N = 2k participants.

• States: A state s = (a1, ..., ak, b1, ..., bk, Pend,Last) where the ai’s and bi’s indicate

each participant’s current response (True, False, or NoneY et), Pend is the set of par-

ticipants that the manager has made a suggestion to that has not been responded to

yet, and Last indicates whether the last message that changed a value was from some

A or some B. The ai’s and bi’s correspond directly to the xi’s and yi’s in the formula ϕ.

Thus, we say “ϕ is satisfied in s” if no ai or bi has the value NoneY et and evaluating

ϕ by substituting corresponding values for the xi’s and yi’s yields true.

• Values: V = {True, False}.

• Actions: A = {NoOp,Halt, SWp,true, SWp,false} where p ∈ P .

• Transitions: We construct T () so that the following steps will occur in order:

191

1. Choice: In the initial state the manager may either perform NoOp (to wait for

responses) or Halt (if it has no winning strategy).

2. Startup: Every participant sends in a response False. The manager then suggests

a change to every Bi, who do not immediately respond.

3. A-Turn: The manager chooses some Ai to suggest a change to. Ai immediately

agrees, flipping the current value of ai. If ϕ is now satisfied, Halt.

4. B-Turn: The manager performs NoOp, and receives a response to a previous sug-

gestion from some random Bi, flipping the value of bi. The manager immediately

sends another suggestion back to the same Bi, who does not yet respond. If ϕ is

now satisfied, Halt. Otherwise, go back to A-Turn.

• Utilities: the only non-zero utilities are as follows:

U(s0,Halt) = 1 (quitting from the initial state)

U(s,Halt) = 1 + ε if s 6= s0, s.Last = A, and ϕ(s) = True

The size of this D-SEP is polynomial in N and the whole reduction can be done in polyno-

mial time. As with the bounded suggestions case, the explicit transition and utility functions

are exponential in N , but the rules above allow all of the necessary cases to be represented

concisely in terms of the current responses, Pend, and Last. Likewise, we can “force” the

needed manager and participant behavior by appropriate setting of the transition function.

We now demonstrate an additional result needed to complete the proof:

Definition C.4.1 (guaranteed A-Win policy) Given a D-SEP δ constructed from ϕ as

above, a guaranteed A-Win policy is a policy that, if followed by the manager, guarantees

that the SEP will terminate in a state that satisfies ϕ and where the last step was an

“A-Turn.” 2

Claim: A guaranteed A-Win policy for δ exists iff the expected utility of the optimal policy

π? for δ is greater than 1 (e.g., OptUtility(δ,θ = 1) is true).

192

Proof: Analogous to the claim previously given for a guaranteed satisfying policy in the

bounded suggestions case.2

Finally, we show that a winning strategy exists for player 1 in G4 iff a guaranteed A-Win

policy exist for δ. We consider the possible actions for the SEP manager, who represents

player 1. In the initial “Choice” step, if the manager does not have a guaranteed A-Win

policy, it is best to Halt immediately and settle for a utility of 1. If the manager decides to

play, then it also has a choice in Step 3 of which Ai to suggest a change to – this corresponds

to choosing which xi for Player 1 to flip. Step 4 corresponds to Player 2’s flip of some yi,

and the manager has no choice to make. Thus, given a winning strategy for Player 1 in

G4, it is easy to construct a guaranteed A-Win policy for δ (mapping xi flips to Ai change

suggestions), and vice versa. Since the problem of determining if Player 1 has such a winning

strategy for G4 is EXPTIME-hard, the problem of determining if δ has a guaranteed A-Win

policy is EXPTIME-hard, and hence (by the above claim) the problem of OptUtility(δ,θ)

must also be EXPTIME-hard.

OptPolicy(δ)is EXPTIME-hard: This proof follows exactly the same form as the

proof of OptPolicy(δ) for the bounded suggestions case. Since OptUtility(δ,θ) is

EXPTIME-complete for an unlimited number of suggestions, the corresponding problem

of OptPolicy(δ) must be EXPTIME-hard.

C.5 Proof of Theorem 4.4.2

Here we show how to compute the optimal policy π? in time polynomial in N , assuming

a K-partitionable utility function and that the manager sends at most one suggestion to

any participant. Although the formalisms are very different, the key observation underlying

this proof is similar to that of Theorem 4.3.2. Here we also create a state space that only

models the number of participants in each group, rather than their specific members.

We define a summary state function S = {C̄, D̄, Ē} where

• C̄ = (C1, ..., CK) where Ci is the number of responses Vi that were received that do not

have a suggestion pending.

193

• D̄ = (D1, ...,DK) where Di is the number of responses Vi that were received that do

have a suggestion pending.

• Ē = (E1, ..., EK) where Ei is the number of responses Vi that were received as a response

to a suggestion.

In what follows, the notation C̄ − v indicates “subtract one from the variable in C̄ specified

by value v.” Given S, we can define the following transitions (omitting details for states

where everyone has already responded):

T ({C̄, D̄, Ē}, SW v, {C̄−v,D̄+v,Ē }) = 1

T ({C̄, D̄, Ē},NoOp,{C̄+v,D̄, Ē }) = ρo(C̄, D̄, Ē)·ρv

T ({C̄, D̄, Ē},NoOp,{C̄, D̄−v,Ē+w}) = ρsv(C̄, D̄, Ē)·ρvw

The first equation represents the manager requesting that some respondent switch their

response from the value v; the state is updated to note that a suggestion has been made

(with probability 1). The next two equations handle the uncertainty when the manager

decides to wait for the next message to arrive. Specifically, the second equation handles the

case when the next message is an original response from a previously unheard from partic-

ipant (probability ρo(C̄, D̄, Ē)), while the third equation handles the case where the next

message is a response to a previously made suggestion to switch from value v (probability

ρsv(C̄, D̄, Ē)).

At any time each participant’s response is either counted once among the K variables of

each of C̄, D̄, or Ē, or has not yet been received. The number of possible states is thus the

number of ways of dividing N participants among 3K + 1 groups, which is:

|S| =

(

N + 3K

3K

)

= O(N3K)

Because of the restriction to send at most one suggestion to each participant, the graph

formed by the transition function over these states is acyclic. Thus, the optimal policy may

be computed via a depth-first search over the graph in total time O(N 3K).

194

C.6 Proof of Theorem 5.4.1

We are given a SEP template τ and a parameter description φ for τ , and wish to determine

whether τ is instantiation safe with respect to φ. We will show that in general this problem

is co-NP-complete.

First, observe that this problem is in co-NP: a non-deterministic algorithm can solve the

complementary problem of determining instantiation (un)safety by guessing an assignment

to all the parameters, then verifying that instantiation with those parameters results in an

invalid declaration.

Next, we show that this problem is co-NP-hard by reducing from SAT (the problem

of determining whether some boolean formula ϕ is not satisfiable). Given a formula ϕ

over the K boolean variables w1, w2, ..., wK , we construct a template τ with the following

parts:

• Participants: fixed to a single arbitrary email address

• Questions: one boolean question named Test that is guarded so that it is only asked

of the participants when the expression ¬ϕq is true. ϕq is the formula ϕ where each

variable wi has been replaced by a boolean parameter qi

• Goals: a single MustConstraint C0 that is true whenever the Test variable is true.

• Notifications: none.

In addition, we construct a parameter description φ for τ that specifies K boolean param-

eters named q1, ..., qK . This construction is clearly polynomial time in the size of φ.

Then, ϕ is in SAT iff τ is instantiation-safe w.r.t. φ. More specifically, τ is not instan-

tiation safe only if there is some way for the guard ¬ϕq on the question Test to evaluate to

False, in which case the constraint C0 is invalid because it references the undefined variable

Test. Thus, τ is instantiation safe w.r.t. φ iff ¬ϕq is always true, which is the case iff ϕq

is always false, which is the case iff ϕ is never satisfiable (e.g., if ϕ ∈ SAT). Since the size

of φ is proportional to the number of parameters, determining instantiation safety is thus

co-NP-hard in the size of φ.

195

C.7 Proof of Theorem 5.4.2

We are given a SEP template τ and a parameter description φ for τ , and wish to determine

whether τ is instantiation safe with respect to φ. Given the bounded conditions of the

theorem, we can assume that each forAll and enumeration statement consist of at most

some constant J set parameters combined with any set operator, and that each guard

statement consists of conjunctions and disjunctions of at most J terms (where terms are

boolean parameters, or compare a parameter with a constant/parameter). Initially, we

assume that there are no quantifications on any question, then relax this assumption at

the end. We begin by examining some general properties of guard statements that will be

significant, then sketch how to solve this problem by examining each of three primary parts

of the template.

Guard statements: Given the assumptions, a guard depends only on constants and

parameters. Thus, for any node (e.g., a question, goal, or notification) in the template,

the guard may be evaluated without considering the current state of the data set or any

variables defined by that node. In addition, the remainder of a node is evaluated only if the

guard evaluates to true (See Appendix B.1), in which case the remainder of the node must

have no syntactic errors, undefined variables, etc.

In addition, a key issue is whether a guard property can ever evaluate to false. A guard

may involve up to J terms that utilize up to 2J parameters. Suppose we are given some

guard formula ϕ = g(P1, P2, ..., P2J). Each parameter Pi may have some restrictions Ri

associated with it that are defined in φ (e.g., restricting the minimal or maximal value).

These restrictions involve only a single parameter, so have bounded size. Given these

definitions, we construct:

ϕ′ = g(P1, P2, ..., PJ) ∧ R1 ∧ R2 ∧ ... ∧ R2J

ϕ′ is a boolean formula with at most O(J) terms and O(J) parameters. By construction,

the guard may evaluate to false in an instantiated template iff ϕ′ evaluates to false for any

choice of the parameters P1, ..., P2J . At worst, we can determine if this can ever occur by

196

considering all possible assignments of each term to true or false (O(2O(J)) possibilities).

Then, for each true possibility, we check to see if there is an assignment to the parameters

that achieves those truth values for the terms and that is consistent with φ, via a linear

program that can be solved in time polynomial in J . Thus, the total time is exponential in

J but polynomial in the total size of τ and φ. We make use of this result below.

Questions: We process each question in turn, checking each of the three conditions given

for a valid declaration (Definition 5.4.2). If a question has a guard property, we first evaluate

whether that guard could ever evaluate to true in polynomial time, using the result above.

If not, then we ignore the rest of the question. If so, we verify that the question has a valid

type, contains all the necessary properties for that type, and has a valid question name

that is not reproduced by another question. In addition, we must verify that each property

is a valid expression, based on substituting candidate values for any parameter. This is

easy to check because all that matters for whether the expression is valid is the type of

the parameters, not their specific values. All of these steps are easily accomplished in time

polynomial in the number of queries, and thus in the size of τ . In addition, we can handle

each question separately, aside from verifying that each question has a distinct name.

Finally, we must verify that any enumeration property E is not the empty set. First,

note that the (non-set) parameters used by a guard are disjoint from the (set) parameters

used by an enumeration. Thus, we can ignore the guard after determining that it is possible

for it to be satisfied. Next, we consider the possible values for the set parameters used in

E. There are potentially an infinite number of such possible values. Note, however, that

our only concern is whether any such choice will cause E to evaluate to the empty set, so

we can consider a finite set of carefully chosen choices. In particular, we can consider each

possibility where parameter Pi is empty or not and is related to every other parameter by a

subset/superset/equals relation or none of those. We eliminate possibilities excluded by φ

due to non-empty or subset parameter restrictions (see Definition 5.4.1) — the simple form

of these restrictions ensures that this is easy to do, even if they refer to other set parameters

not directly used by E. Since E has at most some constant J parameters, the total number

of possibilities is exponential in J but polynomial in the total size of τ and φ.

197

Goals: As with questions, we process each goal in turn, discarding those for which the

guard will never evaluate to false. Likewise, we then check that the goal has an appropriate

type, appropriate properties for that type, and that each expression used by the property

is valid after substituting candidate parameters.

There are two significant differences vs. the verification of questions. First, goals may

contain quantifications. In particular, we must verify that any forAll property has a valid

set expression, and that any suchThat property is a valid boolean expression. Both of these

are easy to do. Note that we do not have to determine if there exists some possible choice

of the quantified variables so that all suchThat properties are satisfied — if not, the node

will not be executed, but it must still be valid in terms of legal expressions, referencing only

defined variables, etc.

Second, a goal may refer to the value of certain questions (e.g., to test how many

responses of a certain type have been received). We must ensure that these references are

not invalid because of an unsatisfied guard on those questions. Assume momentarily that

a goal refers to exactly one such question. Let ϕg be the guard on the goal and ϕq be the

guard on the question. As before, we can construct a new formula ϕ′ that is the conjunction

of ϕg, ϕq, and any parameter restrictions Ri from φ on the parameters in this formula. This

formula has at most 4J parameters and can still be solved in time polynomial in the size of

τ and φ. If this formula can ever evaluate to false, then this goal will be invalid for some

parameter assignment and thus τ is not instantiation-safe.

We now consider guards that refer to more than one question. A key observation is

that the goal is invalid if and only if there exists a parameter assignment such that the

guard on the goal is true and the guard on some question q is false for any q that this goal

references. Thus, we can apply the test with ϕ′ independently to every question referenced

in the guard, and the template is not instantiation safe if any ϕ′ can evaluate to false.

Thus, overall we can verify one goal in time polynomial in the size of τ and φ. Further-

more, each goal can be considered independently, since goals do not define symbols used

elsewhere.

Notifications: The basics of dealing with guards, quantifications, and checking questions is

198

the same as for goals. There are just a few differences in properties that have to be checked.

For instance, we must check that there is exactly one notify and message property. As

with goals, the entire testing can be done in polynomial time.

Conclusion: Thus, questions can be verified in polynomial time, and each goal and notifi-

cation can be verified in polynomial time while considering at most one question at a time.

Since τ is proportional to the number of questions, goals, and notifications, under the given

assumptions we can determine the instantiation safety of τ w.r.t. φ in total time polynomial

in the size of τ and φ.

We now briefly consider the issue of quantified questions, In this case, verifying instan-

tiation safety remains polynomial time, but there are a number of additional issues. First,

questions must have a unique name, distinct for each quantification possibility. Second,

goals/notifications may reference these quantified questions, and we must ensure that each

reference is to a defined variable. The template language addresses both of these issues

by having the template provide only a base name for each question, then automatically

computing composite names by adding a quantifier ID to the base name for each possibil-

ity. Goals/notifications may access these names via a quantification over variables such as

$Opt.range()$, where Opt is the question base name. Finally, in a question an enumeration

property may make use of quantified variables, and we must test that the enumeration can-

not result in an empty set. We can solve this problem using the same general technique that

was applied to checking enumerations before (iterating over all representative possibilities).

However, the addition of quantifications means that we also must consider representative

values for each quantified variable defined by a forAll property, restricted by any suchThat

properties. Since each forAll and enumeration property references at most J parameters,

the total number of possibilities considered is exponential in J but still polynomial in τ and

φ. Thus, given the conditions of Theorem 5.4.2, templates with quantified questions may

still be verified in polynomial time.

199

C.8 Proof of Theorems 5.5.1 and 5.5.2

For these theorems we are given an L-SEP Λ, current state D, and some

PossiblyConstraints CD, and wish to compute the acceptable set A of Λ. We consider

the two cases where CD is and is not bounded:

NP-hard for arbitrary constraints: For this case we show that computing the acceptable

set is NP-hard by a reduction from ultimate satisfiability: given an L-SEP Λ with N

participants, data set D, constraints CD, and a possible response r, Λ is ultimately satisfiable

for r iff r is in the acceptable set A for Λ. This relationship follows directly from the

definition of the acceptable set, and the reduction is clearly polynomial time. Since ultimate

satisfiability is NP-complete in N for arbitrary constraints, computing the acceptable set

must be NP-hard in N .

Polynomial time for bounded constraints: We can determine whether any particular

response r is in A via testing ultimate satisfiability: r is in A iff D is ultimately satisfiable

w.r.t. CD for r. Since CD is bounded, Theorem 4.3.2 states that this satisfiability testing

can be done in time polynomial in N and the |CD|. In addition, since CD is bounded, either

there are only a small number of possible responses (if CD is domain-bounded), or there

are only a bounded number of responses that are distinguishable w.r.t. the constraints (if

CD is constant-bounded, as discussed in the proof of Theorem 4.3.2). In either case, there

are only a constant number of different responses r that must be tested. Thus, by testing

each representative response, we can determine the entire acceptable set (representing it as

ranges of acceptable values) in time polynomial in N and |CD|. If we actually construct

the entire set A (as described in the theorem), then there is an additional polynomial time

dependence on |A|.

C.9 Proof of Theorem 5.5.3

This theorem follows from the proof from Theorem 4.4.2, since computing the optimal policy

in this situation involves computing and comparing the expected utility of all possible states.

200

C.10 Proof of Theorem 5.5.4

Here we are given an L-SEP Λ, current state D, constraints CD, and a response r, and wish

to compute the minimum sufficient explanation E for rejecting r. This theorem has different

results depending on whether CD consists of MustConstraints or PossiblyConstraints:

Polynomial time for MustConstraints: For a MustConstraint, the size of the minimum

sufficient explanation is always one. We can compute this explanation by adding r to D and

then testing each constraint to see if it is unsatisfied in this new state; any such constraint

is a minimum explanation. Testing each constraint on a given state is polynomial in N , and

there are at most O(|CD|) constraints, for total time polynomial in N and |CD|.

NP-hard for PossiblyConstraints: In this case computing a minimum explanation is

NP-hard in two different ways. First, a reduction from ultimate satisfiability: given an

L-SEP Λ, D, CD, and r, D is ultimately satisfiable for r iff the minimum explanation

for rejecting r on D does not exist. This relationship follows from the definition of an

explanation, since if an explanation exists it rules out any way of satisfying the constraints,

and the reduction is clearly polynomial. Thus, since determining ultimately satisfiability is

NP-complete in N (Theorem 4.3.1), then computing the minimum explanation is NP-hard

in N .

Second, a reduction from SET-COVER, which is defined as follows: We are given a set

X = {1, 2, ...,N} and family of subsets of F = {S1, S2, ..., SM} such that every Si ⊂ X and

every element of X is contained in some Si. A cover for this problem is a set F ′ ⊂ F such

that the union of all Si ∈ F ′ contains every element of X. The problem is to determine

whether there exists a cover of size J or smaller for X.

We construct the following L-SEP Λ with:

• Participants: P = {p0, p1, p2, ..., pN}.

• Data set: D is a single table with one boolean attribute R

201

• Constraints: a set of PossiblyConstraints CD = C0 ∧ C1 ∧ C2 ∧ ... ∧ CM where

C0 = (Ryes = 0)

Ci =
∧

j∈Si

(Rtrue 6= j) for 1 ≤ i ≤ M

Ryes = (COUNT (∗) WHERE value = True)

Constructing this L-SEP is clearly polynomial time in the size of the SET-COVER problem.

Given this construction for Λ, we now show that a set cover for X of size J exists iff the

minimum explanation E for rejecting a response r of False for Λ with an initially empty

state D contains J + 1 constraints. First, given an explanation E with J + 1 constraints, a

minimum cover F ′ is the set of all Si such that Ci is present in E, for i 6= 0. (Every sufficient

explanation E contains C0; it is a special case included just to handle the situation where

all participants respond No. Hence, F ′ will be of size J .) To see why this works, consider an

example set S7 = {3, 5}. This set is mapped to the constraint C7 = (Rtrue 6= 3)∧(Rtrue 6= 5).

A sufficient explanation for rejecting r must cover every possible outcome of the L-SEP,

and two such outcomes are for either 3 or 5 participants to respond True. Thus, if response

r is to be rejected, the explanation E must cover these two cases, either by choosing C7,

or by choosing some other constraint(s) that also covers the cases of 3 or 5 True responses.

This follows exactly the same rules as a solution to SET-COVER. Likewise, given a cover

F ′ for X of size J , a minimum explanation for rejecting an initial False response is the

conjunction of C0 together with all constraints Ci where Si is in F ′, for a total size of J +1.

Thus, any input to the SET-COVER problem can be reduced to solving the minimum

explanation problem. Since the former problem is NP-complete in the number of sets (M),

the latter problem must also be NP-hard in number of constraints (|CD|). Combining this

with the previous result, we see that computing the minimum sufficient explanation for

PossiblyConstraints is NP-hard in N and NP-hard in |CD|.

202

C.11 Proof of Theorem 5.5.5

We are given an L-SEP Λ with N participants, current state D, constraints CD, and a

response r and wish to find the minimum sufficient explanation E for rejecting r, assuming

that CD is bounded and that the size of a minimum E is no more than some constant J .

If CD consists of MustConstraints, then we already know that this problem is polynomial

time in N and |CD| from Theorem 5.5.4.

If CD is made up of PossiblyConstraints, then we can test if any particular explanation

E is a sufficient explanation via ultimate satisfiability: E is a sufficient explanation iff

E ⊆ CD and D is not ultimately satisfiable w.r.t. E for r. Since the constraints are

bounded, Theorem 4.3.2 states that this testing can be performed in time polynomial in

N and |CD|. In addition, since any minimum explanation E contains only terms from CD,

restricting E to at most size J means that the total number of explanations that must

be considered is O(2J). which is polynomial (constant) in |CD|. Thus, we can compute

the minimal explanation by testing the sufficiency of every possible explanation of size J

or less and picking the smallest sufficient explanation. This algorithm runs in total time

polynomial in N and |CD|.

C.12 Proof of Theorem 5.5.6

This proof is explained when the theorem is introduced in Section 5.5.3.

203

VITA

Luke McDowell was born and grew up in Wilmington, Delaware. He went on to study

Electrical Engineering at Princeton University, graduating with a B.S.E. degree in 1997.

After working for several years in the field of computer vision at Sarnoff Corporation in

Princeton, New Jersey, he entered graduate school in the Computer Science Department

at the University of Washington. Luke has been a recipient of both a National Science

Foundation Graduate Research Fellowship and a Microsoft Endowed Fellowship. In his

graduate work, he pursued research in the fields of computer architecture, databases, and

intelligent Internet systems, focusing on the Semantic Web. He received a M.S. in Computer

Science in 2001 and a Ph.D. in Computer Science in 2004, both from the University of

Washington.

