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The internet has revolutionized the way we communicate, leading to a constant flood of

text in electronic format, including the Web, email, SMS and the short informal texts

found in microblogs such as Twitter. This presents a big opportunity for Natural Language

Processing (NLP) and Information Extraction (IE) technology to enable new large scale

data-analysis applications by extracting machine-processable information from unstructured

text at scale. This thesis discusses the challenges and opportunities which arise when

applying NLP and IE to large open-domain and heterogeneous text corpora such as Twitter

and the Web, and presents solutions to a number of issues which arise in this setting.

Good performance is achieved using a mostly supervised approach in cases where the

number of output labels is small and well-balanced. We build a set of low-level syntactic

annotation tools for noisy informal Twitter text including a POS tagger, shallow parser,

named entity segmenter and event recognizer using supervised learning techniques trained

on an annotated corpus of tweets.

Supervised learning becomes impractical however, for semantic processing tasks such

as: named entity categorization, event categorization, inferring selectional preferences and

relation extraction, where the number of output labels is large and/or unknown a-priori.

A key hypothesis which is evaluated throughout this thesis is that semantic processing

of massive, diverse text corpora such as Twitter and the Web requires unsupervised and





weakly supervised methods which can leverage large unlabeled datasets for learning, rather

than relying on the relatively small corpora which are feasible to annotate. We present a

set of techniques for unsupervised and weakly-supervised information extraction based on

probabilistic latent variable models, which are applied to infer the semantics of large numbers

of words and phrases and extract knowledge from large open-domain text corpora.





TABLE OF CONTENTS

Page

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Chapter 1: Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Twitter and Web Text: Characteristics . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Proposed Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

Chapter 2: Background: Bayesian Modeling for Lexical Semantics . . . . . . . . . 8

2.1 Motivation: Latent Variable Models of Word Meaning . . . . . . . . . . . . . 8

2.2 Generative Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

Chapter 3: Supervised Learning for Syntactic Annotation in Microblog Text . . . 15

3.1 Shallow Syntactic Annotation in Tweets . . . . . . . . . . . . . . . . . . . . . 17

3.2 Segmenting Named Entities . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.3 Limitations and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.4 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

Chapter 4: Distantly Supervised Named Entity Categorization with Constrained
Latent Variable Models . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.1 Classifying Named Entities in Twitter . . . . . . . . . . . . . . . . . . . . . . 28

4.2 Freebase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.3 Distant Supervision with Topic Models . . . . . . . . . . . . . . . . . . . . . . 31

4.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.5 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.6 Limitations and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

Chapter 5: Modeling Missing Data in Distant Supervision . . . . . . . . . . . . . . 41

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

i



5.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.3 A Latent Variable Model for Distantly Supervised Relation Extraction . . . . 46

5.4 Modeling Missing Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.5 MAP Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.6 Incorporating Side Information . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.7 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

Chapter 6: Mixed Membership Models for Selectional Preference . . . . . . . . . . 65

6.1 Selectional Preferences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

6.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

6.3 Topic Models for Selectional Preferences . . . . . . . . . . . . . . . . . . . . . 70

6.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

6.5 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

6.6 Conclusions and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

Chapter 7: Extracting an Open-Domain Calendar of Events from Microblog Text 88

7.1 Open Domain Event Extraction from Twitter . . . . . . . . . . . . . . . . . . 88

7.2 System Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

7.3 Extracting Event Mentions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

7.4 Extracting and Resolving Temporal Expressions . . . . . . . . . . . . . . . . 93

7.5 Ranking Events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

7.6 Categorizing Events Extracted from Microblogs . . . . . . . . . . . . . . . . . 95

7.7 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

7.8 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

7.9 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

Chapter 8: Conclusions and Future Work . . . . . . . . . . . . . . . . . . . . . . . 109

8.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

ii



LIST OF FIGURES

Figure Number Page

2.1 Mixture of Multinomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Latent Dirichlet Allocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.1 Processing pipeline for syntax in Twitter. . . . . . . . . . . . . . . . . . . . . 16

5.1 A small hypothetical database and heuristically labeled training data for the
Employer relation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.2 MultiR (Hoffmann et. al. 2011) . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.3 DNMAR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.4 Overall precision and Recall at the sentence-level extraction task compar-
ing against human judgments. DNMAR∗ incorporates side-information as
discussed in Section 5.6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.5 Aggregate-level automatic evaluation comparing against held-out data from
Freebase. DNMAR∗ incorporates side-information as discussed in Section 5.6. 60

5.6 Per-relation precision and recall on the sentence-level relation extraction task.
The dashed line corresponds to MultiR, DNMAR is the solid line, and DN-
MAR*, which incorporates side-information, is represented by the dotted line. 61

5.7 Precision and Recall at the named entity categorization task . . . . . . . . . 63

6.1 JointLDA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

6.2 LinkLDA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

6.3 Comparison of LDA-based approaches on the pseudo-disambiguation task.
Lda-sp (LinkLDA) substantially outperforms the other models. . . . . . . . . 80

6.4 Comparison to similarity-based selectional preference systems. Lda-sp ob-
tains 85% higher recall than mutual information at precision 0.9. . . . . . . . 81

6.5 Precision and recall on the inference filtering task. . . . . . . . . . . . . . . . 83

7.1 Processing pipeline for extracting events from Twitter. . . . . . . . . . . . . . 91

7.2 Complete list of automatically discovered event types with percentage of data
covered. Interpretable types representing significant events cover roughly half
of the data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

iii



7.3 Example event types discovered by our model. For each type t, we list the
top 5 entities which have highest probability given t, and the 5 event phrases
which assign highest probability to t. . . . . . . . . . . . . . . . . . . . . . . . 97

7.4 Precision and recall predicting event types. . . . . . . . . . . . . . . . . . . . 101

7.5 Maximum F1 score of the supervised baseline as the amount of training data
is varied. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

7.6 Screenshot of popular events extracted from Twitter taken on October 26,
2012. Examples include the US presidential elections on November 6, and
the release of the new James Bond movie on November 9. . . . . . . . . . . . 102

iv



ACKNOWLEDGMENTS

I am indebted to all the excellent colleagues and mentors that I’ve interacted with over

the years, without whose support my success would not have been possible.

During my time at UW I have had the fortune to have many excellent mentors from

whom I learned how to choose worthwhile problems to work on and also how to make

progress on them, starting with my advisers, Mausam and Oren Etzioni, and also Stephen

Soderland. I was lucky to have the opportunity to do two internships at Microsoft Research,

both of which were amazing experiences for me. Again I was lucky to have excellent mentors:

Sumit Basu, Colin Cherry and Bill Dolan, whose continued advice and encouragement has

been invaluable to me. My work has also benefited from many interactions with other

researchers and interns at MSR. In addition I would like to thank Luke Zettlemoyer. Luke

is incredibly knowledgeable, and I feel like he has really gone out of his way to discuss

research and mentor me, despite his busy schedule. I would also like to thank Dan Weld from

whom I benefited greatly from from interactions with. In addition I was lucky to have large

number of incredibly bright current and former students and postdocs at UW as colleagues

including: Hoifung Poon, Wei Xu, Sam Clark, Fei Wu, Raphael Hoffmann, Yoav Artzi,

Janara Christensen, Jesse Davis, Doug Downey, Tony Fader, Brian Hutchinson, Vibhav

Gogate, Jeff Huang, Thomas Lin, Xiao Ling, Nicholas FitzGerald, Tom Kwiatkowski, Stefan

Schoenmackers, Adrienne Wang, Alex Yates and Mark Yatskar. Interactions and discussions

with all of these people have helped to shape my ideas about how to do research.

I was also very fortunate to have two excellent mentors as an undergraduate at WWU:

James Hearne and Philip Nelson, both of whom encouraged my interest in pursuing research

and also opened up many opportunities for me.

Finally I would like to thank Patrick Allen and Lindsay Michimoto who have gone out

of their way to support me throughout graduate school.

v





1

Chapter 1

INTRODUCTION

The internet has changed how we communicate. This has led to a flood of user-generated

text available in electronic format including text contained in large heterogeneous text

corpora such as the Web, Email, SMS and Twitter. The amount of informal, user-generated

text written each day is much larger than the amount of formal, professionally written text

such as that found in books and newspaper articles; for instance over 200 million Tweets are

written each day.1 Clearly no person can read all these messages motivating the need for

automatic text processing techniques to extract, aggregate and organize this information.

A lot of high-value information turns up first in informal user-generated messages. One

famous example is the Twitter user, @ReallyVirtual, who inadvertently live-tweeted the raid

that killed Osama Bin Laden.2 Although this Twitter user didn’t know what was actually

happening at the time, the first news that Bin Laden had been killed showed up on Twitter

when Kieth Urbahn, a former chief of staff to Donald Rumsfeld tweeted at 10:25pm EST

on May 1 2011:

“So Im told by a reputable person they have killed Osama Bin Laden. Hot

damn.”

Accurate knowledge extraction from big, noisy text corpora such as Twitter and the Web

has the potential to enable many new data analysis applications, however these corpora have

unique characteristics which suggest it may be worth re-considering our overall approach to

processing language. This thesis proposes to address the challenges raised by these corpora

through a series of weakly-supervised and unsupervised approaches to information extraction

based on probabilistic latent variable models.

1http://blog.twitter.com/2011/06/200-million-tweets-per-day.html

2http://www.forbes.com/sites/parmyolson/2011/05/02/man-inadvertently-live-tweets-osama-bin-laden-raid/
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1.1 Twitter and Web Text: Characteristics

Massive, user-generated text corpora such as Twitter and the Web are heterogeneous. They

are highly diverse in style as compared to more homogeneous corpora such as newswire

which follow strict stylistic conventions. In addition to their heterogeneity of style, they

also contain highly heterogeneous content. Because this text is user-generated, it can cover

virtually any topic. Furthermore, due to the large, diverse and dynamically changing nature

of these text collections, we often do not know what kinds of information will be of interest

in advance. Supervised machine learning is less effective in this setting because even large

annotated corpora are insufficient to capture the full range of style and content which is

found in these massive, open-domain text corpora.

1.1.1 Challenges

Noisy Text

Noisy informal user-generated text such as that found on Twitter and the Web presents

unique challenges for NLP and IE technology [44; 53]. As an instance of this problem, we

demonstrate in Chapter 3 that existing NLP tools which are tuned to work on grammatical

newswire text fail when applied to noisy Twitter text. To address this challenge, we annotate

a corpus of tweets with parts of speech, chunk tags, named entities and events which are

then used to train in-domain sequence labeling models. In addition we found that word

clusters learned from a large unlabeled corpus of tweets using Jcluster [71] help to deal

with Twitter’s high degree of lexical variation. Full details of our approach and data are

presented in Chapter 3.

Open-Domain

The text contained in large user-generated corpora such as Twitter and the Web can discuss

almost any topic, so it is important not to limit our focus to a narrow set of possible relations

in advance. The field of information extraction has traditionally followed an annotate-

train-test paradigm, which begins with the design of annotation guidelines, followed by the

collection and labeling of corpora[168]. Only then can one train machine learning models
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to automatically extract new relation instances from text. This paradigm has been quite

successful, but the labeling process is both slow and expensive, limiting the amount of data

available for training. In addition this approach requires designing annotation guidelines

and committing to a specific set of relations before investing resources into an annotation.

To address these challenges, Open Information Extraction [60; 114] proposes to extract

information from text without a pre-defined set of relations. This thesis follows the Open IE

paradigm, avoiding pre-defined set relations and hand-labeled training data, by leveraging

unsupervised and distantly supervised learning.

The annotate-train-test approach is appropriate when the set of categories to be pre-

dicted is small, well balanced in the data and fixed in advance, which is the case for most

syntactic annotation tasks, such as part of speech tagging or named entity segmentation.

Supervised learning becomes impractical however, for semantic processing tasks such as:

named entity categorization (Chapter 4), event categorization (Chapter 7), inferring selec-

tional preferences (Chapter 6) and relation extraction (Chapter 5). In contrast to syntax,

semantic processing typically involves a large number of output labels which are highly

unbalanced and are often unknown a-priori. In these cases, unsupervised or weakly super-

vised approaches which can leverage large volumes of unlabeled data often perform better.

We demonstrate the benefits of unsupervised learning over supervised learning for semantic

processing tasks with experimental results throughout this thesis.

1.1.2 Opportunities

Simple Discourse Structure

While shallow syntactic annotation tasks are more challenging on informal texts, such as

those found on Twitter, the short and self-contained nature of these messages means they

contain very simple discourse structure as compared with longer texts containing narratives

such as news articles. To understand why this, is imagine a user writing a message on

Twitter; because it will be mixed up in the feeds of all their followers, they typically don’t

assume any context the message is meant to be understood in. In contrast a sentence

written as part of a news article is meant to be understood within the discourse context



4

of the article, so there is a tendency for important information about an event to get

spread across sentences in the article. Discourse-related issues account for some of the

more difficult and unsolved problems in NLP, which include active areas of research such as

coreference resolution[131] and classifying relations between events and time expressions[27].

We leverage Twitter’s simple discourse structure in order to extract a calendar of popular

events occurring in the near future in Chapter 7.

Redundancy

Another unique characteristic of corpora such as Twitter and the Web is their scale. These

corpora contain a large amount of redundant information, contributing to information over-

load, and motivating the need for automatic text processing techniques to aggregate and

organize information. On the other hand, redundant information can be exploited to im-

prove the performance of extraction systems [48].

Redundancy of information is leveraged throughout this thesis: Chapter 4 exploits re-

dundancy for categorizing named entities, large amounts of data and redundancy are used

to infer the argument types of a relation in Chapter 6, and Chapter 7, uses redundancy to

identify popular events mentioned on Twitter.

1.2 Proposed Approach

To address the challenges of large, open-domain, noisy text corpora, and exploit redun-

dancy of information we present a number of unsupervised and weakly supervised methods

throughout this thesis which are based on probabilistic latent variable models.

Supervised Learning for Syntax

Syntactic annotations, for example parts of speech and named entities, are a typical first

step in most NLP pipelines. While the main focus of this thesis is semantic processing of

large heterogeneous text corpora, we need syntactic annotations to get started. Supervised

learning is appropriate for syntactic annotation tasks where the output labels are fixed

and known in advance. While there is much interesting work on unsupervised learning for
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syntax, supervised systems tend to perform better. Available off-the shelf tools for syntax

are designed for use on grammatical texts, making them ineffective on the noisy and informal

style of text which is prevalent on Twitter, and also common on the Web. In order to enable

progress on semantic processing on top of Twitter, we take a practical approach to building

NLP tools which is based on in-domain annotated corpora, in addition to semi-supervised

techniques which are described in detail in Chapter 3.

Unsupervised and Distantly Supervised Learning for Open-Domain Semantics

Unsupervised learning is appropriate in the situation where the categories are unknown

in advance. For example, in Chapter 6 we apply unsupervised models to automatically

discover the argument types for relations. In Chapter 7, we make use of unsupervised

models to automatically infer an appropriate set of types to describe events extracted from

Twitter, and also to categorize events in context. We demonstrate that by leveraging large

quantities of unlabeled data we are able to outperform a supervised baseline at this task.

Unsupervised learning is attractive because it allows us to take advantage of large quan-

tities of unlabeled text; however an important question is what to do in the situation where

we also have access to structured data related to the task at hand. For some tasks we have

readily available access to large structured databases, which can be leveraged as a source of

weak (distant) supervision. Chapter 4 presents a new approach to distant supervision which

is based on constrained latent variable models and is appropriate for the situation of highly

ambiguous training data. We evaluate this approach in the context of weakly supervised

named entity categorization in Twitter. A natural question which arises in the context of

distant supervision is the issue of missing information either in the text or the database;

this issue is addressed in Chapter 5. By explicitly modeling the possibility of missing data

we show large improvements in the performance of both distantly supervised named entity

categorization and also relation extraction.
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Probabilistic Latent Variable Models

Previous work on weakly supervised learning has taken a mostly heuristic approach based

on pattern learning [2; 15]. In contrast we propose weakly supervised learning methods

based on probabilistic latent variable models. This approach has a number of advantages;

for example it provides us with guidelines for what algorithms are likely to work based

on theoretical principles rather than relying on intuition for algorithm design; the models

are flexible and extensible making it possible to incorporate various sources of background

knowledge. For example in Chapter 5 we extend a probabilistic model of distantly super-

vised relation extraction to model missing data [107], which we show substantially improves

performance. In addition, generative probabilistic models have the advantage that they

provide a principled way to answer many different kinds of probabilistic queries about the

data, and therefore can be useful in a number of different applications; for instance our

model of selectional preferences is shown to be useful for filtering improper applications of

inference rules in Chapter 6.

1.3 Overview

The rest of this thesis is structured as follows. We begin in Chapter 2 with background

information on Bayesian inference techniques for mixed membership models which are used

throughout Chapters 4, 6, and 7.

To demonstrate the feasibility of knowledge extraction from noisy user-generated text, we

build a pipeline for syntactic annotation of tweets in Chapter 3, taking a practical approach

based on supervised learning. These tools are then used as a basis for semantic processing

tasks: in Chapter 4 we present a new approach to distant supervision based on constrained

latent variable models which is appropriate for the situation of highly ambiguous training

data and is evaluated in the context of weakly supervised named entity categorization; in

Chapter 7 we use our NLP tools to extract a calendar of popular events occurring in the

near future from Twitter.

One issue that arises in distant (weak) supervision is the problem of missing data. This

is a general issue affecting both weakly supervised NER (Chapter 4) and weakly supervised
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relation extraction; we investigate this issue in Chapter 5, and develop an approach which

shows large performance gains by explicitly modeling the possibility of missing information.

Distantly supervised learning is an attractive framework; however in some circumstances

we don’t have access to relevant structured datasets, or don’t even know what the correct set

of categories should be in advance. To address these challenges we propose an unsupervised

approach to problems in lexical semantics based on Latent Dirichlet Allocation which is

applied to the problem of modeling selectional preferences in Chapter 6, and also to the

task of categorizing millions of events which are automatically extracted from Twitter in

Chapter 7.
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Chapter 2

BACKGROUND: BAYESIAN MODELING FOR LEXICAL
SEMANTICS

This chapter presents background material on the bayesian models which are used in

Chapters 4, 6 and 7. Many excellent and related tutorials are also available online [78;

147; 84]. This chapter focuses on presenting the intuition behind how these models can be

applied to problems in lexical semantics in practice rather than going through proofs and

derivations in detail.

2.1 Motivation: Latent Variable Models of Word Meaning

A word or phrase can have many different meanings; previous efforts to manually build

lexical resources, for example WordNet, have had some success, however, they don’t pro-

vide a good way to disambiguate word meaning in context. Supervised learning on small

manually annotated corpora won’t scale up to the challenge of modeling lexical semantics

in large open-domain text collections such as Twitter or the web. To build semantic mod-

els at scale, we need a way to learn the meanings of individual words and phrases from

large quantities of unlabeled text. Generative probabilistic models present an attractive

solution. These models have the advantage that they provide a principled way to perform

many different kinds of probabilistic queries about the data and are therefore applicable to

a wide variety of tasks. Examples of the applications of these bayesian models to problems

in lexical semantics are outlined in the following paragraphs.

As an example of how latent variables can be used to model problems in lexical semantics,

Chapter 6 demonstrates that a variant of latent Dirichlet allocation [13] can effectively be

used to automatically infer the argument types or selectional preferences [145] of textual

relations [154]. To demonstrate its flexibility and utility, our model of selectional preferences

is applied to the task of filtering improper applications of inference rules in context, showing

a substantial improvement over a state-of-the-art rule-filtering system which makes use of
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a predefined set of classes. The argument/relation clusters automatically discovered by our

model are available online.1

Chapter 4 proposes a new approach to weakly supervised named entity categorization

based on constrained topic models [152]. As a distant source of supervision we make use

of lexical entries from Freebase, a large, open-domain database, to generate constraints in

the model. This approach leverages the ambiguous supervision provided by Freebase in a

principled way, significantly outperforming both a supervised baseline and a state of the art

semi-supervised approach to named entity categorization [34] on a Twitter named entity

recognition task.

2.2 Generative Models

Generative probabilistic models are an attractive framework for unsupervised and weakly

supervised learning. The approach is to define the model as an intuitive story about the

generation of our observed data which may involve hidden variables and probabilities. The

generative story presents an idealized model for the process by which observed data was

generated, and often involves hidden variables that represent latent information we wish to

infer. For example, hidden (latent) variables could correspond to named entity categories or

argument types (selectional preferences). Given a generative model and observed dataset,

Bayesian inference techniques such as Gibbs sampling, or variational methods can then be

applied to invert the generative story and infer values for the hidden variables which tell

us the information of interest. In the subsequent sections we will walk through a series of

increasingly complex generative models.

2.2.1 Mixture of Multinomials

A mixture model is a common way to model grouped data. In a supervised learning scenario,

this model is commonly referred to as Näıve Bayes. As an example, consider the situation

where each group corresponds to a bag of words (for instance the words contained in a web

document). Documents can be considered as belonging to different categories (topics), for

1http://www.cs.washington.edu/research/ldasp/ldasp.tgz
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Figure 2.1: Mixture of Multinomials

example Sports, Finance, Politics, etc... We can imagine a generative process by which

documents were created in which a topic is first chosen at random, and then the words

in the document are randomly picked conditioned on the topic. We don’t know which

topic, zd = t, belongs to each document, d, in advance, nor do we know the probability of

each word given a topic, βwt = P (w|t), or the probability of each topic θt = P (t). These

correspond to hidden (latent) variables which we would like to infer from the observed data.

As a first step towards estimating these hidden variables from our observed documents, a

more formal generative story is presented as algorithm 1. A graphical model representation

is presented in Figure 2.1. The plates or boxes in Figure 2.1 represent replication, for

instance there are |D| documents, and document i contains |Di| words.

Here the Dirichlet distribution, Dir(α), is a conjugate prior to the multinomial, which

simplifies inference. For a detailed explanation of the Dirichlet see Heinrich [78].

While this generative story is an extreme simplification of the real process by which

documents are created, it is useful because we know how to invert this generative story and

infer values for the hidden variables which will then give us an estimate of the category
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Algorithm 1 Generative Story for Mixture of Multinomials

Generate θ according to symmetric Dirichlet distribution Dir(α).

for each topic t = 1 . . . |T | do

Generate βt according to symmetric Dirichlet distribution Dir(η).

end for

for each document d = 1 . . . |D| do

Generate document d’s topic, zd, from Mult(θ)

for each word position i = 1 . . . n do

Generate word wd,i from Mult(βzd)

end for

end for

of each document based on all the information we have available. Gibbs sampling is one

approach to inference in which a markov chain is constructed which transitions between

states corresponding to assignments to the hidden variables, and which converges to the

posterior distribution conditioned on observed evidence. We go through the details for a

Gibbs sampler for another model, Latent Dirichlet Allocation, in Section 2.2.3, for details

of Gibbs sampling in the multinomial mixture model, see [147].

2.2.2 Latent Dirichlet Allocation

The mixture model presented in Section 2.2.1 explicitly assumes that each bag of words

is generated from a unique latent topic. This assumption is reasonable in some scenarios,

however problems in lexical semantics often involve significant amounts of ambiguity. For

instance a given verb can correspond to different meanings or word senses, and the same

named entity can refer to multiple real-world entities which belong in different categories.

Requiring a single category for each lexical entry (which can appear across many contexts)

can be a problematic restriction. This restriction is relaxed in Latent Dirichlet Allocation

(LDA) [13] which is a bayesian version of PLSA [81]. In LDA, each bag of elements (e.g.

words in a document or contexts of a lexical item) is modeled as a mixture of topics as

opposed to having a single underlying topic. These mixed membership, or admixture models
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θi

zj

wj

βn

|D|

|Di|

α

ηn

|T |

Figure 2.2: Latent Dirichlet Allocation

are more appropriate for many problems in lexical semantics where individual lexical items

are highly ambiguous, associating with different underlying categories in different contexts.

One example is the problem of named entity categorization which is investigated in detail

in Chapter 4, for instance the entity JFK could refer to either a PERSON or a FACILITY

(airport). Another instance of a problem in lexical semantics where mixed membership mod-

els are advantageous is the problem of modeling argument types or selectional preferences

which we present in Chapter 6.

We present the generative story for LDA in the context of unsupervised named entity

categorization below as Algorithm 2. A graphical model representation is presented in

Figure 2.2.

2.2.3 Collapsed Gibbs Sampling for Latent Dirichlet Allocation

A popular and effective approach to inferring the latent variables, ze,i in LDA is collapsed

Gibbs sampling [73]. Gibbs sampling is a Markov chain Monte Carlo method. This approach

samples from the posterior distribution over the hidden variables by constructing a Markov
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Algorithm 2 Generative Story for Latent Dirichlet Allocation

for each type: t = 1 . . . T do

Generate βt according to symmetric Dirichlet distribution Dir(η).

end for

for each entity string e = 1 . . . |E| do

Generate a distribution over types, θe, according to Dirichlet distribution Dir(α).

for each word position i = 1 . . . Ne do

Generate a type ze,i from Mult(θe).

Generate the word we,i from Mult(βze,i).

end for

end for

chain whose stationary distribution is proven to correspond to the posterior. In Gibbs

sampling, we transition through the state space by iterating through each hidden variable

ze,i individually and resampling a new value, ze,i = t, conditioned on the current assignment

of all other variables z−(e,i). In collapsed Gibbs sampling, parameters β and θ are integrated

out during this process. We start with an initial, random assignment to the hidden variables,

then run the markov chain for a large number of burn-in iterations until the chain has likely

converged to the posterior distribution, at which point we can begin taking samples.

Pseudocode for collapsed Gibbs sampling in LDA is presented in Algorithm 3. The

distribution over topics which is sampled from in line 15 can be computed as follows:

P (z|z−(b,i),w) ∝ C(d, z) + αz∑T
t=1 (C(d, t) + αt)

·
C(z, wb,i) + ηzwb,i∑V
v=1 (C(z, v) + ηv)

Where C(a, b) are counts, for example c(d, z) is the number of times type z appears in

document d (see Algorithms 3 and 1). This formula makes sense intuitively: the probability

of a word, w being assigned to type t is related to the proportion of other words assigned to

t in the same document, and also the proportion of mentions of word w which are assigned

to t across the entire corpus. For a detailed derivation of the collapsed Gibbs sampler for

latent Dirichlet allocation see Heinrich [78].
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Algorithm 3 Collapsed Gibbs sampling for Latent Dirichlet Allocation

1: Initialize topic-word counts C(z, w) = 0 ∀z, w
2: Initialize document-topic counts C(d, z) = 0 ∀d, z
3: for each bag of words: b = 1 . . . |B| do . Random Initialization

4: for each word position: i = 1 . . . Nb do

5: Randomly initialize zb,i

6: Increment document-topic count C(d, zb,i)

7: Increment topic-word count C(zb,i, wb,i)

8: end for

9: end for

10: for number of burn in iterations do

11: for each bag of words: b = 1 . . . |B| do

12: for each word position: i = 1 . . . Nb do

13: Decrement document-topic count C(d, zb,i) . Subtract counts for wd,i

14: Decrement topic-word count C(zb,i, wb,i)

15: Sample zb,i ∼ P (z|z−(b,i),w) . Sample a new topic

16: Increment document-topic count C(d, zb,i) . Add back new counts

17: Increment topic-word count C(zb,i, wb,i)

18: end for

19: end for

20: end for
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Chapter 3

SUPERVISED LEARNING FOR SYNTACTIC ANNOTATION IN
MICROBLOG TEXT

Syntactic annotation is a first step in most NLP and IE pipelines. Off-the-shelf NLP

tools which are mostly designed for processing news articles perform very poorly when

applied to Twitter due to its noisy and unique style. To address this challenge and enable

applications of information extraction on top of Twitter, we present an NLP pipeline which

has been tuned to work well on noisy Twitter data. The tools developed here are used as

input to the weakly supervised named entity categoirzation system for tweets presented in

Chapter 4, and also to extract a calendar of popular events as described in Chapter 7.

Status Messages posted on Social Media websites such as Facebook and Twitter present

a new and challenging style of text for language technology due to their noisy and informal

nature. Like SMS [85], tweets are particularly terse and difficult (See Table 3.1). Yet tweets

provide a unique compilation of information that is more up-to-date and inclusive than news

articles, due to the low-barrier to tweeting, and the proliferation of mobile devices.1 The

corpus of tweets already exceeds the size of the Library of Congress [76] and is growing far

more rapidly. Due to the volume of tweets, it is natural to consider named-entity recognition,

information extraction, and text mining over tweets. Not surprisingly, the performance of

“off the shelf” NLP tools, which were trained on news corpora, is weak on tweet corpora.

To adress this challenge, we present a re-trained “NLP pipeline” that leverages previously-

annotated out-of-domain text, 2 annotated tweets, and unlabeled tweets to enable higher

quality part-of-speech tagging, chunking, and named-entity recognition.

We experimentally evaluate the performance of off-the-shelf news trained NLP tools

when applied to Twitter. For example POS tagging accuracy drops from about 0.97 on

1See the “trending topics” displayed on twitter.com

2Although tweets can be written on any subject, following convention we use the term “domain” to
include text styles or genres such as Twitter, News or IRC Chat.
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1 The Hobbit has FINALLY started film-

ing! I cannot wait!

2 Yess! Yess! Its official Nintendo an-

nounced today that they Will release the

Nintendo 3DS in north America march 27

for $250

3 Government confirms blast n nuclear

plants n japan...don’t knw wht s gona

happen nw...

Table 3.1: Examples of noisy text in tweets.

Tweets T-POS T-SEG

T-CHUNK

T-CAP

Unsupervised

Word Clusters

Figure 3.1: Processing pipeline for syntax in Twitter.

news to 0.80 on tweets. By utilizing in-domain, out-of-domain, and unlabeled data we are

able to substantially boost performance, for example obtaining a 52% increase in F1 score

on segmenting named entities.

The rest of the chapter is organized as follows. We successively build the NLP pipeline

for Twitter feeds in Sections 3.1 and 3.2. We first present our approaches to shallow syntax

– part of speech tagging (Section 3.1.1), and shallow parsing (Section 3.1.2). Section 3.1.3

describes a novel classifier that predicts the informativeness of capitalization in a tweet. All

tools in Section 3.1 are used as features for named entity segmentation in Section 3.2.1. We

describe related work in Section 3.4 and conclude in Section 3.5.
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3.1 Shallow Syntactic Annotation in Tweets

We first study two fundamental shallow syntactic annotation tasks – POS tagging and

shallow parsing (also referred to as chunking). To address Twitter’s lack of reliable capi-

talization, we also discuss a novel capitalization classifier in Section 3.1.3, which predicts

whether capitalization within a specific tweet is informative. The outputs of these tools are

used in feature generation for named entity recognition in the next section.

For all experiments described in this section we use a dataset of 800 randomly sampled

tweets. All results (Tables 3.2, 3.7 and 3.8) are evaluated using 4-fold cross-validation

experiments on the respective tasks.3

3.1.1 Part of Speech Tagging

Part of speech tagging provides an initial level of syntactic analysis, which is useful for fea-

ture generation across a wide range of NLP tasks, for example: named entity segmentation,

semantic role labeling and information extraction.

Prior experiments have suggested that POS tagging has a very strong baseline: assign

each word to its most frequent tag and assign each out of vocabulary (unseen) word the

most common POS tag. This baseline obtained 0.9 accuracy on the Brown corpus [29].

However, the application of a similar baseline on tweets (see Table 3.2) obtains a much

weaker 0.76, which suggests the challenging nature of Twitter data.

One explanation for this drop in accuracy is that Twitter contains far more out of

vocabulary words than grammatical text. Many of these out of vocabulary words stem

from spelling variation, e.g., the use of the word “n” for “in” in Table 3.1 example 3.

Although NNP is the most frequent tag for out of vocabulary words, only about 1/3 are

NNPs.

The performance of off-the-shelf news-trained POS taggers is also quite poor on Twitter

data. The state-of-the-art Stanford POS tagger [177] improves on the simple baseline,

obtaining an accuracy of 0.8. This performance is impressive given that its training data,

the Penn Treebank WSJ (PTB), is so different in style from Twitter, however it is a huge

3We used Brendan O’Connor’s Twitter tokenizer https://github.com/brendano/tweetmotif.
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Accuracy Error Re-

duction

Majority Baseline (NN) 0.189 -

Word’s Most Frequent Tag 0.760 -

Stanford POS Tagger 0.801 -

T-pos(PTB) 0.813 6%

T-pos(Twitter) 0.853 26%

T-pos(IRC + PTB) 0.869 34%

T-pos(IRC + Twitter) 0.870 35%

T-pos(PTB + Twitter) 0.873 36%

T-pos(PTB + IRC +

Twitter)

0.883 41%

Table 3.2: POS tagging performance on tweets. By training on in-domain labeled data, in
addition to annotated IRC chat data, we obtain a 41% reduction in error over the Stanford
POS tagger.

Gold Predicted Stanford

Error

T-pos Error Error Re-

duction

NN NNP 0.102 0.072 29%

UH NN 0.387 0.047 88%

VB NN 0.071 0.032 55%

NNP NN 0.130 0.125 4%

UH NNP 0.200 0.036 82%

Table 3.3: Most common errors made by the Stanford POS Tagger on tweets. For each
case we list the fraction of times the gold tag is misclassified as the predicted for both our
system and the Stanford POS tagger. All verbs are collapsed into VB for compactness.
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drop from the 97% accuracy reported on the PTB. There are several reasons for this drop

in performance. Table 3.3 lists common errors made by the Stanford tagger. First, due to

unreliable capitalization, common nouns are often misclassified as proper nouns, and vice

versa. Also, interjections and verbs are frequently misclassified as nouns. In addition to

differences in vocabulary, the grammar of tweets is quite different from edited news text. For

instance, tweets often start with a verb (where the subject ‘I’ is implied), as in: “watchng

american dad.”

To overcome these differences in style and vocabulary, we manually annotated a set of

800 tweets (16K tokens) with tags from the Penn TreeBank tag set for use as in-domain

training data for our POS tagging system, T-pos.4 We add new tags for the Twitter

specific phenomena: retweets, @usernames, #hashtags, and urls. Note that words in these

categories can be tagged with 100% accuracy using simple regular expressions. To ensure

fair comparison in Table 3.2, we include a postprocessing step which tags these words

appropriately for all systems.

To help address the issue of out of vocabulary words and lexical variations, we perform

clustering to group together words which are distributionally similar [18; 179]. In particu-

lar, we perform hierarchical clustering using Jcluster [71] on 52 million tweets; each word

is uniquely represented by a bit string based on the path from the root of the resulting

hierarchy to the word’s leaf. We use the Brown clusters resulting from prefixes of 4, 8,

and 12 bits. These clusters are often effective in capturing lexical variations, for example,

following are lexical variations on the word “tomorrow” from one cluster after filtering out

other words (most of which refer to days):

‘2m’, ‘2ma’, ‘2mar’, ‘2mara’, ‘2maro’, ‘2marrow’, ‘2mor’, ‘2mora’, ‘2moro’, ‘2morow’,

‘2morr’, ‘2morro’, ‘2morrow’, ‘2moz’, ‘2mr’, ‘2mro’, ‘2mrrw’, ‘2mrw’, ‘2mw’, ‘tmmrw’,

‘tmo’, ‘tmoro’, ‘tmorrow’, ‘tmoz’, ‘tmr’, ‘tmro’, ‘tmrow’, ‘tmrrow’, ‘tmrrw’, ‘tmrw’, ‘tm-

rww’, ‘tmw’, ‘tomaro’, ‘tomarow’, ‘tomarro’, ‘tomarrow’, ‘tomm’, ‘tommarow’, ‘tom-

marrow’, ‘tommoro’, ‘tommorow’, ‘tommorrow’, ‘tommorw’, ‘tommrow’, ‘tomo’, ‘to-

molo’, ‘tomoro’, ‘tomorow’, ‘tomorro’, ‘tomorrw’, ‘tomoz’, ‘tomrw’, ‘tomz’

4Using MMAX2 [123] for annotation.



20

Feature Description

POS-Dict Part of speech tag dictionary constructed

from the Penn Treebank corpus [176].

Brown-Clusters 4, 8 and 12 bit brown clusters constructed

from a corpus of 52 million tweets [18; 179].

Orthographic-Features Features based on capitalization, word pre-

fixes and suffixes, presence of punctuation,

digits

Context Features from previous and following words

Table 3.4: List of features used for POS tagging.

T-pos uses Conditional Random Fields5 [94], both because of their ability to model

strong dependencies between adjacent POS tags, and also to make use of highly correlated

features (for example a word’s identity in addition to prefixes and suffixes). Besides employ-

ing the Brown clusters computed above, we use a fairly standard set of features that include

POS dictionaries, spelling and contextual features. A detailed list of features is presented

in Table 3.4. 6

We evaluated the performance of T-pos using 4-fold cross validation over 800 tweets,

which leads to a 26% reduction in error over the Stanford tagger.

In addition we experimented with including additional training data, starting with 40K

tokens of annotated IRC chat data [65], which is similar in style. Like Twitter, IRC data

contains many misspelled/abbreviated words, and also more pronouns, and interjections,

but fewer determiners than news. We also leverage 50K POS-labeled tokens from the Penn

Treebank [113], which was found to be beneficial during devlopment. Overall T-pos trained

on 102K tokens (12K from Twitter, 40K from IRC and 50K from PTB) results in a 41%

error reduction over the Stanford tagger, obtaining an accuracy of 0.883. Table 3.3 lists

5We use MALLET [115].

6Complete feature extraction code is also available online: https://github.com/aritter/twitter_nlp/

blob/master/python/pos_tag/features.py.
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gains on some of the most common error types, for example, T-pos dramatically reduces

error on interjections and verbs that are incorrectly classified as nouns by the Stanford

tagger.

Although performance should increase with more labeled in-domain data, we believe

that it will likely always be less than performance on Newswire text, due to inherent noise,

and wide variety in style found on Twitter. For instance, Table 3.3 indicates there is still

much confusion between common and proper nouns, indicating that Twitter’s unreliable

capitalization is problematic even with in-domain labeled data.

Twitter PTB IRC

DT 6% 9% 5%

PRP 7% 2% 10%

UH 3% 0.0002% 12%

Table 3.5: Percent usage of selected tags in Twitter, IRC and Penn Treebank (PTB) text.
Both Twitter and IRC Chat data contain fewer determiners (DT), and more pronouns(PRP)
and interjections(UH) than PTB text.

# Tweets # Tokens

POS 800 15,185

Chunk 800 15,185

Informative Capitalization 400 6,692

NE Segmentation 2,400 41,765

NE Classification 400 7,624

Table 3.6: Summary of annotated Twitter datasets

3.1.2 Shallow Parsing (Chunking)

Shallow parsing, or chunking is the task of identifying non-recursive phrases, such as noun

phrases, verb phrases, and prepositional phrases in text. Similar to the benefits of part
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Accuracy Error Re-

duction

Majority Baseline (B-NP) 0.266 -

OpenNLP 0.839 -

T-chunk(CoNLL) 0.854 9%

T-chunk(Twitter) 0.867 17%

T-chunk(CoNLL + Twitter) 0.875 22%

Table 3.7: Token-Level accuracy at shallow parsing tweets. We compare against the
OpenNLP chunker as a baseline.

of speech taging, features generated from accurate shallow parsing of tweets could benefit

many applications such as Information Extraction and Named Entity Recognition.

Off the shelf shallow parsers perform noticeably worse on tweets, motivating us again

to annotate in-domain training data. We annotate the same set of 800 tweets mentioned

previously with tags from the CoNLL shared task [175]. We use the set of shallow parsing

features described by Sha and Pereira [165], in addition to the Brown clusters mentioned

above. Part-of-speech tag features are extracted based on cross-validation output predicted

by T-pos. For inference and learning, again we use Conditional Random Fields. We utilize

16K tokens of in-domain training data (using cross validation), in addition to 210K tokens

of newswire text from the CoNLL dataset.

Table 3.7 reports T-chunk’s performance at shallow parsing of tweets. We compare

against the off-the shelf OpenNLP chunker7, obtaining a 22% reduction in error.

3.1.3 Identifying Informative Capitalization

A key orthographic feature for recognizing named entities is capitalization [64; 47]. Unfortu-

nately in tweets, capitalization is much less reliable than in edited texts. In addition, there

is a wide variety in the styles of capitalization. In some tweets capitalization is informative,

whereas in other cases, non-entity words are capitalized simply for emphasis. Some tweets

7http://incubator.apache.org/opennlp/
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P R F1

Majority Baseline 0.70 1.00 0.82

T-cap 0.77 0.98 0.86

Table 3.8: Performance at predicting reliable capitalization.

contain all lowercase words (8%), whereas others are in ALL CAPS (0.6%).

To address this issue, it is helpful to incorporate information based on the entire con-

tent of the message to determine whether or not its capitalization is informative. To this

end, we build a capitalization classifier, T-cap, which predicts whether or not a tweet is

informatively capitalized. Its output is used as a feature for Named Entity Recognition.

We manually labeled our 800 tweet corpus as having either “informative” or “uninforma-

tive” capitalization. The criteria we use for labeling is as follows: if a tweet contains any

non-entity words which are capitalized, but do not begin a sentence, or it contains any

entities which are not capitalized, then its capitalization is “uninformative”, otherwise it is

“informative”.

For learning , we use Support Vector Machines.8 The features used include: the fraction

of words in the tweet which are capitalized, the fraction which appear in a dictionary

of frequently lowercase/capitalized words but are not lowercase/capitalized in the tweet,

the number of times the word ‘I’ appears lowercase and whether or not the first word in

the tweet is capitalized. Results comparing against the majority baseline, which predicts

capitalization is always informative, are shown in Table 3.8. Additionally, in Section 3.2

we show that features based on our capitalization classifier improve performance at named

entity segmentation.

3.2 Segmenting Named Entities

We now discuss our approach to named entity recognition on Twitter data. As with POS

tagging and shallow parsing, off the shelf named-entity recognizers perform poorly on tweets.

For example, applying the Stanford Named Entity Recognizer to one of the examples from

8http://www.chasen.org/~taku/software/TinySVM/
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Table 3.1 results in the following output:

[Yess]ORG! [Yess]ORG! Its official [Nintendo]LOC announced today that they Will

release the [Nintendo]ORG 3DS in north [America]LOC march 27 for $250

The OOV word ‘Yess’ is mistaken as a named entity. In addition, although the first

occurrence of ‘Nintendo’ is correctly segmented, it is misclassified, whereas the second oc-

currence is improperly segmented – it should be the product “Nintendo 3DS”. Finally “north

America” should be segmented as a LOCATION, rather than just ‘America’. In general,

news-trained Named Entity Recognizers seem to rely heavily on capitalization, which we

know to be unreliable in tweets.

Following Collins and Singer [34], Downey et al. [47] and Elsner et al. [56], we treat

classification and segmentation of named entities as separate tasks. This allows us to more

easily apply techniques better suited towards each task. For example, we are able to use

discriminative methods for named entity segmentation and distantly supervised approaches

for classification. While it might be beneficial to jointly model segmentation and (distantly

supervised) classification using a joint sequence labeling and topic model similar to that

proposed by Sauper et al. [160], we leave this for potential future work.

Because most words found in tweets are not part of an entity, we need a larger annotated

dataset to effectively learn a model of named entities. We therefore use a randomly sampled

set of 2,400 tweets for NER. All experiments (Tables 3.9, 4.2-4.4) report results using 4-fold

cross validation.

3.2.1 Segmenting Named Entities

Because capitalization in Twitter is less informative than news, in-domain data is needed

to train models which rely less heavily on capitalization, and also are able to utilize features

provided by T-cap.

We exhaustively annotated our set of 2,400 tweets (34K tokens) with named entities.9 A

convention on Twitter is to refer to other users using the @ symbol followed by their unique

9We found that including out-of-domain training data from the MUC competitions lowered performance
at this task.
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P R F1 F1 inc.

Stanford NER 0.62 0.35 0.44 -

T-seg(None) 0.71 0.57 0.63 43%

T-seg(T-pos) 0.70 0.60 0.65 48%

T-seg(T-pos, T-chunk) 0.71 0.61 0.66 50%

T-seg(All Features) 0.73 0.61 0.67 52%

Table 3.9: Performance at segmenting entities varying the features used. “None” removes
POS, Chunk, and capitalization features. Overall we obtain a 52% improvement in F1 score
over the Stanford Named Entity Recognizer.

username. We deliberately choose not to annotate @usernames as entities in our data set

because they are both unambiguous, and trivial to identify with 100% accuracy using a

simple regular expression, and would only serve to inflate our performance statistics. While

there is ambiguity as to the type of @usernames (for example, they can refer to people or

companies), we believe they could be more easily classified using features of their associated

user’s profile than contextual features of the text.

T-seg models Named Entity Segmentation as a sequence-labeling task using IOB encod-

ing for representing segmentations (each word either begins (B), is inside (I), or is outside

(O) of a named entity). For example in the following tagged Tweet:

The/B Town/I might/O be/O one/O of/O the/O best/O movies/O ...

The Town can be read off as a named entity. The word The begins (B) the entity, Town

is inside (I) and might is outside (O). We use Conditional Random Fields for learning

and inference. Again we include orthographic, contextual and dictionary features; our

dictionaries included a set of type lists gathered from Freebase. In addition, we use the

Brown clusters and outputs of T-pos, T-chunk and T-cap in generating features.

We report results at segmenting named entities in Table 3.9. Compared with the state-of-

the-art news-trained Stanford Named Entity Recognizer [62], T-seg obtains a 52% increase

in F1 score.
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3.3 Limitations and Future Work

The performance we have described on syntactic annotation of Twitter is lower in each case

than reported performance on grammatical texts such as news articles. Predicting syntactic

annotations of Twitter’s noisy and informal text is a more challenging task, due to its noisy

nature, and diversity of different styles. In contrast news is grammatical and follows strict

stylistic conventions.

Even though this task is more difficult in Twitter, we are still able to achieve good enough

performance to be useful for information extraction applications. Furthermore, once we get

past these noisy text challenges other tasks become easier due to Twitter’s simple discourse

structure. We leverage the tools described in this chapter to build a weakly supervised

named entity categorization system in Chapter 4, and also to extract a calendar of popular

events occuring in the near future in Chapter 7.

While annotating syntax in Twitter is a very difficult task, we believe that there is room

for improvement. One possible avenue for improving performance at shallow syntactic

annotation tasks is to apply recent work on text normalization [77]. We suspect that using

text normalization systems as a reprocessing step on the input could lead to cascading

errors, however using their outputs as additional features could be a very effective way to

handle Twitter’s diversity of style.

3.4 Related Work

There has been relatively little previous work on building NLP tools for Twitter or sim-

ilar text styles. Locke and Martin [109] train a classifier to recognize named entities

based on annotated Twitter data, handling the types PERSON, LOCATION, and OR-

GANIZATION. Developed in parallel to our work, Liu et al. [108] investigate NER on

the same 3 types, in addition to PRODUCTs and present a semi-supervised approach

using k-nearest neighbor. Also developed in parallel, Gimpell et al. [69] build a POS

tagger for tweets using 20 coarse-grained tags. Benson et. al. [8] present a system

which extracts artists and venues associated with musical performances. Recent work [77;

72] has proposed lexical normalization of tweets which may be useful as a preprocessing step
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for the upstream tasks like POS tagging and NER. In addition Finin et. al. [61] investigate

the use of Amazon’s Mechanical Turk for annotating Named Entities in Twitter, Minkov

et. al. [120] investigate person name recognizers in email, and Singh et. al. [166] apply a

minimally supervised approach to extracting entities from text advertisements. In contrast

to previous work, we have demonstrated the utility of features based on Twitter-specific

POS taggers and Shallow Parsers in segmenting Named Entities.

3.5 Conclusions

We have demonstrated that existing tools for POS tagging, Chunking and Named Entity

Recognition perform quite poorly when applied to noisy Twitter text. To address this

challenge we have annotated tweets and built tools trained on unlabeled, in-domain and out-

of-domain data, showing substantial improvement over their state-of-the art news-trained

counterparts, for example, T-pos outperforms the Stanford POS Tagger, reducing error by

41%. We showed the benefit of features designed to work on noisy Twitter text including

unsupervised word clusters and a novel capitalization reliability classifier. Additionally we

have shown the benefits of features generated from T-pos and T-chunk in segmenting

Named Entities.

Access to NLP tools which are capable of processing the short informal texts found on

Twitter enables semantic processing and knowledge extraction from this realtime, inclusive

stream of text. For example in Chapter 7, we leverage these tools to extract a realtime

calendar of popular events occurring on Twitter. We also believe our NLP tools have the

potential to benefit a wide variety of additional applications for example: disaster relief

[126], sociological research, for instance studying the phenomenon of bullying [186], and

sentiment analysis [184].

Our POS tagger, Chunker Named Entity Recognizer are available for use by the research

community: http://github.com/aritter/twitter_nlp
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Chapter 4

DISTANTLY SUPERVISED NAMED ENTITY CATEGORIZATION
WITH CONSTRAINED LATENT VARIABLE MODELS

In Chapter 3, we presented a set of NLP tools adapted to Twitter, supporting a named

entity segmenter which identifies the spans of entity mentions in this noisy, informal style

of text. Part of the traditional named entity recognition task includes categorizing the

entities into types; the traditional 3 types for named entity recognition in newswire text

being PERSON, LOCATION and ORGANIZATION. Supervised learning is problematic

for named entity categorization in Twitter, however, due to the diverse types of entities

which are mentioned in addition to its terse style. In this chapter we therefore explore

weakly supervised approaches to named entity categorization. We extend previous work

on bootstrapping semantic categories [59; 23; 90; 174; 116], by applying constrained latent

variable models. Probabilistic latent variable models provide a principled approach to es-

timating the type of new entities using existing dictionaries of entities as constraints in a

probabilistic latent variable model. Because our approach is based on generative models, it

provides a principled way to query the type of each entity mention in context; by leveraging

large amounts of unlabeled data we are able to show large performance improvements over

a supervised baseline.

4.1 Classifying Named Entities in Twitter

Classifying named entities in tweets is a difficult task for two reasons. First, tweets contain a

plethora of distinctive named entity types (Companies, Products, Bands, Movies, and more).

Almost all these types (except for People and Locations) are relatively infrequent, so even

a large sample of manually annotated tweets will contain few training examples. Secondly,

due to Twitter’s 140 character limit, tweets often lack sufficient context to determine an

entity’s type without the aid of background knowledge.

To address these issues we introduce a novel approach to distant supervision [121] based
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on Latent Dirichlet Allocation [13], which is able to leverage large amounts of unlabeled

data in addition to large dictionaries of entities gathered from Freebase, and combines

information about an entity’s context across its mentions. Each entity’s distribution over

types is constrained based on an open-domain database (Freebase) as a source of supervision.

This approach increases F1 score by 25% relative to co-training [14; 194] on the task of

classifying named entities in Tweets.

Because Twitter contains many distinctive, and infrequent entity types, gathering suffi-

cient training data for named entity classification is a difficult task. In any random sample

of tweets which is possible to annotate, many types will only occur a few times. Moreover,

due to their terse nature, individual tweets often lack enough context to determine the type

of the entities they contain. For example, consider following tweet:

KKTNY in 45min..........

without any prior knowledge, there is not enough context to determine what type of entity

“KKTNY” refers to, however by exploiting redundancy in the data [49], we can determine

it is likely a reference to a television show as it often co-occurs with words such as watching

and premieres in other contexts.1

In order to handle the problem of many infrequent types, we leverage large lists of entities

and their types gathered from an open-domain ontology (Freebase) as a source of distant

supervision, allowing use of large amounts of unlabeled data in learning.

4.2 Freebase

Although Freebase has very broad coverage, simply looking up entities and their types is

inadequate for classifying named entities in context; this approach results in a 0.38 F-score,

as described in Section 4.4. The Freebase dictionaries are highly ambiguous, so we therefore

need some way to disambiguate the type of an entity in context. For example, according

to Freebase, the string ‘China’ could refer to a country, a band, a person, or a film. This

problem is very common: 35% of the entities in our data appear in more than one of

1Kourtney & Kim Take New York.
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Type Top 20 Entities not found in Freebase dictionaries

PRODUCT nintendo ds lite, apple ipod, generation black, ipod nano,

apple iphone, gb black, xperia, ipods, verizon media, mac

app store, kde, hd video, nokia n8, ipads, iphone/ipod, galaxy

tab, samsung galaxy, playstation portable, nintendo ds, vpn

TV-SHOW pretty little, american skins, nof, order svu, greys, kktny,

rhobh, parks & recreation, parks & rec, dawson ’s creek, big

fat gypsy weddings, big fat gypsy wedding, winter wipeout,

jersey shores, idiot abroad, royle, jerseyshore, mr . sunshine,

hawaii five-0, new jersey shore

FACILITY voodoo lounge, grand ballroom, crash mansion, sullivan hall,

memorial union, rogers arena, rockwood music hall, amway

center, el mocambo, madison square, bridgestone arena, cat

club, le poisson rouge, bryant park, mandalay bay, broadway

bar, ritz carlton, mgm grand, olympia theatre, consol energy

center

Table 4.1: Example type lists produced by LabeledLDA. No entities which are shown were
found in Freebase; these are typically either too new to have been added, or are mis-
spelled/abbreviated (for example rhobh=”Real Housewives of Beverly Hills”). In a few
cases there are segmentation errors.
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our (mutually exclusive) Freebase dictionaries. Additionally, 30% of entities mentioned on

Twitter do not appear in any Freebase dictionary, as they are either too new (for example

a newly released videogame), or are misspelled or abbreviated (for example ‘mbp’ is often

used to refer to the “mac book pro”).

4.3 Distant Supervision with Topic Models

To model unlabeled entities and their possible types, we apply LabeledLDA [143], con-

straining each entity’s distribution over topics based on its set of possible types according

to Freebase. In contrast to previous weakly supervised approaches to Named Entity Classi-

fication, for example the Co-Training and Näıve Bayes (EM) models of Collins and Singer

[34], LabeledLDA models each entity string as a mixture of types rather than using a single

hidden variable to represent the type of each mention. This allows information about an

entity’s distribution over types to be shared across mentions, naturally handling ambiguous

entity strings whose mentions could refer to different types.

Each entity string in our data is associated with a bag of context-words found within

a context window around all of its mentions, and also within the entity itself. Each bag

of context-words is associated with a distribution over topics, Multinomial(θe), and each

topic is associated with a distribution over context-words, Multinomial(βt). In addition,

we maintain a one-to-one mapping between topics and Freebase type dictionaries. These

dictionaries constrain θe, the distribution over topics for each entity string, based on its

set of possible types, FB[e]. For example, θAmazon could correspond to a distribution over

two types: COMPANY, and LOCATION, whereas θApple might represent a distribution over

COMPANY, and FOOD. For entities which aren’t found in any of the Freebase dictionaries,

we leave their topic distributions θe unconstrained. Note that in absence of any constraints

LabeledLDA reduces to standard LDA, and a fully unsupervised setting similar to that

presented by Elsner et. al. [56].

In detail, the generative story that models our data for distantly superivsed named entity

classification is presented as Algorithm 4.

To infer values for the hidden variables, we apply Collapsed Gibbs sampling [73], where

parameters are integrated out, and the ze,is are sampled directly. For details, refer to
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Algorithm 4 Generative Story for Distantly Supervised Named Entity Categorization

for each type: t = 1 . . . T do

Generate βt according to symmetric Dirichlet distribution Dir(η).

end for

for each entity string e = 1 . . . |E| do

Generate θe over FB[e] according to Dirichlet distribution Dir(αFB[e]).

for each word position i = 1 . . . Ne do

Generate ze,i from Mult(θe).

Generate the word we,i from Mult(βze,i).

end for

end for

Chapter 2.

4.3.1 Classifying Entity Mentions in Context

In making predictions, we found it beneficial to consider θtraine as a prior distribution over

types for entities which were encountered during (distantly supervised) training. In practice

this sharing of information across contexts is very beneficial as there is often insufficient

evidence in an isolated tweet to determine an entity’s type. For entities which weren’t

encountered during training, we instead use a prior based on the distribution of types

across all entities. One approach to classifying entities in context is to assume that θtraine is

fixed, and that all of the words inside the entity mention and context, w, are drawn based

on a single topic, z, that is they are all drawn from Multinomial(βz). We can then compute

the posterior distribution over types in closed form with a simple application of Bayes rule:

P (z|w) ∝
∏
w∈w

P (w|z : β)P (z : θtraine )

During development, however, we found that rather than making these assumptions,

using Gibbs Sampling to estimate the posterior distribution over types performs slightly

better. In order to make predictions, for each entity we use an informative Dirichlet prior
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based on θtraine and perform 100 iterations of Gibbs Sampling holding the hidden topic

variables in the training data fixed [193]. Fewer iterations are needed than in training since

the type-word distributions, β have already been inferred.

In order to make predictions for entity mentions in context, we perform 100 iterations

of Gibbs Sampling on the group of words inside the entity mention and a context window,

holding the hidden topic variables in the (distantly supervised) training data fixed [193].

We need fewer sampling iterations than in training, since the type-word distributions, βt

have already been inferred.

For entities which have been encountered during training, we generate an informative

Dirichlet prior using the estimate of their distribution over types across all contexts (θtraine ).

This has the effect of biasing the classification of an entity mention in context towards its

more probable types. The local context can override this prior, however in cases where the

local context is uninformative (a common situation due to lack of context in tweets), the

prior suggests the most likely type which we found to be very useful in practice.

4.4 Experiments

To evaluate T-class’s ability to classify entity mentions in context, we annotated the 2,400

tweets with 10 types which are both popular on Twitter, and have good coverage in Freebase:

PERSON, GEO-LOCATION, COMPANY, PRODUCT, FACILITY, TV-SHOW, MOVIE,

SPORTSTEAM, BAND, and OTHER. Note that these type annotations are only used for

evaluation purposes, and are not used for training T-class, which relies only on distant

supervision. In some cases, we combine multiple Freebase types to create a dictionary of

entities representing a single type (for example the COMPANY dictionary contains Freebase

types /business/consumer company and /business/brand). Because our approach does not

rely on any manually labeled examples, it is straightforward to extend it for different sets

of types based on the needs of downstream applications.

4.4.1 Training

To gather unlabeled data for inference, we run T-seg, our entity segmenter (described

in Chapter 3), on 60M tweets, and keep the entities which appear 100 or more times.
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This results in a set of 23,651 distinct entity strings. For each entity string, we collected

words occurring in a context window of 3 words from all mentions in our data, and used a

vocabulary of the 100K most frequent words. We ran Gibbs sampling for 1,000 iterations,

using the last sample to estimate entity-type distributions θe, in addition to type-word

distributions βt. Table 4.1 displays the 20 entities (not found in Freebase) whose posterior

distribution θe assigns highest probability to selected types.

4.4.2 Testing

For entities which were encountered during training, eseen, we use an informative prior based

on the inferred topic counts Ceseen1 , . . . , CeseenT from the training data:

θtesteseen ∼ Dir(Ceseen1 , . . . , CeseenT )

For those entities which are new (haven’t yet been encountered), we use an informative prior

to encode the overall distribution over types in the training data. To avoid an overwhelming

prior which prefers the most frequent class, we use concentration parameter of 1 (that is we

normalize by the total number of words in the training data, Ntrain):

θtestenew ∼ Dir(C1/Ntrain, . . . , CT /Ntrain)

We run 100 iterations of Gibbs sampling over each test “document” to infer posterior

distributions over θteste Each entity mention’s type is predicted based on the topic with

highest posterior probability.

4.4.3 Results

Table 4.2 presents the classification results of T-class compared against a majority baseline

which simply picks the most frequent class (PERSON), in addition to the Freebase baseline,

which only makes predictions if an entity appears in exactly one dictionary (i.e., appears

unambiguous). T-class also outperforms a simple supervised baseline which applies a
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System P R F1

Majority Baseline 0.30 0.30 0.30

Freebase Baseline 0.85 0.24 0.38

Supervised Baseline 0.45 0.44 0.45

DL-Cotrain 0.54 0.51 0.53

LabeledLDA 0.72 0.60 0.66

Table 4.2: Named Entity Classification performance on the 10 types.

Type LL FB CT SP N

PERSON 0.82 0.48 0.65 0.83 436

LOCATION 0.74 0.21 0.55 0.67 372

ORGANIZATION 0.66 0.52 0.55 0.31 319

overall 0.75 0.39 0.59 0.49 1127

Table 4.3: F1 classification scores for the 3 MUC types PERSON, LOCATION, ORGANI-
ZATION. Results are shown using LabeledLDA (LL), Freebase Baseline (FB), DL-Cotrain
(CT) and Supervised Baseline (SP). N is the number of entities in the test set.

MaxEnt classifier using 4-fold cross validation over the 1,450 entities which were annotated

for testing. Additionally we compare against the co-training algorithm of Collins and Singer

[34] which also leverages unlabeled data and uses our Freebase type lists; for seed rules we use

the “unambiguous” Freebase entities. Our results demonstrate that T-class outperforms

the baselines and achieves a 25% increase in F1 score over co-training.

Tables 4.3 and 4.4 present a breakdown of F1 scores by type, both collapsing types into

the standard classes used in the MUC competitions (PERSON, LOCATION, ORGANIZA-

TION), and using the 10 popular Twitter types described earlier.

We observe that T-class outperforms the other methods except in the case of MOVIEs,

where the Freebase baseline performs better. We also notice that classes like BAND and

FACILITY are harder to identify, since they often have ambiguous names.

LabeledLDA is winning for two reasons: first, note that it is able to share information
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Type LL FB CT SP N

PERSON 0.82 0.48 0.65 0.86 436

GEO-LOC 0.77 0.23 0.60 0.51 269

COMPANY 0.71 0.66 0.50 0.29 162

FACILITY 0.37 0.07 0.14 0.34 103

PRODUCT 0.53 0.34 0.40 0.07 91

BAND 0.44 0.40 0.42 0.01 54

SPORTSTEAM 0.53 0.11 0.27 0.06 51

MOVIE 0.54 0.65 0.54 0.05 34

TV-SHOW 0.59 0.31 0.43 0.01 31

OTHER 0.52 0.14 0.40 0.23 219

overall 0.66 0.38 0.53 0.45 1450

Table 4.4: F1 scores for classification broken down by type for LabeledLDA (LL), Freebase
Baseline (FB), DL-Cotrain (CT) and Supervised Baseline (SP). N is the number of entities
in the test set.

P R F1

DL-Cotrain-entity 0.47 0.45 0.46

DL-Cotrain-mention 0.54 0.51 0.53

LabeledLDA-entity 0.73 0.60 0.66

LabeledLDA-mention 0.57 0.52 0.54

Table 4.5: Comparing LabeledLDA and DL-Cotrain grouping unlabeled data by entities vs.
mentions.
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about an entity’s likely types across mentions, which is very beneficial for the common

case where there simply isn’t enough context contained within a Tweet to disambiguate

the type of entities it mentions. Secondly, because LabeledLDA makes use of the Freebase

dictionaries as constraints, it is able to better exploit this highly ambiguous source of training

data, rather than relying on unambiguous mentions for learning.

4.4.4 Entity Strings vs. Entity Mentions

DL-Cotrain and LabeledLDA use two different representations for the unlabeled data dur-

ing learning. LabeledLDA groups together words across all mentions of an entity string,

and infers a distribution over its possible types, whereas DL-Cotrain considers the entity

mentions separately as unlabeled examples and predicts a type independently for each. In

order to ensure that the difference in performance between LabeledLDA and DL-Cotrain

is not simply due to this difference in representation, we compare both DL-Cotrain and

LabeledLDA using both unlabeled datasets (grouping words by all mentions vs. keeping

mentions separate) in Table 4.5. As expected, DL-Cotrain performs poorly when the unla-

beled examples group mentions; this makes sense, since Co-Training uses a discriminative

learning algorithm, so when trained on entities and tested on individual mentions, the per-

formance decreases. Additionally, LabeledLDA’s performance is poorer when considering

mentions as “documents”. This is likely due to the fact that there isn’t enough context

to effectively learn topics when the “documents” are very short (typically fewer than 10

words).

4.4.5 End to End Evaluation

Finally we present the end to end performance on segmentation and classification (T-ner)

in Table 4.6. We observe that T-ner again outperforms co-training. Moreover, comparing

against the Stanford Named Entity Recognizer on the 3 MUC types, T-ner doubles F1

score.
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System P R F1

Cotrain-ner (10 types) 0.55 0.33 0.41

T-ner(10 types) 0.65 0.42 0.51

Cotrain-ner (PLO) 0.57 0.42 0.49

T-ner(PLO) 0.73 0.49 0.59

Stanford NER (PLO) 0.30 0.27 0.29

Table 4.6: Performance at predicting both segmentation and classification. Systems labeled
with PLO are evaluated on the 3 MUC types PERSON, LOCATION, ORGANIZATION.

4.5 Related Work

Previous work on Semantic Bootstrapping has taken a weakly-supervised approach to clas-

sifying named entities based on large amounts of unlabeled text [59; 23; 90; 174; 116]. In

contrast, rather than predicting which classes an entity belongs to (e.g. a multi-label clas-

sification task), LabeledLDA estimates a distribution over its types, which is then useful as

a prior when classifying mentions in context.

In addition there has been been work on Skip-Chain CRFs [172; 62] which enforce

consistency when classifying multiple occurrences of an entity within a document. Using

topic models (e.g. LabeledLDA) for classifying named entities has a similar effect, in that

information about an entity’s distribution of possible types is shared across its mentions.

We have taken a distantly supervised approach to Named Entity Classification which

exploits large dictionaries of entities gathered from Freebase, requires no manually annotated

data, and as a result is able to handle a larger number of types than previous work. Although

we found manually annotated data to be very beneficial for named entity segmentation, we

were motivated to explore approaches that don’t rely on manual labels for classification due

to Twitter’s wide range of named entity types. Additionally, unlike previous work on NER

in informal text, our approach allows the sharing of information across an entity’s mentions

which is quite beneficial due to Twitter’s terse nature.

Finally, the idea of distant supervision was originally proposed in the context of relation



39

extraction [121] leveraging Freebase relations (as opposed to types) as a source of distant

supervision.

4.6 Limitations and Future Work

Our proposed approach is capable of learning to categorize named entities from large

amounts of naturally occurring unlabeled data in addition to highly ambiguous dictionaries.

There are some limitations to this approach however which open up potential avenues for

future work which we now outline.

First, because our approach is based on generative probabilistic models, it is generally not

amenable to feature engineering. Our model makes strong independence assumptions about

the features, so this approach is not applicable to situations where there are highly correlated

and overlapping feature sets. This is the case for the task of extracting binary relations where

commonly used features include dependency paths from parse trees in addition to word and

part of speech sequences. In contrast conditionally trained models don’t make independence

assumptions about the features, and are therefore more appropriate for situations where

feature engineering is particularly beneficial such as binary relation extraction. In Chapter

5, therefore, we investigate conditionally trained models for binary relation extraction.

The pipelined architecture described in Chapter 3 and the present chapter has several

advantages: it makes inference tractable, and allows appropriate models to be applied to

each task: conditional random fields are appropriate for the task of named entity segmen-

tation as they enable feature engineering, whereas generative models are appropriate for

weakly supervised named entity categorization. Despite these advantages, a limitation that

stems from the pipelined approach, is the propagation of errors. Errors made by the seg-

menter cannot be corrected by the classifier and vice versa. In contrast a joint model of

segmentation and weakly supervised named entity categorization could potentially produce

better end-to-end performance by sharing information across these two tasks. Of course this

will complicate the inference and learning, so it is an open question whether this approach

will produce better results in the end, but this could be an interesting avenue for future

work.

A final limitation we point out with our model is the issue of missing data which is
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discussed in detail in Chapter 5. If a named entity is listed in our Freebase dictionaries,

we assume it can only be classified as one of the possible categories in our data. That

is, we make the assumption that Freebase has complete coverage for the set of possible

types for any string that it contains. This assumption (which has so far been made by all

distantly supervised approaches to learning), effectively leads to errors in the training data.

In Chapter 5, we show that by relaxing this assumption we are able to dramatically improve

precision and recall at extracting binary relations using distant supervision.

4.7 Conclusions

We have identified named entity classification as a particularly challenging task on Twitter.

Due to their terse nature, tweets often lack enough context to identify the types of the

entities they contain. In addition, a plethora of distinctive named entity types are present,

necessitating large amounts of training data. To address both these issues we have presented

and evaluated a distantly supervised approach based on LabeledLDA, a constrained latent

variable model, which obtains a 25% increase in F1 score over the co-training approach to

Named Entity Classification suggested by Collins and Singer [34] when applied to Twitter.

By modeling large dictionaries of named entities from Freebase, in addition to a large

corpus of named entities which is automatically extracted from Twitter using latent vari-

ables, we are able to build a state-of-the art named entity classification system for Twitter.

We showed this approach outperforms both state-of-the art NLP tools which are tuned for

newswire text in addition to a supervised baseline.

This is one instance of a semantic processing task where weakly supervised latent variable

models perform better than supervised learning on small manually annotated datasets. More

evidence that unsupervised and weakly supervised methods are appropriate for semantic

processing are presented in later chapters.

We have made our named entity classification models which are trained on millions of

Tweets available as part of a suite of NLP tools tuned for Twitter2.

2https://github.com/aritter/twitter_nlp
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Chapter 5

MODELING MISSING DATA IN DISTANT SUPERVISION

In Chapter 4 we presented a new approach to distant supervision based on topic models

which is appropriate for highly ambiguous training data. This chapter addresses the question

of missing data [107] in the context of distant supervision, which is a very general issue

affecting distant supervision for named entity categorization and also extracting binary

relations [185; 121; 148; 80; 173; 171].

Distant supervision algorithms learn information extraction models given only large

readily available databases and text collections. Most previous work has used heuristics for

generating labeled data, for example assuming that facts not contained in the database are

not mentioned in the text, and facts in the database must be mentioned at least once. In

this chapter, we propose a new latent-variable approach that models missing data. This

provides a natural way to incorporate side information, for instance modeling the intuition

that text will often mention rare entities which are likely to be missing in the database.

Despite the added complexity introduced by reasoning about missing data, we demonstrate

that a carefully designed local search approach to inference is very accurate and scales

to large datasets. Experiments demonstrate improved performance for binary and unary

relation extraction when compared to learning with heuristic labels, including on average a

27% increase in area under the precision recall curve in the binary case.

5.1 Introduction

This chapter addresses the issue of missing data [107] in the context of distant supervision.

The goal of distant supervision is to learn to extract relations, for example binary relations

[19; 185; 121] or unary relations such as named entity categories [34], from unlabeled text

corpora using a large database of propositions involving the target relations as a distant

source of supervision. In the case of binary relations, the intuition is that any sentence
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Person Employer

Bibb Latané UNC Chapel Hill

Tim Cook Apple

Susan Wojcicki Google

True Positive “Bibb Latané, a professor at the University of North Carolina at

Chapel Hill, published the theory in 1981.”

False Positive “Tim Cook praised Apple’s record revenue...”

False Negative “John P. McNamara, a professor at Washington State University’s

Department of Animal Sciences...”

Figure 5.1: A small hypothetical database and heuristically labeled training data for the
Employer relation.

which mentions a pair of entities (e1 and e2) that participate in a relation, r, is likely to

express the proposition r(e1, e2), so we can treat it as a positive training example of r.

Figure 5.1 presents an example of this process.

One question which has received little attention in previous work is how to handle

the situation where information is missing, either from the text corpus, or the database.

As an example, let us assume the pair of entities (John P. McNamara, Washington State

University) is absent from the Employer relation in our database. In this case, the sentence

in Figure 5.1 (and others which mention the entity pair) is effectively treated as a negative

example of the relation. This is an issue of practical concern, as most databases of interest

are highly incomplete - this is the reason we need to extend them by extracting information

from text in the first place.

As an example where the MAR assumption is violated, imagine estimating the prob-

ability of a coin flip landing heads, θH = P (H), from an observed sequence of flips with

missing data which depends on each outcome: the result of a flip is hidden with probability

0.5 if the coin lands tails, and 0.2 if it is heads. It is clear that we need to explicitly model

the process by which data is missing in order to obtain an accurate estimate of θH . A
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similar problem arises when estimating the parameters of a relation extractor using distant

supervision: whether a proposition is observed or missing in the text or database depends

heavily on its truth value; given that a fact is true we have some chance to observe it,

however we never observe which facts are false. In this case our data are not missing at

random, because the probability of observing a proposition depends on its truth value.

We need to be cautious in how we handle missing data in distant supervision, because this

is a case where data is not missing at random (NMAR). Whether a proposition is observed

or missing in the text or database depends heavily on its truth value: given that it is true we

have some chance to observe it, however we do not observe those which are false. To address

this challenge, we propose a joint model of extraction from text and the process by which

propositions are observed or missing in both the database and text. Our approach provides

a natural way to incorporate side information in the form of a missing data model. For

instance, popular entities such as Barack Obama already have good coverage in Freebase,

so new extractions are more likely to be errors than those involving rare entities with poor

coverage.

Our approach to missing data is general and can be combined with various IE solutions.

As a proof of concept, we extend MultiR [80], a recent model for distantly supervised

information extraction, to explicitly model missing data. These extensions complicate the

MAP inference problem which is used as a subroutine in learning. This motivated us to

explore a variety of approaches to inference in the joint extraction and missing data model.

We explore both exact inference based on A* search and efficient approximate inference

using local search. Our experiments demonstrate that with a carefully designed set of

search operators, local search produces optimal solutions in most cases.

Experimental results demonstrate large performance gains over the heuristic labeling

strategy on both binary relation extraction and weakly supervised named entity categoriza-

tion. For example our model obtains a 27% increase in area under the precision recall curve

on the sentence-level relation extraction task.
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Symbol Description

(e1, e2) a pair of entities

s The set of sentences which mention e1 and e2

z The set of relations that are mentioned in s

θ Parameters of the extractor

φ(zi, si; θ) Sentence-level extraction factors

f(zi, si) Features

ω(z, dj) Aggregate hard constraint factors

dj Binary variable indicating whether the proposition rj(e1, e2) is mentioned in

Freebase

tj Binary variable indicating whether the proposition rj(e1, e2) is mentioned in

the text corpus

ψ(tj , dj) Pairwise potentials which penalize disagreement between tj and dj

Table 5.1: A summary of notation used in this chapter.
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5.2 Related Work

There has been much interest in distantly supervised1 training of relation extractors using

databases. For example, Craven and Kumlien [35] build a heuristically labeled dataset,

using the Yeast Protein Database to label Pubmed abstracts with the subcellular-localization

relation. Wu and Weld [185] heuristically annotate Wikipedia articles with facts mentioned

in the infoboxes, enabling automated infobox generation for articles which do not yet contain

them. Benson et. al. [8] use a database of music events taking place in New York City as

a source of distant supervision to train event extractors from Twitter. Mintz et. al. [121]

used a set of relations from Freebase as a distant source of supervision to learn to extract

information from Wikipedia. Ridel et. al. [148], Hoffmann et. al. [80], and Surdeanu et. al.

[171] presented a series of models casting distant supervision as a multiple-instance learning

problem [45].

Recent work has begun to address the challenge of noise in heuristically labeled training

data generated by distant supervision, and proposed a variety of strategies for correcting

erroneous labels. Takamatsu et al. [173] present a generative model of the labeling process,

which is used as a pre-processing step for improving the quality of labels before training

relation extractors. Independently, Xu et. al. [187] analyze a random sample of 1834

sentences from the New York Times, demonstrating that most entity pairs expressing a

Freebase relation correspond to false negatives. They apply pseudo-relevance feedback to

add missing entries in the knowledge base before applying the MultiR model [80]. Min et al.

[119] extend the MIML model of Surdeanu et. al. [171] using a semi-supervised approach

assuming a fixed proportion of true positives for each entity pair. In contrast to previous

work which has aimed to correct labeling noise, we cast this as a missing data problem in

which information is not missing at random [107]. We propose a joint model of relation

extraction and observation of facts in both the text in the database; this addresses both the

problem of false negatives and false positives.

The issue of missing data has been extensively studied in the statistical literature [107;

67]. Most methods for handling missing data assume that variables are missing at random

1also referred to as weakly supervised
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(MAR): whether a variable is observed does not depend on its value. In situations where

the MAR assumption is violated (for example distantly supervised information extraction),

ignoring the missing data mechanism will introduce bias. In this case it is necessary to

jointly model the process of interest (e.g. information extraction) in addition to the missing

data mechanism.

Another line of related work is iterative semantic bootstrapping [16; 2]. Carlson et.

al. [22] exploit constraints between relations to reduce semantic drift in the bootstrapping

process; such constraints are potentially complementary to our approach of modeling missing

data.

5.3 A Latent Variable Model for Distantly Supervised Relation Extraction

In this section we review the MultiR model (due to Hoffmann et. al. [80]) for distant

supervision in the context of extracting binary relations. This model is extended to handle

missing data in Section 5.4. We focus on binary relations to keep discussions concrete;

unary relation extraction is also possible.

Given a set of sentences, s = s1, s2, . . . , sn, which mention a specific pair of entities

(e1 and e2) our goal is to correctly predict which relation is mentioned in each sentence,

or “NA” if none of the relations under consideration are mentioned. Unlike the standard

supervised learning setup, we do not observe the latent sentence-level relation mention

variables, z = z1, z2, . . . , zn
2 Instead we only observe aggregate binary variables for each

relation, d = d1, d2, . . . , dk, which indicate whether the proposition rj(e1, e2) is present in

the database (Freebase). Of course the question which arises is: how do we relate the

aggregate-level variables, dj , to the sentence-level relation mentions, zi? A sensible answer

to this question is a simple deterministic-OR function. The deterministic-OR states that if

there exists at least one i such that zi = j, then dj = 1. For example, if at least one sentence

mentions that “Barack Obama was born in Honolulu”, then that fact is true in aggregate, if

none of the sentences mentions the relation, then the fact is assumed false. The model also

makes the converse assumption: if Freebase contains the relation BirthLocation(Barack

2These variables indicate which relation is mentioned between e1 and e2 in each sentence.
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𝑠1 𝑠2 𝑠3 … 𝑠𝑛 

𝑧1 𝑧2 𝑧3 … 𝑧𝑛 

𝑑1 𝑑2 𝑑𝑘 … 

Local Extractors 

Deterministic OR 

(Barack Obama, Honolulu) 

Sentences 

Aggregate Relations 

(Born-In, Lived-In, children, etc…) 

𝑃 𝑧𝑖 = 𝑟 𝑠𝑖 ∝ exp⁡(𝜃 ⋅ 𝑓 𝑠𝑖 , 𝑟 ) Relation mentions 

Figure 5.2: MultiR (Hoffmann et. al. 2011)

Obama, Honolulu), then we must extract it from at least one sentence. A summary of this

model, which is due to Hoffmann et. al. [80] is presented in Figure 5.2.

5.3.1 Learning

To tune the parameters of the sentence-level relation mention classifier, θ, we maximize the

likelihood of the facts observed in Freebase conditioned on the sentences in our text corpus:

θ∗ = arg max
θ
P (d|s; θ)

= arg max
θ

∏
e1,e2

∑
z

P (z,d|s; θ)

Here the conditional likelihood of a given entity pair is defined as follows:

P (z,d|s; θ) =
n∏
i=1

φ(zi, si; θ)×
k∏
j=1

ω(z, dj)

=

n∏
i=1

eθ·f(zi,si) ×
k∏
j=1

1¬dj⊕∃i:j=zi

Where 1x is an indicator variable which takes the value 1 if x is true and 0 otherwise, the

ω(z, dj) factors are hard constraints corresponding to the deterministic-OR function, and

f(zi, si) is a vector of features extracted from sentence si and relation zi.
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An iterative gradient-ascent based approach is used to tune θ using a latent-variable

perceptron-style additive update scheme [33; 99; 196]. The gradient of the conditional log

likelihood, for a single pair of entities, e1 and e2, is as follows:3

∂ logP (d|s; θ)

∂θ
= EP (z|s,d;θ)

∑
j

f(sj , zj)

−EP (z,d|s;θ)

∑
j

f(sj , zj)


These expectations are too difficult to compute in practice, so instead they are approximated

as maximizations:

∂ logP (d|s; θ)

∂θ
≈

∑
j

f(sj , z
∗DB
j )−

∑
j

f(sj , z
∗
j )

Computing this approximation to the gradient requires solving two inference problems cor-

responding to the two maximizations:

z∗DB = arg max
z
P (z|s,d; θ)

z∗ = arg max
z
P (z,d|s; θ)

The MAP solution for the second term is easy to compute: because d and z are determin-

istically related, we can simply find the highest scoring relation, r, for each sentence, si,

according to the sentence-level factors, φ, independently:

zi = arg max
r
φ(r, si)

= arg max
r

exp (θ · f(r, si))

The first term, is more difficult, however, as this requires finding the best assignment to the

sentence-level hidden variables z = z1 . . . zn conditioned on the observed sentences and facts

in the database. Hoffmann et. al. [80] show how this reduces to a well-known weighted

edge cover problem which can be solved exactly in polynomial time.

5.4 Modeling Missing Data

The model presented in Section 5.3 makes two assumptions which correspond to hard con-

straints:

3For details see Koller and Friedman [87], Chapter 20.
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1. If a fact is not found in the database it can’t be mentioned in the text.

2. If a fact is in the database it must be mentioned in at least one sentence.

These assumptions drive the learning, however if there is information missing from either

the text or the database this leads to errors in the training data (false positives, and false

negatives respectively).

In order to gracefully handle the problem of missing data, we propose to extend the

model presented in Section 5.3 by splitting the aggregate level variables, d, into two parts:

t which represents whether a fact is mentioned in the text (in at least one sentence), and

d′ which represents whether the fact is mentioned in the database. We introduce pairwise

potentials ψ(tj , dj) which penalize disagreement between tj and dj , that is:

ψ(tj , dj) =


−αMIT if tj = 0 and dj = 1

−αMID if tj = 1 and dj = 0

0 otherwise

Where αMIT (Missing In Text) and αMID (Missing In Database) are parameters of the

model which can be understood as penalties for missing information in the text and database

respectively. We refer to this model as DNMAR (for Distant Supervision with Data Not

Missing At Random). A graphical model representation is presented in Figure 5.3.

This model can be understood as relaxing the two hard constraints mentioned above

into soft constraints. As we show in Section 5.7, simply relaxing these hard constraints into

soft constraints and setting the two parameters αMIT, and αMID by hand on development

data results in a large improvement to precision at comparable recall over MultiR on two

different applications of distant supervision: binary relation extraction and named entity

categorization.

Inference in this model becomes more challenging however, because the constrained

inference problem no longer reduces to a weighted edge cover problem as before. In Section

5.5, we present an inference technique for the new model which is time and memory efficient

and almost always finds an exact MAP solution.
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Mentioned in Text 

Figure 5.3: DNMAR

The learning proceeds analogously to what was described in section 5.3.1, with the

exception that we now maximize over the additional aggregate-level hidden variables t,

which have been introduced. The parameter updates are now as follows:

∂P (d|s; θ)

∂θ
≈ max

z,t P (z,t|s,d;θ)

∑
j

f(sj , zj)

−max
z,t P (z,t,d|s;θ)

∑
j

f(sj , zj)


As before, MAP inference is a subroutine in learning, both for the unconstrained case

corresponding to the second term (which is again trivial to compute), and for the constrained

case which is more challenging as it no longer reduces to a weighted edge cover problem as

before.

5.5 MAP Inference

The only difference in the new inference problem is the addition of t; z and t are deter-

ministically related, so we can simply find a MAP assignment to z, from which t follows.

The resulting inference problem can be viewed as optimization under soft constraints, where

the objective includes terms for each fact not in Freebase which is extracted from the text:

−αMID, and an effective reward for extracting a fact which is contained in Freebase: αMIT.

The solution to the MAP inference problem is the value of z which maximizes the
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following objective:

z∗DB = arg max
z
P (z|d; θ, α)

= arg max
z

n∏
i=1

φ(zi, si; θ)×
k∏
j=1

ω(z, tj)ψ(tj , dj ;α)

= arg max
z

n∏
i=1

eθ·f(zi,si) ×
k∏
j=1

e
−αMIT1dj∧¬∃i:j=zi

−αMID1¬dj∧∃i:j=zi

= arg max
z

n∑
i=1

θ · f(zi, si) +

k∑
j=1

(
αMIT1dj∧∃i:j=zi − αMID1¬dj∧∃i:j=zi

)
(5.1)

the last step comes from taking the log.

Note that αMIT functions as a reward for extracting a fact in Freebase as opposed to a

penalty for not extracting it. This formulation makes the optimization algorithms easier to

describe and implement, and the objective is equivalent up to an additive constant. The

MAP values of z, will therefore be the same under both objectives.

Whether we choose to set the parameters αMIT and αMID to fixed values (Section 5.4), or

incorporate side information through a missing data model (Section 5.6), inference becomes

more challenging than in the model where facts observed in Freebase are treated as hard

constraints (Section 5.3); the hard constraints are equivalent to setting αMID = αMIT =∞.

We now present exact and approximate approaches to inference. Standard search meth-

ods such as A* and branch and bound have high computation and memory requirements

and are therefore only feasible on problems with few variables; they are, however, guaran-

teed to find an optimal solution.4 Approximate methods scale to large problem sizes, but

we loose the guarantee of finding an optimal solution. After showing how to find guaranteed

exact solutions for small problem sizes (e.g. up to 200 variables), we present an inference

algorithm based on local search which is empirically shown to find optimal solutions in

almost every case by comparing its solutions to those found by A*.

4Each entity pair defines an inference problem where the number of variables is equal to the number of
sentences which mention the pair.
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5.5.1 A* Search

We cast exact MAP inference in the DNMAR model as an application of A* search. Each

partial hypothesis, h, in the search space corresponds to a partial assignment of the first

m variables in z; to expand a hypothesis, we generate k new hypotheses, where k is the

total number of relations. Each new hypothesis h′ contains the same partial assignment to

z1, . . . , zm as h, with each h′ having a different value of zm+1 = r.

A* operates by maintaining a priority queue of hypotheses to expand, with each hypothe-

sis’ priority determined by an admissible heuristic. The heuristic represents an upper bound

on the score of the best solution with h’s partial variable assignment under the objective

from Equation 5.1. In general, a tighter upper bound corresponds to a better heuristic and

faster solution. To upper bound our objective, we start with the φ(zi, si) factors from the

partial assignment. Unassigned variables (i > k), are set to their maximum possible value,

zi = maxr φ(r, si) independently. Next to account for the effect the aggregate ψ(tj , dj)

factors on the unassigned variables, we consider independently changing each unassigned

zi variable for each ψ(tj , dj) factor to improve the overall score. This approach can lead

to inconsistencies, but provides us with a good upper bound for the best possible solution

with a partial assignment to z1, . . . , zk.

5.5.2 Local Search

While A* is guaranteed to find an exact solution, its time and memory requirements prohibit

use on large problems involving many variables. As a more scalable alternative we propose

a greedy hill climbing method [158], which starts with a full assignment to z, and repeatedly

moves to the best neighboring solution z′ according to the objective in Equation 5.1. The

neighborhood of z is defined by a set of search operators. If none of the neighboring solutions

has a higher score, then we have reached a (local) maximum at which point the algorithm

terminates with the current solution which may or may not correspond to a global maximum.

This process is repeated using a number of random restarts, and the best local maximum

is returned as the solution.
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Algorithm 5 Guaranteed Exact MAP inference

function DNMAR-A*(e1,e2,s1 . . . sn, d1 . . . dk)

Initialize priority queue Q

Insert the empty hypothesis, hnull, into Q

while Q is not empty do

Remove the current best hypothesis, h∗z1...zm , from Q

if m = n then

Return h∗z1...zm

end if

for all Relations r do

Create a new hypothesis h′z1...zm,r

p = heuristic(h′) . heuristic() is an upper bound on Equation 5.1

Insert h′ into Q with priority p

end for

end while

end function
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Algorithm 6 Approximate MAP inference (almost always produces exact solution)

function DNMAR-LS(e1,e2,s1 . . . sn, d1 . . . dk)

choose a random z∗ = z∗1 . . . z
∗
n . Random initialization

while True do

for i = 1→ n do

for j = 1→ k do . Standard Search Operator

z1ij = z∗1 . . . z
∗
i−1, j, z

∗
i+1, . . . z

∗
n

end for

end for

for j1 = 1→ k do

for j2 = 1→ k do . Aggregate Search Operator

z2j1j2 = z∗

for z ∈ z2j1j2 |z = j1 do

z = j2

end for

end for

end for

z′ = arg maxz∈z1∪z2 score(z) . Choose the best neighboring solution

if score(z′) > score(z∗) then

z∗ = z′

else

Return z∗ . Local maximum

end if

end while

end function
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Search Operators: We start with a standard search operator, which considers changing

each relation-mention variable, zi, individually to maximize the overall score. During each

iteration, all zis are considered, and the one which produces the largest improvement to the

overall score is changed to form the neighboring solution, z′. Unfortunately, this definition

of the solution neighborhood is prone to poor local optima because it is often required

to traverse many low scoring states before changing one of the aggregate variables, tj ,

and achieving a higher score from the associated aggregate factor, ψ(tj , dj). For example,

consider a case where the proposition r(e1, e2) is not in Freebase, but is mentioned many

times in the text, and imagine the current solution contains no mention zi = r. Any

neighboring solution which assigns a mention to r will include the penalty αMID, which

could outweigh the benefit from changing any individual zi to r: φ(r, si) − φ(zi, si). If

multiple mentions were changed to r however, together they could outweigh the penalty for

extracting a fact not in Freebase, and produce an overall higher score.

To avoid the problem of getting stuck in local optima, we propose an additional search

operator which considers changing all variables, zi, which are currently assigned to a specific

relation r, to a new relation r′, resulting in an additional (k − 1)2 possible neighbors, in

addition to the n× (k − 1) neighbors which come from the standard search operator. This

aggregate-level search operator allows for more global moves which help to avoid local

optima, similar to the type-level sampling approach for MCMC [100].

During each iteration, we consider all n×(k−1)+(k−1)2 possible neighboring solutions

generated by both search operators, and pick the one with biggest overall improvement, or

terminate the algorithm if no improvements can be made over the current solution. 20

random restarts were used for each inference problem. We found this approach to almost

always find an optimal solution. In over 100,000 problems with 200 or fewer variables from

the New York Times dataset used in Section 5.7, an optimal solution was missed in only 3

cases which was verified by comparing against optimal solutions found using A*. Without

including the aggregate-level search operator, local search almost always gets stuck in a

local maximum.
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5.5.3 Discussion

Algorithm 5 can be easily modified to produce approximate solutions efficiently by setting

a maximum beam width. When the length of the queue becomes larger than the maximum

width, the lowest scoring hypotheses are dropped. We found the approximate inference

method described in Algorithm 6 to more reliably find exact solutions while maintaining

scalability, however.

5.6 Incorporating Side Information

In Section 5.4, we relaxed the hard constraints made by MultiR as soft constraints, which

allows for missing information in either the text or database, enabling errors in the distantly

supervised training data to be naturally corrected as a side-effect of learning. We made the

simplifying assumption, however, that all facts are equally likely to be missing from the text

or database, which is encoded in the choice of 2 fixed parameters αMIT, and αMID. Is it

possible to improve performance by incorporating side information in the form of a missing

data model [107], taking into account how likely each fact is to be observed in the text

and the database conditioned on its truth value? In our setting, the missing data model

corresponds to choosing the values of αMIT and αMID dynamically based on the entities and

relations involved.

Popular Entities: Consider two entities: Barack Obama, the 44th president of the

United States, and Donald Parry, a professional rugby league footballer of the 1980s5.

Since Obama is much more well-known than Parry, we wouldn’t be very surprised to see

information missing from Freebase about Parry, but it would seem odd if true facts were

missing about Obama.

We can encode these intuitions by choosing entity-specific values of αMID:

α
(e1,e2)
MID = −γmin (c(e1), c(e2))

where c(ei) is the count of ei in Freebase, which is used as an estimate of its coverage.

Well Aligned Relations: Given that a pair of entities, e1 and e2, participating in a

5http://en.wikipedia.org/wiki/Donald_Parry
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Freebase relation, r, appear together in a sentence si, the chance that si expresses r varies

greatly depending on r. If a sentence mentions a pair of entities which participate in both

the CountryCapitol relation and the LocationContains relation (for example Moscow

and Russia), it is more likely that a random sentence will express LocationContains than

CountryCapitol.

We can encode this preference for matching certain relations over others by adjusting

αrMIT on a per-relation basis. We choose a different value of αrMIT for each relation based

on quick inspection of the data, and estimating the number of true positives. Relations

such as contains, place lived, and nationality which contain a large number of true positive

matches are assigned a large value of αrMIT = γlarge, those with a medium number such as

capitol, place of death and administrative divisions were assigned a medium value γmedium,

and those relations with few matches were assigned a small value γsmall. These 3 parameters

were tuned on held out development data.

5.7 Experiments

In Section 5.5, we presented a scalable approach to inference in the DNMAR model which

almost always finds an optimal solution. Of course the real question is: does modeling

missing data improve performance at extracting information from text? In this section

we present experimental results showing large improvements in both precision and recall

on two distantly supervised learning tasks: binary relation extraction and named entity

categorization.

5.7.1 Binary Relation Extraction

For the sake of comparison to previous work we evaluate performance on the New York

Times text, features and Freebase relations developed by Riedel et. al. [148] which was also

used by Hoffmann et. al. [80]. This dataset is constructed by extracting named entities

from 1.8 million New York Times articles, which are then match against entities in Freebase.

Sentences which contain pairs of entities participating in one or more relations are then used

as training examples for those relations. The sentence-level features include word sequences
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appearing in context with the pair of entities, in addition to part of speech sequences, and

dependency paths from the Malt parser [132].

Baseline

To evaluate the effect of modeling missing data in distant supervision, we compare against

the MultiR model for distant supervision [80], a state of the art approach for binary rela-

tion extraction which is the most similar previous work, and models facts in Freebase as

hard constraints disallowing the possibility of missing information in either the text or the

database. To make our experiment as controlled as possible and rule-out the possibility

of differences in performance due to implementation details, we compare against our own

re-implementation of MultiR which reproduces Hoffmann et. al.’s performance, and shares

as much code as possible with the DNMAR model.

Experimental Setup

We evaluate binary relation extraction using two evaluations. We first evaluate on a

sentence-level extraction task using a manually annotated dataset provided by Hoffmann et.

al. [80]6. This dataset consists of sentences paired with human judgments on whether each

expresses a specific relation. Secondly, we perform an automatic evaluation which compares

propositions extracted from text against held-out data from Freebase.

Results

Sentential Extraction: Figure 5.4 presents precision and recall curves for the sentence-

level relation extraction task on the same manually annotated data presented by Hoffmann

et. al. [80]. By explicitly modeling the possibility of missing information in both the

text and the database we achieve a 17% increase in area under the precision recall curve.

Incorporating additional side information in the form of a missing data model, as described

in Section 5.6, produces even better performance, yielding a 27% increase over the baseline

6http://raphaelhoffmann.com/mr/
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Figure 5.4: Overall precision and Recall at the sentence-level extraction task comparing
against human judgments. DNMAR∗ incorporates side-information as discussed in Section
5.6.

in area under the curve. The differences between each pair of systems is significant with

p-value less than 0.05 according to a paired t-test.

Per-relation precision and recall curves are presented in Figure 5.6. For certain rela-

tions, for instance /location/us state/capital, there simply isn’t enough overlap between the

information contained in Freebase and facts mentioned in the text to learn anything useful.

For these relations, entity pair matches are unlikely to actually express the relation; for

instance, in the following sentence from the data:

NHPF , which has its Louisiana office in Baton Rouge , gets the funds ...

although Baton Rouge is the capital of Louisiana, the /location/us state/capital relation is

not expressed in this sentence. Another interesting observation which we can make from

Figure 5.6, is that the benefit from modeling missing data varies from one relation to another.

Some relations, for instance /people/person/place of birth, have relatively good coverage in

both Freebase and the text, and therefore we do not see as much gain from modeling missing
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Figure 5.5: Aggregate-level automatic evaluation comparing against held-out data from
Freebase. DNMAR∗ incorporates side-information as discussed in Section 5.6.

data. Other relations, such as /location/location/contains, and /people/person/place lived

have poorer coverage making our missing data model very beneficial.

Aggregate Extraction: Following previous work, we evaluate precision and recall

against held-out data from Freebase in Figure 5.5. As mentioned by Mintz et. al. [121], this

automatic evaluation underestimates precision because many facts correctly extracted from

the text are missing in the database and therefore judged as incorrect. Riedel et. al. [149]

further argues that this evaluation is biased because frequent entity pairs are more likely to

contain facts in Freebase, so systems which rank extractions involving popular entities higher

will achieve better performance independently of how accurate their predictions are. Indeed

in Figure 5.5 we see that the precision of our system which models missing data is generally

lower than the system which assumes no data is missing from Freebase, although we do

roughly double the recall. By better modeling missing data we achieve lower precision on

this automatic held-out evaluation as the system using hard constraints is explicitly trained

to predict facts which occur in Freebase (not those which are mentioned in the text but

unlikely to appear in the database).
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Figure 5.6: Per-relation precision and recall on the sentence-level relation extraction task.
The dashed line corresponds to MultiR, DNMAR is the solid line, and DNMAR*, which
incorporates side-information, is represented by the dotted line.
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5.7.2 Named Entity Categorization

As mentioned previously, the problem of missing data in distant (weak) supervision is a very

general issue; thus far we have investigated this problem solely in the context of extracting

binary relations using distant supervision. We now turn to the problem of weakly supervised

named entity recognition [34; 59; 174].

Experimental Setup

To demonstrate the effect of modeling missing data in the distantly supervised named entity

categorization task, we adapt the MultiR and DNMAR models to the Twitter named entity

categorization dataset which was presented in Chapter 4. The models described so far are

applied unchanged: rather than modeling a set of relations in Freebase between a pair of

entities, e1 and e2, we now model a set of possible Freebase categories associated with a

single entity e. This is a natural extension of distant supervision from binary to unary

relations. The unlabeled data and features described in Chapter 4 are used for training the

model, and their manually annotated Twitter named entity dataset is used for evaluation.

Results

Precision and recall at weakly supervised named entity categorization comparing MultiR

against DNMAR is presented in Figure 5.7. We observe substantial improvement in precision

at comparable recall by explicitly modeling the possibility of missing information in the text

and database. The missing data model leads to a 107% increase in area under the precision-

recall curve (from 0.16 to 0.34), but still falls short of the results presented in Chapter 4,

indicating the mixed membership model is more appropriate for highly ambiguous training

data, where we only have one entity to anchor the relation, than MultiR.7

Note that the more informative missing data models which incorporate side-information

for binary relation extraction presented in Section 5.6 are not appropriate for distantly

7This makes sense intuitively, for example imagine the situation where entity pairs are allowed to take any
relation; in this case the model presented in Chapter 4 reduces to Latent Dirichlet Allocation, a standard
topic model, which we would expect to find reasonable categories in the data. It seems unlikely however
that MultiR, which is a discriminatively trained model, would successfully identify topics or categories in
unlabeled data.
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Figure 5.7: Precision and Recall at the named entity categorization task

supervised named entity categorization. For instance, relying on entity frequency as a

measure of information missing in the database is not very informative for unary relations

(e.g. if an entity is missing, then we don’t have any information). We leave the problem

of developing more informative missing data models which incorporate side-information for

weakly supervised named entity categorization as future work.

5.8 Conclusions

In this chapter we have investigated the problem of missing data in distant supervision; we

introduced a joint model of information extraction and missing data which relaxes the hard

constraints used in previous work to generate heuristic labels, and provides a natural way

to incorporate side information through a missing data model. Efficient inference breaks

in the new model, so we presented an approach based on A* search which is guaranteed

to find exact solutions, however exact inference is not computationally tractable for large

problems. To address the challenge of large problem sizes, we proposed a scalable inference

algorithm based on local search, which includes a set of aggregate search operators allowing

for long-distance jumps in the solution space to avoid local maxima; this approach was
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experimentally demonstrated to find exact solutions in almost every case. Finally we eval-

uated the performance of our model on the tasks of binary relation extraction and named

entity categorization showing large performance gains in each case.

In future work we would like to apply our approach to modeling missing data to addi-

tional models, for instance the model of Surdeanu et. al. [171] and the mixed membership

model for distant supervision presented in Chapter 4, and also explore new missing data

models.
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Chapter 6

MIXED MEMBERSHIP MODELS FOR SELECTIONAL
PREFERENCE

In Chapters 4 and 5, we investigated a distantly supervised approach to learning that

leverages large structured data sources and unlabeled text corpora for training information

extraction models. This approach is attractive, since it doesn’t rely on manually annotated

text corpora, which are relatively small in addition to being expensive and time consuming

to produce. In certian situations, however, we don’t have access to appropriate structured

data sources with sufficient coverage to make this approach feasable. Furthermore, we often

don’t even have an appropriate set of categories to describe the data in advance.

In this chapter we present an approach to modeling problems in lexical semantics based

on latent variable models, using the task of inferring argument types or selectional prefer-

ences as a case study. Latent variable models, which leverage large volumes of unlabeled

data, are appropriate for problems in lexical semantics because we typically don’t know in

advance what set of categories are most appropriate. In addition there are many possible

argument categories to choose from, and the data is highly unbalanced.

Automatically inferring arugment categories or selectional preferences is a well-known

NLP task with broad applicability. We present an approach to selectional preferences based

on latent variable models that automatically discovers an appropriate set of argument cate-

gories, in addition to the preferences for thousands of relations simultaneously. We evaluate

our model of selectional preferences at the task of textual inference, filterng improper ap-

plications of inference rules that violate the preferences of the involved relations.

Our model of selectional preferences described in this chapter is adapted to automatically

infer significant categories in millions of automatically extracted events from Twitter in

Chapter 7.
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6.1 Selectional Preferences

Selectional Preferences describe the set of admissible argument values for a relation. For

instance, locations are likely to appear in the second argument of the relation X is head-

quartered in Y and companies or organizations in the first. A large, high-quality database

of preferences has the potential to improve the performance of a wide range of NLP tasks

including semantic role labeling [68], pronoun resolution [10], textual inference [135], word-

sense disambiguation [146], and many more. Therefore, much attention has been focused

on automatically computing them based on a corpus of relation instances.

Resnik [145] presented the earliest work in this area, describing an information-theoretic

approach that inferred selectional preferences based on the WordNet hypernym hierarchy.

Recent work [57; 10] has moved away from generalization to known classes, instead utilizing

distributional similarity between nouns to generalize beyond observed relation-argument

pairs. This avoids problems like WordNet’s poor coverage of proper nouns and is shown to

improve performance. These methods, however, no longer produce the generalized class for

an argument.

In this chapter we describe a novel approach to computing selectional preferences by

making use of unsupervised topic models. Our approach is able to combine benefits of both

kinds of methods: it retains the generalization and human-interpretability of class-based

approaches and is also competitive with the direct methods on predictive tasks.

Unsupervised topic models, such as latent Dirichlet allocation (LDA) [13] and its vari-

ants are characterized by a set of hidden topics, which represent the underlying semantic

structure of a document collection. For our problem these topics offer an intuitive interpre-

tation – they represent the (latent) set of classes that store the preferences for the different

relations. Thus, topic models are a natural fit for modeling our relation data.

In particular, our system, called Lda-sp, uses LinkLDA [58], an extension of LDA that

simultaneously models two sets of distributions for each topic. These two sets represent

the two arguments for the relations. Thus, Lda-sp is able to capture information about

the pairs of topics that commonly co-occur. This information is very helpful in guiding

inference.
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We run Lda-sp to compute preferences on a massive dataset of binary relations r(a1, a2)

extracted from the Web by TextRunner [5]. Our experiments demonstrate that Lda-sp

significantly outperforms state of the art approaches obtaining an 85% increase in recall at

precision 0.9 on the standard pseudo-disambiguation task.

Additionally, because Lda-sp is based on a formal probabilistic model, it has the ad-

vantage that it can naturally be applied in many scenarios. For example, we can obtain a

better understanding of similar relations (Table 6.1), filter out incorrect inferences based

on querying our model (Section 6.4.3), as well as produce a repository of class-based pref-

erences with a little manual effort as demonstrated in Section 6.4.4. In all these cases we

obtain high quality results, for example, massively outperforming Pantel et al.’s approach

in the textual inference task.1

6.2 Related Work

Previous work on selectional preferences can be broken into four categories: class-based

approaches [145; 98; 32; 135], similarity based approaches [37; 57], discriminative [10], and

generative probabilistic models [156].

6.2.1 Class-based Preferences

First proposed by Resnik [145], class-based methods are the most studied of the four. They

make use of a pre-defined set of classes, either manually produced (e.g. WordNet), or

automatically generated [137]. For each relation, some measure of the overlap between the

classes and observed arguments is used to identify those that best describe the arguments.

These techniques produce a human-interpretable output, but often suffer in quality due to

an incoherent taxonomy, inability to map arguments to a class (poor lexical coverage), and

word sense ambiguity.

1Our repository of selectional preferences is available at http://www.cs.washington.edu/research/

ldasp.
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6.2.2 Similarity-based Preferences

Because of these limitations researchers have investigated non-class based approaches, which

attempt to directly classify a given noun-phrase as plausible/implausible for a relation.

Of these, the similarity based approaches make use of a distributional similarity measure

between arguments and evaluate a heuristic scoring function:

Srel(arg) =
∑

arg′∈Seen(rel)

sim(arg, arg′) · wtrel(arg)

Erk [57] showed the advantages of this approach over Resnik’s information-theoretic

class-based method on a pseudo-disambiguation evaluation. These methods obtain better

lexical coverage, but are unable to obtain any abstract representation of selectional prefer-

ences.

6.2.3 Generative Probabilistic Models

Our solution fits into the general category of generative probabilistic models, which model

each relation/argument combination as being generated by a latent class variable. Back-

ground material on generative models are presented in Chapter 2. These classes are auto-

matically learned from the data. This retains the class-based flavor of the problem, without

the knowledge limitations of the explicit class-based approaches. Rooth et al. [156], pro-

posed a model in which each class corresponds to a multinomial over relations and argu-

ments and EM is used to learn the parameters of the model. In contrast, we use a LinkLDA

framework in which each relation is associated with a corresponding multinomial distribu-

tion over classes, and each argument is drawn from a class-specific distribution over words;

LinkLDA captures co-occurrence of classes in the two arguments. Additionally we perform

full Bayesian inference using collapsed Gibbs sampling, in which parameters are integrated

out [74].

Topic Models

Topic models such as LDA [13] and its variants have recently begun to see use in many

NLP applications such as summarization [42], document alignment and segmentation [30],
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and inferring class-attribute hierarchies [144]. Our particular model, LinkLDA, has been

applied to a few NLP tasks such as simultaneously modeling the words appearing in blog

posts and users who will likely respond to them [189], modeling topic-aligned articles in

different languages [118], and word sense induction [17].

We highlight two systems, developed independently of our own, which apply LDA-style

models to similar tasks. Ó Séaghdha [133] proposes a series of LDA-style models for the

task of computing selectional preferences. This work learns selectional preferences between

the following grammatical relations: verb-object, noun-noun, and adjective-noun. It also

focuses on jointly modeling the generation of both predicate and argument, and evaluation

is performed on a set of human-plausibility judgments obtaining impressive results against

Keller and Lapata’s [83] Web hit-count based system. Van Durme and Gildea [180] proposed

applying LDA to general knowledge templates extracted using the Knext system [162]. In

contrast, our work uses LinkLDA and focuses on modeling multiple arguments of a relation

(e.g., the subject and direct object of a verb).

Finally we point out some related work on automatically inferring semantic networks

from text [86] using second order Markov Logic Networks. While not applied to the task of

computing selectional preferences, this relational clustering system produced similar output.

6.2.4 Discriminative Methods

Bergsma et. al. [10] proposed the first discriminative approach to selectional preferences.

Their insight that pseudo-negative examples could be used as training data allows the

application of an SVM classifier, which makes use of many features in addition to the

relation-argument co-occurrence frequencies used by other methods. They automatically

generated positive and negative examples by selecting arguments having high and low mu-

tual information with the relation. Since it is a discriminative approach it is amenable to

feature engineering, but needs to be retrained and tuned for each task. On the other hand,

generative models produce complete probability distributions of the data, and hence can

be integrated with other systems and tasks in a more principled manner (see Sections 6.4.2

and 6.4.3). Additionally, unlike Lda-sp Bergsma et al.’s system doesn’t produce human-
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interpretable topics. Finally, we note that Lda-sp and Bergsma’s system are potentially

complimentary – the output of Lda-sp could be used to generate higher-quality training

data for Bergsma, potentially improving their results.

6.3 Topic Models for Selectional Preferences

We present a series of topic models for the task of computing selectional preferences. These

models vary in the amount of independence they assume between a1 and a2. At one extreme

is IndependentLDA, a model which assumes that both a1 and a2 are generated completely

independently. On the other hand, JointLDA, the model at the other extreme (Figure 6.1)

assumes both arguments of a specific extraction are generated based on a single hidden

variable z. LinkLDA (Figure 6.2) lies between these two extremes, and as demonstrated in

Section 6.4, it is the best model for our relation data.

We are given a set R of binary relations and a corpus D = {r(a1, a2)} of extracted

instances for these relations. Our task is to compute, for each argument ai of each relation

r, a set of usual argument values (noun phrases) that it takes. For example, for the relation is

headquartered in the first argument set will include companies like Microsoft, Intel, General

Motors and second argument will favor locations like New York, California, Seattle.

6.3.1 IndependentLDA

We first describe the straightforward application of LDA to modeling our corpus of extracted

relations. In this case two separate LDA models are used to model a1 and a2 independently.

In the generative model for our data, each relation r has a corresponding multinomial

over topics θr, drawn from a Dirichlet. For each extraction, a hidden topic z is first picked

according to θr, and then the observed argument a is chosen according to the multinomial

βz.

Our approach can be described in terms of topic modeling terminology as follows: we

treat each relation as a document whose contents consist of a bags of words corresponding

to all the noun phrases observed as arguments of the relation in our corpus. Formally, LDA

generates each argument in the corpus of relations as presented in Algorithm 9.
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Algorithm 7 Generative story for IndependentLDA

for each topic t = 1 . . . T do

Generate βt according to symmetric Dirichlet distribution Dir(η).

end for

for each relation r = 1 . . . |R| do

Generate θr according to Dirichlet distribution Dir(α).

for each tuple i = 1 . . . Nr do

Generate zr,i from Multinomial(θr).

Generate the argument ar,i from multinomial βzr,i .

end for

end for

One weakness of IndependentLDA is that it doesn’t jointly model a1 and a2 together.

Clearly this is undesirable, as information about which topics one of the arguments favors

can help inform the topics chosen for the other. For example, class pairs such as (team,

game), (politician, political issue) form much more plausible selectional preferences than,

say, (team, political issue), (politician, game).

6.3.2 JointLDA

As a more tightly coupled alternative, we first propose JointLDA, whose graphical model is

depicted in Figure 6.1. The key difference in JointLDA (versus LDA) is that instead of one,

it maintains two sets of topics (latent distributions over words) denoted by β and γ, one for

classes of each argument. A topic id k represents a pair of topics, βk and γk, that co-occur

in the arguments of extracted relations. Common examples include (Person, Location),

(Politician, Political issue), etc. The hidden variable z = k indicates that the noun phrase

for the first argument was drawn from the multinomial βk, and that the second argument

was drawn from γk. The per-relation distribution θr is a multinomial over the topic ids and

represents the selectional preferences, both for arg1s and arg2s of a relation r.

Although JointLDA has many desirable properties, it has some drawbacks as well. Most

notably, in JointLDA topics correspond to pairs of multinomials (βk, γk); this leads to a
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situation in which multiple redundant distributions are needed to represent the same un-

derlying semantic class. For example consider the case where we we need to represent

the following selectional preferences for our corpus of relations: (person, location), (person,

organization), and (person, crime). Because JointLDA requires a separate pair of multino-

mials for each topic, it is forced to use 3 separate multinomials to represent the class person,

rather than learning a single distribution representing person and choosing 3 different topics

for a2. This results in poor generalization because the data for a single class is divided into

multiple topics.

In order to address this problem while maintaining the sharing of influence between a1

and a2, we next present LinkLDA, which represents a compromise between IndependentLDA

and JointLDA. LinkLDA is more flexible than JointLDA, allowing different topics to be cho-

sen for a1, and a2, however still models the generation of topics from the same distribution

for a given relation.

Algorithm 8 Generative story for JointLDA

for each topic t = 1 . . . T do

Generate βt according to symmetric Dirichlet distribution Dir(η1).

Generate γt according to symmetric Dirichlet distribution Dir(η2).

end for

for each relation r = 1 . . . |R| do

Generate θr according to Dirichlet distribution Dir(α).

for each tuple i = 1 . . . Nr do

Generate zr,i from Multinomial(θr).

Generate argument 1, a1r,i, from multinomial βzr,i .

Generate argument 2, a2r,i, from multinomial γzr,i .

end for

end for
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6.3.3 LinkLDA

Figure 6.2 illustrates the LinkLDA model in the plate notation, which is analogous to the

model in [58]. In particular note that each ai is drawn from a different hidden topic zi,

however the zis are drawn from the same distribution θr for a given relation r. To facilitate

learning related topic pairs between arguments we employ a sparse prior over the per-relation

topic distributions. Because a few topics are likely to be assigned most of the probability

mass for a given relation it is more likely (although not necessary) that the same topic

number k will be drawn for both arguments.

Algorithm 9 Generative story for LinkLDA

for each topic t = 1 . . . T do

Generate βt according to symmetric Dirichlet distribution Dir(η1).

Generate γt according to symmetric Dirichlet distribution Dir(η2).

end for

for each relation r = 1 . . . |R| do

Generate θr according to Dirichlet distribution Dir(α).

for each tuple i = 1 . . . Nr do

Generate z1r,i from Multinomial(θr).

Generate z2r,i from Multinomial(θr).

Generate argument 1, a1r,i, from multinomial βz1r,i
.

Generate argument 2, a2r,i, from multinomial γz2r,i
.

end for

end for

When comparing LinkLDA with JointLDA the better model may not seem immediately

clear. On the one hand, JointLDA jointly models the generation of both arguments in an

extracted tuple. This allows one argument to help disambiguate the other in the case of

ambiguous relation strings. LinkLDA, however, is more flexible; rather than requiring both

arguments to be generated from one of |Z| possible pairs of multinomials (βz, γz), LinkLDA

allows the arguments of a given extraction to be generated from |Z|2 possible pairs. Thus,
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instead of imposing a hard constraint that z1 = z2 (as in JointLDA), LinkLDA simply assigns

a higher probability to states in which z1 = z2, because both hidden variables are drawn

from the same (sparse) distribution θr. LinkLDA can thus re-use argument classes, choosing

different combinations of topics for the arguments if it fits the data better. In Section 6.4

we show experimentally that LinkLDA outperforms JointLDA (and IndependentLDA) by

wide margins. We use Lda-sp to refer to LinkLDA in all the experiments below.

6.3.4 Inference

For all the models we use collapsed Gibbs sampling for inference in which each of the hidden

variables are sampled sequentially conditioned on a full-assignment to all others, integrating

out the parameters [74]. This produces robust parameter estimates, as it allows computation

of expectations over the posterior distribution as opposed to estimating maximum likelihood

parameters. In addition, the integration allows the use of sparse priors, which are typically

more appropriate for natural language data. In all experiments we use hyperparameters

α = η1 = η2 = 0.1. We generated initial code for our samplers using the Hierarchical Bayes

Compiler [43].

6.3.5 Advantages of Topic Models for Selectional Preferences

There are several advantages to using topic models for our task. First, they naturally model

the class-based nature of selectional preferences, but don’t take a pre-defined set of classes as

input. Instead, they compute the classes automatically. This leads to better lexical coverage

since the issue of matching a new argument to a known class is side-stepped. Second, the

models naturally handle ambiguous arguments, as they are able to assign different topics

to the same phrase in different contexts. Inference in these models is also scalable – linear

in both the size of the corpus as well as the number of topics. In addition, there are

several scalability enhancements such as SparseLDA [191], and an approximation of the

Gibbs Sampling procedure can be efficiently parallelized [127]. Finally we note that, once a

topic distribution has been learned over a set of training relations, one can efficiently apply

inference to unseen relations [191].
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6.4 Experiments

We perform three main experiments to assess the quality of the preferences obtained using

topic models. The first is a task-independent evaluation using a pseudo-disambiguation

experiment (Section 6.4.2), which is a standard way to evaluate the quality of selectional

preferences [156; 57; 10]. We use this experiment to compare the various topic models as

well as the best model with the known state of the art approaches to selectional preferences.

Secondly, we show significant improvements to performance at an end-task of textual infer-

ence in Section 6.4.3. Finally, we report on the quality of a large database of Wordnet-based

preferences obtained after manually associating our topics with Wordnet classes (Section

6.4.4).

6.4.1 Generalization Corpus

For all experiments we make use of a corpus of r(a1, a2) tuples, which was automatically

extracted by TextRunner [5] from 500 million Web pages.

To create a generalization corpus from this large dataset. We first selected 3,000 relations

from the middle of the tail (we used the 2,000-5,000 most frequent ones)2 and collected all

instances. To reduce sparsity, we discarded all tuples containing an NP that occurred fewer

than 50 times in the data. This resulted in a vocabulary of about 32,000 noun phrases, and

a set of about 2.4 million tuples in our generalization corpus.

We inferred topic-argument and relation-topic multinomials (β, γ, and θ) on the gener-

alization corpus by taking 5 samples at a lag of 50 after a burn in of 750 iterations. Using

multiple samples introduces the risk of topic drift due to lack of identifiability, however we

found this to not be a problem in practice. During development we found that the topics

tend to remain stable across multiple samples after sufficient burn in, and multiple samples

improved performance. Table 6.1 lists sample topics and high ranked words for each (for

both arguments) as well as relations favoring those topics.

2Many of the most frequent relations have very weak selectional preferences, and thus provide little signal
for inferring meaningful topics. For example, the relations has and is can take just about any arguments.
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Topic t Arg1 Relations which as-

sign highest proba-

bility to t

Arg2

18 The residue - The mixture - The reaction

mixture - The solution - the mixture - the

reaction mixture - the residue - The reac-

tion - the solution - The filtrate - the re-

action - The product - The crude product

- The pellet - The organic layer - Thereto

- This solution - The resulting solution -

Next - The organic phase - The resulting

mixture - C. )

was treated with, is

treated with, was

poured into, was

extracted with, was

purified by, was di-

luted with, was fil-

tered through, is di-

solved in, is washed

with

EtOAc - CH2Cl2 - H2O - CH.sub.2Cl.sub.2

- H.sub.2O - water - MeOH - NaHCO3 -

Et2O - NHCl - CHCl.sub.3 - NHCl - drop-

wise - CH2Cl.sub.2 - Celite - Et.sub.2O -

Cl.sub.2 - NaOH - AcOEt - CH2C12 - the

mixture - saturated NaHCO3 - SiO2 - H2O

- N hydrochloric acid - NHCl - preparative

HPLC - to0 C

151 the Court - The Court - the Supreme Court

- The Supreme Court - this Court - Court

- The US Supreme Court - the court - This

Court - the US Supreme Court - The court

- Supreme Court - Judge - the Court of

Appeals - A federal judge

will hear, ruled in,

decides, upholds,

struck down, over-

turned, sided with,

affirms

the case - the appeal - arguments - a case -

evidence - this case - the decision - the law

- testimony - the State - an interview - an

appeal - cases - the Court - that decision -

Congress - a decision - the complaint - oral

arguments - a law - the statute

211 President Bush - Bush - The President -

Clinton - the President - President Clinton

- President George W. Bush - Mr. Bush -

The Governor - the Governor - Romney -

McCain - The White House - President -

Schwarzenegger - Obama

hailed, vetoed, pro-

moted, will deliver,

favors, denounced,

defended

the bill - a bill - the decision - the war - the

idea - the plan - the move - the legislation

- legislation - the measure - the proposal -

the deal - this bill - a measure - the pro-

gram - the law - the resolution - efforts -

the agreement - gay marriage - the report

- abortion

224 Google - Software - the CPU - Clicking -

Excel - the user - Firefox - System - The

CPU - Internet Explorer - the ability - Pro-

gram - users - Option - SQL Server - Code

- the OS - the BIOS

will display, to

store, to load, pro-

cesses, cannot find,

invokes, to search

for, to delete

data - files - the data - the file - the URL

- information - the files - images - a URL -

the information - the IP address - the user

- text - the code - a file - the page - IP

addresses - PDF files - messages - pages -

an IP address

Table 6.1: Example argument lists from the inferred topics. For each topic number t we
list the most probable values according to the multinomial distributions for each argument
(βt and γt). The middle column reports a few relations whose inferred topic distributions
θr assign highest probability to t.
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6.4.2 Task Independent Evaluation

We first compare the three LDA-based approaches to each other and two state of the art

similarity based systems [57] (using mutual information and Jaccard similarity respectively).

These similarity measures were shown to outperform the generative model of Rooth et

al. [156], as well as class-based methods such as Resnik’s. In this pseudo-disambiguation

experiment an observed tuple is paired with a pseudo-negative, which has both arguments

randomly generated from the whole vocabulary (according to the corpus-wide distribution

over arguments). The task is, for each relation-argument pair, to determine whether it is

observed, or a random distractor.

Test Set

For this experiment we gathered a primary corpus by first randomly selecting 100 high-

frequency relations not in the generalization corpus. For each relation we collected all

tuples containing arguments in the vocabulary. We held out 500 randomly selected tuples

as the test set. For each tuple r(a1, a2) in the held-out set, we removed all tuples in the

training set containing either of the rel-arg pairs, i.e., any tuple matching r(a1, ∗) or r(∗, a2).
Next we used collapsed Gibbs sampling to infer a distribution over topics, θr, for each of

the relations in the primary corpus (based solely on tuples in the training set) using the

topics from the generalization corpus.

For each of the 500 observed tuples in the test-set we generated a pseudo-negative tuple

by randomly sampling two noun phrases from the distribution of NPs in both corpora.

Prediction

Our prediction system needs to determine whether a specific relation-argument pair is ad-

missible according to the selectional preferences or is a random distractor (D). Following

previous work, we perform this experiment independently for the two relation-argument

pairs (r, a1) and (r, a2).

We first compute the probability of observing a1 for first argument of relation r given

that it is not a distractor, P (a1|r,¬D), which we approximate by its probability given an
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estimate of the parameters inferred by our model, marginalizing over hidden topics t. The

analysis for the second argument is similar.

P (a1|r,¬D) ≈ PLDA(a1|r) =
T∑
t=0

P (a1|t)P (t|r)

=
T∑
t=0

βt(a1)θr(t)

A simple application of Bayes Rule gives the probability that a particular argument is not

a distractor. Here the distractor-related probabilities are independent of r, i.e., P (D|r) =

P (D), P (a1|D, r) = P (a1|D), etc. We estimate P (a1|D) according to their frequency in the

generalization corpus.

P (¬D|r, a1) =
P (¬D|r)P (a1|r,¬D)

P (a1|r)

≈ P (¬D)PLDA(a1|r)
P (D)P (a1|D) + P (¬D)PLDA(a1|r)

Results

Figure 6.3 plots the precision-recall curve for the pseudo-disambiguation experiment com-

paring the three different topic models. Lda-sp, which uses LinkLDA, substantially out-

performs both IndependentLDA and JointLDA.

Next, in figure 6.4, we compare Lda-sp with mutual information and Jaccard similarities

using both the generalization and primary corpus for computation of similarities. We find

Lda-sp significantly outperforms these methods. Its edge is most noticed at high precisions;

it obtains 85% more recall at 0.9 precision compared to mutual information. Overall Lda-sp

obtains an 15% increase in the area under precision-recall curve over mutual information.

All three systems’ AUCs are shown in Table 6.2; Lda-sp’s improvements over both Jaccard

and mutual information are highly significant with a significance level less than 0.01 using

a paired t-test.

In addition to a superior performance in selectional preference evaluation Lda-sp also

produces a set of coherent topics, which can be useful in their own right. For instance, one
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Figure 6.3: Comparison of LDA-based approaches on the pseudo-disambiguation task.
Lda-sp (LinkLDA) substantially outperforms the other models.

Lda-sp MI-Sim Jaccard-Sim

AUC 0.833 0.727 0.711

Table 6.2: Area under the precision recall curve. Lda-sp’s AUC is significantly higher than
both similarity-based methods according to a paired t-test with a significance level below
0.01.

could use them for tasks such as set-expansion [24] or automatic thesaurus induction [59;

91].

6.4.3 End Task Evaluation

We now evaluate Lda-sp’s ability to improve performance at an end-task. We choose the

task of improving textual entailment by learning selectional preferences for inference rules

and filtering inferences that do not respect these. This application of selectional preferences

was introduced by Pantel et. al. [135]. For now we stick to inference rules of the form

r1(a1, a2) ⇒ r2(a1, a2), though our ideas are more generally applicable to more complex

rules. As an example, the rule (X defeats Y) ⇒ (X plays Y) holds when X and Y are both

sports teams, however fails to produce a reasonable inference if X and Y are Britain and
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Figure 6.4: Comparison to similarity-based selectional preference systems. Lda-sp obtains
85% higher recall than mutual information at precision 0.9.

Nazi Germany respectively.

Filtering Inferences

In order for an inference to be plausible, both relations must have similar selectional pref-

erences, and further, the arguments must obey the selectional preferences of both the an-

tecedent r1 and the consequent r2.
3 Pantel et al. [135] made use of these intuitions by

producing a set of class-based selectional preferences for each relation, then filtering out

any inferences where the arguments were incompatible with the intersection of these pref-

erences. In contrast, we take a probabilistic approach, evaluating the quality of a specific

inference by measuring the probability that the arguments in both the antecedent and the

consequent were drawn from the same hidden topic in our model. Note that this probability

captures both the requirement that the antecedent and consequent have similar selectional

preferences, and that the arguments from a particular instance of the rule’s application

match their overlap.

3Similarity-based and discriminative methods are not applicable to this task as they offer no straightfor-
ward way to compare the similarity between selectional preferences of two relations.
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We use zri,j to denote the topic that generates the jth argument of relation ri. The

probability that the two arguments a1, a2 were drawn from the same hidden topic factorizes

as follows due to the conditional independences in our model:4

P (zr1,1 = zr2,1, zr1,2 = zr2,2|a1, a2) =

P (zr1,1 = zr2,1|a1)P (zr1,2 = zr2,2|a2)

To compute each of these factors we simply marginalize over the hidden topics:

P (zr1,j = zr2,j |aj) =
T∑
t=1

P (zr1,j = t|aj)P (zr2,j = t|aj)

where P (z = t|a) can be computed using Bayes rule. For example,

P (zr1,1 = t|a1) =
P (a1|zr1,1 = t)P (zr1,1 = t)

P (a1)

=
βt(a1)θr1(t)

P (a1)

Experimental Conditions

In order to evaluate Lda-sp’s ability to filter inferences based on selectional preferences we

need a set of inference rules between the relations in our corpus. We therefore mapped the

DIRT Inference rules [104], (which consist of pairs of dependency paths) to TextRunner

relations as follows. We first gathered all instances in the generalization corpus, and for each

r(a1, a2) created a corresponding simple sentence by concatenating the arguments with the

relation string between them. Each such simple sentence was parsed using Minipar [103].

From the parses we extracted all dependency paths between nouns that contain only words

present in the TextRunner relation string. These dependency paths were then matched

against each pair in the DIRT database, and all pairs of associated relations were collected

producing about 26,000 inference rules.

4Note that all probabilities are conditioned on an estimate of the parameters θ, β, γ from our model,
which are omitted for compactness.
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Figure 6.5: Precision and recall on the inference filtering task.

Following Pantel et al. [135] we randomly sampled 100 inference rules. We then auto-

matically filtered out any rules which contained a negation, or for which the antecedent and

consequent contained a pair of antonyms found in WordNet (this left us with 85 rules). For

each rule we collected 10 random instances of the antecedent, and generated the consequent.

We randomly sampled 300 of these inferences to hand-label.

Results

In figure 6.5 we compare the precision and recall of Lda-sp against the top two performing

systems described by Pantel et al. (ISP.IIM-∨ and ISP.JIM, both using the CBC clusters

[137]). We find that Lda-sp achieves both higher precision and recall than ISP.IIM-∨ on the

inference filtering evaluation. It is also able to achieve the high-precision point of ISP.JIM

and can trade precision to get a much larger recall.

In addition we demonstrate Lda-sp’s ability to rank inference rules by measuring the

Kullback Leibler Divergence5 between the topic-distributions of the antecedent and conse-

quent, θr1 and θr2 respectively. Table 6.3 shows the top 10 and bottom 10 rules out of the

26,000 ranked by KL Divergence after automatically filtering antonyms (using WordNet)

and negations. For slight variations in rules (e.g., symmetric pairs) we mention only one

5KL-Divergence is an information-theoretic measure of the similarity between two probability distribu-
tions, and defined as follows: KL(P ||Q) =

∑
x P (x) log P (x)

Q(x)
.
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example to show more variety.

6.4.4 A Repository of Class-Based Preferences

Finally we explore Lda-sp’s ability to produce a repository of human interpretable class-

based selectional preferences. As an example, for the relation was born in, we would like to

infer that the plausible arguments include (person, location) and (person, date).

Since we already have a set of topics, our task reduces to mapping the inferred topics

to an equivalent class in a taxonomy (e.g., WordNet). We experimented with automatic

methods such as Resnik’s, but found them to have all the same problems as directly applying

these approaches to the SP task.6 Guided by the fact that we have a relatively small number

of topics (600 total, 300 for each argument) we simply chose to label them manually. By

labeling this small number of topics we can infer class-based preferences for an arbitrary

number of relations.

In particular, we applied a semi-automatic scheme to map topics to WordNet. We first

applied Resnik’s approach to automatically shortlist a few candidate WordNet classes for

each topic. We then manually picked the best class from the shortlist that best represented

the 20 top arguments for a topic (similar to Table 6.1). We marked all incoherent topics

with a special symbol ∅. This process took one of the authors about 4 hours to complete.

To evaluate how well our topic-class associations carry over to unseen relations we used

the same random sample of 100 relations from the pseudo-disambiguation experiment.7 For

each argument of each relation we picked the top two topics according to frequency in the

5 Gibbs samples. We then discarded any topics which were labeled with ∅; this resulted in

a set of 236 predictions. A few examples are displayed in table 6.4.

We evaluated these classes and found the accuracy to be around 0.88. We contrast this

with Pantel’s repository,8 the only other released database of selectional preferences to our

6Perhaps recent work on automatic coherence ranking [129] and labeling [117] could produce better
results.

7Recall that these 100 were not part of the original 3,000 in the generalization corpus, and are, therefore,
representative of new “unseen” relations.

8http://demo.patrickpantel.com/Content/LexSem/paraphrase.htm
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Top 10 Inference Rules Ranked by Lda-sp

antecedent consequent KL-div

will begin at will start at 0.014999

shall review shall determine 0.129434

may increase may reduce 0.214841

walk from walk to 0.219471

consume absorb 0.240730

shall keep shall maintain 0.264299

shall pay to will notify 0.290555

may apply for may obtain 0.313916

copy download 0.316502

should pay must pay 0.371544

Bottom 10 Inference Rules Ranked by Lda-sp

antecedent consequent KL-div

lose to shall take 10.011848

should play could do 10.028904

could play get in 10.048857

will start at move to 10.060994

shall keep will spend 10.105493

should play get in 10.131299

shall pay to leave for 10.131364

shall keep return to 10.149797

shall keep could do 10.178032

shall maintain have spent 10.221618

Table 6.3: Top 10 and Bottom 10 ranked inference rules ranked by Lda-spafter automati-
cally filtering out negations and antonyms (using WordNet).
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arg1 class relation arg2 class

politician#1 was running for leader#1

people#1 will love show#3

organization#1 has responded to accusation#2

administrative unit#1 has appointed administrator#3

Table 6.4: Class-based Selectional Preferences.

knowledge. We evaluated the same 100 relations from his website and tagged the top 2

classes for each argument and evaluated the accuracy to be roughly 0.55.

We emphasize that tagging a pair of class-based preferences is a highly subjective task,

so these results should be treated as preliminary. Still, these early results are promising.

We wish to undertake a larger scale study soon.

6.5 Limitations

LinkLDA captures commonly co-occurring argument-class-pairs, which we found to be quite

useful for modeling selectional preferences. One limitation of this model, however is its in-

ability to capture correlations between classes in the same argument. For instance, relations

which appear with person as the first argument, also often apply to organizations. This

limitation is due to the use of the Dirichlet distribution as a prior over per-relation topic

distributions. One potential avenue for addressing this limitation would be to replace the

Dirichlet with a logistic normal distribution [12], which is capable of modeling correlations

between topics. This approach has the potential to better model the data, although would

also complicate inference as the logistic normal is not conjugate to the multinomial distri-

bution as is the Dirichlet. It is therefore left as an open empirical question which approach

will work best for modeling selectional preferences.

6.6 Conclusions and Future Work

This chapter presented an application of topic modeling to the problem of automatically

computing selectional preferences. Our method, Lda-sp, learns a distribution over top-
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ics for each relation while simultaneously grouping related words into these topics. This

approach is capable of producing human interpretable classes, however, avoids the draw-

backs of traditional class-based approaches (poor lexical coverage and ambiguity). Lda-sp

achieves state-of-the-art performance on predictive tasks such as pseudo-disambiguation,

and filtering incorrect inferences.

Our repository of selectional preferences for 10,000 relations is available at http://www.

cs.washington.edu/research/ldasp.

Our approach automatically induces an appropriate set of argument types in addition

to the preferences for each relation. This is very advantageous in practice since neither the

set of types, nor the preferences are obvious in advance for large heterogeneous text corpora

such as Twitter and the web, making supervised approaches based on manually annotated

data infesable for this task. This same approach is adapted to the task of unsupervised

event type categorization in Twitter in Chapter 7.
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Chapter 7

EXTRACTING AN OPEN-DOMAIN CALENDAR OF EVENTS
FROM MICROBLOG TEXT

We now have access to syntactic annotation tools adapted to noisy informal text which

were developed in Chpater 3. We also have a set probabilistic models for open-domain

information extraction in large heterogenous text corpora developed in Chapters 4, 5, 6.

What new kinds of data analysis applications could this set of tools and techniques for

processing large, noisy, heterogeneous text corpora enable? In this chapter we provide one

possible answer to this question by demonstrating how to extract an open-domain calendar

of popular events occuring in the near future from Twitter.

To do this, we leverage the named entity recognizer presented in Chapter 3. We also

develop an event extractor following similar techniques: annotating a corpus of tweets with

event phrases, which are then used to train in-domain sequence models. In addition we

leverage the in-domain part of speech tags from Chapter 3 as input to a system which is

able to automatically resolve temporal expressions to determine when the events take place.

Because Twitter users can talk about pretty much anything, and it is apriori unclear which

set of event categories are most important to capture in this data, we adapt the model of

selectional preferences described in Chapter 6 to automatically induce an appropriate set of

categories for popular events discussed on Twitter. This approach has the advantage that

it is agnostic to the correct set of categories in the data, and also provides a model based

on large volumes of unlabeled data which can be queried to categorize entities in context,

outperforming a supervised baseline.

7.1 Open Domain Event Extraction from Twitter

Previous work in event extraction [75; 3; 188; 66; 142; 46; 26] has focused largely on news

articles, as historically this genre of text has been the best source of information on current

events. In the meantime, social networking sites such as Facebook and Twitter have become
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Entity Event Phrase Date Type

Steve Jobs died 10/6/11 Death

iPhone announcement 10/4/11 ProductLaunch

GOP debate 9/7/11 PoliticalEvent

Amanda Knox verdict 10/3/11 Trial

Table 7.1: Examples of events extracted by TwiCal.

an important complementary source of such information. While status messages contain

a wealth of useful information, they are very disorganized motivating the need for auto-

matic extraction, aggregation and categorization. Although there has been much interest in

tracking trends or memes in social media [96; 105], little work has addressed the challenges

arising from extracting structured representations of events from short or informal texts.

Extracting useful structured representations of events from this disorganized corpus of

noisy text is a challenging problem. On the other hand, individual tweets are short and

self-contained and are therefore not composed of complex discourse structure as is the case

for texts containing narratives. In this chapter we demonstrate that open-domain event

extraction from Twitter is indeed feasible, for example our highest-confidence extracted

future events are 90% accurate as demonstrated in Section 7.7.

Twitter has several characteristics which present unique challenges and opportunities

for the task of open-domain event extraction.

Challenges: Twitter users frequently mention mundane events in their daily lives (such

as what they ate for lunch) which are only of interest to their immediate social network. In

contrast, if an event is mentioned in newswire text, it is safe to assume it is of general im-

portance. Individual tweets are also very terse, often lacking sufficient context to categorize

them into topics of interest (e.g. Sports, Politics, ProductRelease etc...). Further

because Twitter users can talk about whatever they choose, it is unclear in advance which

set of event types are appropriate. Finally, tweets are written in an informal style causing

NLP tools designed for edited texts to perform extremely poorly.
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Opportunities: The short and self-contained nature of tweets means they have very

simple discourse and pragmatic structure, issues which still challenge state-of-the-art NLP

systems. For example in newswire, complex reasoning about relations between events (e.g.

before and after) is often required to accurately relate events to temporal expressions [110;

28]. The volume of Tweets is also much larger than the volume of news articles, so redun-

dancy of information can be exploited more easily.

To address Twitter’s noisy style, we follow recent work on NLP in noisy text [152; 108;

69], annotating a corpus of Tweets with events, which is then used as training data for

sequence-labeling models to identify event mentions in millions of messages.

Because of the terse, sometimes mundane, but highly redundant nature of tweets, we

were motivated to focus on extracting an aggregate representation of events which provides

additional context for tasks such as event categorization, and also filters out mundane events

by exploiting redundancy of information. We propose identifying important events as those

whose mentions are strongly associated with references to a unique date as opposed to dates

which are evenly distributed across the calendar.

Twitter users discuss a wide variety of topics, making it unclear in advance what set

of event types are appropriate for categorization. To address the diversity of events dis-

cussed on Twitter, we introduce a novel approach to discovering important event types and

categorizing aggregate events within a new domain.

Supervised or semi-supervised approaches to event categorization would require first

designing annotation guidelines (including selecting an appropriate set of types to annotate),

then annotating a large corpus of events found in Twitter. This approach has several

drawbacks, as it is apriori unclear what set of types should be annotated; a large amount

of effort would be required to manually annotate a corpus of events while simultaneously

refining annotation standards.

We propose an approach to open-domain event categorization based on latent variable

models that uncovers an appropriate set of types which match the data. The automatically

discovered types are subsequently inspected to filter out any which are incoherent and the
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Figure 7.1: Processing pipeline for extracting events from Twitter.

rest are annotated with informative labels;1 examples of types discovered using our approach

are listed in figure 7.3. The resulting set of types are then applied to categorize hundreds

of millions of extracted events without the use of any manually annotated examples. By

leveraging large quantities of unlabeled data, our approach results in a 14% improvement

in F1 score over a supervised baseline which uses the same set of types.

7.2 System Overview

TwiCal extracts a 4-tuple representation of events which includes a named entity, event

phrase, calendar date, and event type (see Table 7.1). This representation was chosen to

closely match the way important events are typically mentioned in Twitter.

While including location information as part of our representation could be quite useful

(for example enabling querying for events taking place in a specific city), we do not address

the location resolution problem as part of this work. Accurate and complete extraction of

location information for these events would likely require linking entities mentioned in the

text of individual tweets with databases of geo-located entities [38]. Also note that location

is not important for many types of prominent events discussed on Twitter (for example

product releases, movie premieres, celebrity deaths and so on).

An overview of the various components of our system for extracting events from Twitter

is presented in Figure 7.1. Given a raw stream of tweets, our system extracts named

1This annotation and filtering takes minimal effort. One of the authors spent roughly 30 minutes inspect-
ing and annotating the automatically discovered event types.
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entities in association with event phrases and unambiguous dates which are involved in

significant events. First the tweets are POS tagged, then named entities and event phrases

are extracted, temporal expressions resolved, and the extracted events are categorized into

types. Finally we measure the strength of association between each named entity and date

based on the number of tweets they co-occur in, in order to determine whether an event is

significant.

NLP tools, such as named entity segmenters and part of speech taggers which were

designed to process edited texts (e.g. news articles) perform very poorly when applied to

Twitter text due to its noisy and unique style. To address these issues, we utilize a named

entity tagger and part of speech tagger trained on in-domain Twitter data presented in

Chapter 3. We also develop an event tagger trained on in-domain annotated data.

7.3 Extracting Event Mentions

In order to extract event mentions from Twitter’s noisy text, we first annotate a corpus of

tweets, which is then used to train sequence models to extract events. While we apply an

established approach to sequence-labeling tasks in noisy text [152; 108; 69], this is the first

work to extract event-referring phrases in Twitter.

Event phrases can consist of many different parts of speech as illustrated in the following

examples:

• Verbs: Apple to Announce iPhone 5 on October 4th?! YES!

• Nouns: iPhone 5 announcement coming Oct 4th

• Adjectives: WOOOHOO NEW IPHONE TODAY! CAN’T WAIT!

These phrases provide important context, for example extracting the entity, Steve Jobs

and the event phrase died in connection with October 5th, is much more informative than

simply extracting Steve Jobs. In addition, event mentions are helpful in upstream tasks

such as categorizing events into types, as described in Section 7.6.

In order to build a tagger for recognizing events, we annotated 1,000 tweets (19,484

tokens) with event phrases, following annotation guidelines similar to those developed for



93

precision recall F1

TwiCal-Event 0.56 0.74 0.64

No POS 0.48 0.70 0.57

Timebank 0.24 0.11 0.15

Table 7.2: Precision and recall at event phrase extraction. All results are reported using
4-fold cross validation over the 1,000 manually annotated tweets (about 19K tokens). We
compare against a system which doesn’t make use of features generated based on our Twitter
trained POS Tagger, in addition to a system trained on the Timebank corpus which uses
the same set of features.

the Event tags in Timebank [142]. We treat the problem of recognizing event triggers as

a sequence labeling task, using Conditional Random Fields for learning and inference [94].

Linear Chain CRFs model dependencies between the predicted labels of adjacent words,

which are beneficial for extracting multi-word event phrases. We use contextual, dictionary,

and orthographic features, and also include features based on our Twitter-tuned POS tagger

[152], and dictionaries of event terms gathered from WordNet by Sauri et al. [161].

The precision and recall at segmenting event phrases are reported in Table 7.2. Our

classifier, TwiCal-Event, obtains an F-score of 0.64. To demonstrate the need for in-

domain training data, we compare against a baseline of training our system on the Timebank

corpus.

7.4 Extracting and Resolving Temporal Expressions

In addition to extracting events and related named entities, we also need to extract when

they occur. In general there are many different ways users can refer to the same calendar

date, for example “next Friday”, “August 12th”, “tomorrow” or “yesterday” could all refer

to the same day, depending on when the tweet was written. To resolve temporal expressions

we make use of TempEx [111], which takes as input a reference date, some text, and parts of

speech (from our Twitter-trained POS tagger) and marks temporal expressions with unam-

biguous calendar references. Although this mostly rule-based system was designed for use

on newswire text, we find its precision on Tweets (94% - estimated over as sample of 268
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extractions) is sufficiently high to be useful for our purposes. TempEx’s high precision on

Tweets can be explained by the fact that some temporal expressions are relatively unam-

biguous. Although there appears to be room for improving the recall of temporal extraction

on Twitter by handling noisy temporal expressions (for example see Chapter 3 for a list of

over 50 spelling variations on the word “tomorrow”), we leave adapting temporal extraction

to Twitter as future work (see Chapter 8).

7.5 Ranking Events

Simply using frequency to determine which events are significant is insufficient, because

many tweets refer to common events in user’s daily lives. As an example, users often

mention what they are eating for lunch, therefore entities such as McDonalds occur relatively

frequently in association with references to most calendar days. Important events can be

distinguished as those which have strong association with a unique date as opposed to being

spread evenly across days on the calendar. To extract significant events of general interest

from Twitter, we thus need some way to measure the strength of association between an

entity and a date.

In order to measure the association strength between an entity and a specific date, we

utilize the G2 log likelihood ratio statistic. G2 has been argued to be more appropriate for

text analysis tasks than χ2 [52]. Although Fisher’s Exact test would produce more accurate

p-values [122], given the amount of data with which we are working (sample size greater

than 1011), it proves difficult to compute Fisher’s Exact Test Statistic, which results in

floating point overflow even when using 64-bit operations. The G2 test works sufficiently

well in our setting, however, as computing association between entities and dates produces

less sparse contingency tables than when working with pairs of entities (or words).

The G2 test is based on the likelihood ratio between a model in which the entity is

conditioned on the date, and a model of independence between entities and date references.

For a given entity e and date d this statistic can be computed as follows:

G2 =
∑

x∈{e,¬e},y∈{d,¬d}

Ox,y × ln

(
Ox,y
Ex,y

)
Where Oe,d is the observed fraction of tweets containing both e and d, Oe,¬d is the observed
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fraction of tweets containing e, but not d, and so on. Similarly Ee,d is the expected fraction

of tweets containing both e and d assuming a model of independence.

7.6 Categorizing Events Extracted from Microblogs

To categorize the extracted events into types we propose an approach based on latent

variable models which infers an appropriate set of event types to match our data, and also

classifies events into types by leveraging large amounts of unlabeled data.

Supervised or semi-supervised classification of event categories is problematic for a num-

ber of reasons. First, it is a priori unclear which categories are appropriate for Twitter.

Secondly, a large amount of manual effort is required to annotate tweets with event types.

Third, the set of important categories (and entities) is likely to shift over time, or within a

focused user demographic. Finally many important categories are relatively infrequent, so

even a large annotated dataset may contain just a few examples of these categories, making

classification difficult.

For these reasons we were motivated to investigate unsupervised approaches that will

automatically induce event types which match the data. We adopt an approach based on

latent variable models inspired by the model of selectional preferences presented in Chapter

6 [154; 163; 88; 180; 155], and recent work on unsupervised information extraction [7; 192;

26].

Each event indicator phrase in our data, e, is modeled as a mixture of types. For

example the event phrase “cheered” might appear as part of either a PoliticalEvent, or

a SportsEvent. Each type corresponds to a distribution over named entities n involved in

specific instances of the type, in addition to a distribution over dates d on which events of

the type occur. Including calendar dates in our model has the effect of encouraging (though

not requiring) events which occur on the same date to be assigned the same type. This is

helpful in guiding inference, because distinct references to the same event should also have

the same type.

The generative story for our data is based on LinkLDA [58], and is presented as Algo-

rithm 10. This approach has the advantage that information about an event phrase’s type

distribution is shared across its mentions, while ambiguity is also naturally preserved.
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Sports 7.45%

Party 3.66%

TV 3.04%

Politics 2.92%

Celebrity 2.38%

Music 1.96%

Movie 1.92%

Food 1.87%

Concert 1.53%

Performance 1.42%

Fitness 1.11%

Interview 1.01%

ProductRelease 0.95%

Meeting 0.88%

Fashion 0.87%

Finance 0.85%

School 0.85%

AlbumRelease 0.78%

Religion 0.71%

Conflict 0.69%

Prize 0.68%

Legal 0.67%

Death 0.66%

Sale 0.66%

VideoGameRelease 0.65%

Graduation 0.63%

Racing 0.61%

Fundraiser/Drive 0.60%

Exhibit 0.60%

Celebration 0.60%

Books 0.58%

Film 0.50%

Opening/Closing 0.49%

Wedding 0.46%

Holiday 0.45%

Medical 0.42%

Wrestling 0.41%

OTHER 53.45%

Figure 7.2: Complete list of automatically discovered event types with percentage of data
covered. Interpretable types representing significant events cover roughly half of the data.
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Label Top 5 Event Phrases Top 5 Entities

Sports tailgate - scrimmage - tailgating - homecoming - regular

season

espn - ncaa - tigers - eagles - varsity

Concert concert - presale - performs - concerts - tickets taylor swift - toronto - britney spears - rihanna - rock

Perform matinee - musical - priscilla - seeing - wicked shrek - les mis - lee evans - wicked - broadway

TV new season - season finale - finished season - episodes -

new episode

jersey shore - true blood - glee - dvr - hbo

Movie watch love - dialogue theme - inception - hall pass -

movie

netflix - black swan - insidious - tron - scott pilgrim

Sports inning - innings - pitched - homered - homer mlb - red sox - yankees - twins - dl

Politics presidential debate - osama - presidential candidate -

republican debate - debate performance

obama - president obama - gop - cnn - america

TV network news broadcast - airing - primetime drama -

channel - stream

nbc - espn - abc - fox - mtv

Product unveils - unveiled - announces - launches - wraps off apple - google - microsoft - uk - sony

Meeting shows trading - hall - mtg - zoning - briefing town hall - city hall - club - commerce - white house

Finance stocks - tumbled - trading report - opened higher - tum-

bles

reuters - new york - u.s. - china - euro

School maths - english test - exam - revise - physics english - maths - german - bio - twitter

Album in stores - album out - debut album - drops on - hits

stores

itunes - ep - uk - amazon - cd

TV voted off - idol - scotty - idol season - dividend-paying lady gaga - american idol - america - beyonce - glee

Religion sermon - preaching - preached - worship - preach church - jesus - pastor - faith - god

Conflict declared war - war - shelling - opened fire - wounded libya - afghanistan - #syria - syria - nato

Politics senate - legislation - repeal - budget - election senate - house - congress - obama - gop

Prize winners - lotto results - enter - winner - contest ipad - award - facebook - good luck - winners

Legal bail plea - murder trial - sentenced - plea - convicted casey anthony - court - india - new delhi - supreme court

Movie film festival - screening - starring - film - gosling hollywood - nyc - la - los angeles - new york

Death live forever - passed away - sad news - condolences -

burried

michael jackson - afghanistan - john lennon - young -

peace

Sale add into - 50% off - up - shipping - save up groupon - early bird - facebook - @etsy - etsy

Drive donate - tornado relief - disaster relief - donated - raise

money

japan - red cross - joplin - june - africa

Figure 7.3: Example event types discovered by our model. For each type t, we list the top 5
entities which have highest probability given t, and the 5 event phrases which assign highest
probability to t.
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Algorithm 10 Generative story for our data involving event types as hidden variables.

Bayesian Inference techniques are applied to invert the generative process and infer an

appropriate set of types to describe the observed events.
for each event type t = 1 . . . T do

Generate βn
t according to symmetric Dirichlet distribution Dir(ηn).

Generate βd
t according to symmetric Dirichlet distribution Dir(ηd).

end for

for each unique event phrase e = 1 . . . |E| do

Generate θe according to Dirichlet distribution Dir(α).

for each entity which co-occurs with e, i = 1 . . . Ne do

Generate zne,i from Multinomial(θe).

Generate the entity ne,i from Multinomial(βzn
e,i

).

end for

for each date which co-occurs with e, i = 1 . . . Nd do

Generate zde,i from Multinomial(θe).

Generate the date de,i from Multinomial(βzn
d,i

).

end for

end for
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For inference we use collapsed Gibbs Sampling [74] where each hidden variable, zi, is

sampled in turn, and parameters are integrated out. Example types are displayed in Figure

7.3. To estimate the distribution over types for a given event, a sample of the corresponding

hidden variables is taken from the Gibbs Markov chain after sufficient burn in. Prediction

for new data is performed using a streaming approach to inference [193].

7.6.1 Evaluation

To evaluate the ability of our model to classify significant events, we gathered 65 million

extracted events of the form listed in Figure 7.1 (not including the type). We then ran

Gibbs Sampling with 100 types for 1,000 iterations of burn-in, keeping the hidden variable

assignments found in the last sample.2

One of the authors manually inspected the resulting types and assigned them labels

such as Sports, Politics, MusicRelease and so on, based on their distribution over

entities, and the event words which assign highest probability to that type. Out of the

100 types, we found 52 to correspond to coherent event types which referred to significant

events;3 the other types were either incoherent, or covered types of events which are not of

general interest, for example there was a cluster of phrases such as applied, call, contact,

job interview, etc... which correspond to users discussing events related to searching for a

job. Such event types which do not correspond to significant events of general interest were

simply marked as OTHER. A complete list of labels used to annotate the automatically

discovered event types along with the coverage of each type is listed in figure 7.2. Note

that this assignment of labels to types only needs to be done once and produces a labeling

for an arbitrarily large number of event instances. Additionally the same set of types can

easily be used to classify new event instances using streaming inference techniques [193].

One interesting direction for future work is automatic labeling and coherence evaluation

of automatically discovered event types analogous to recent work on topic models [130;

95].

2To scale up to larger datasets, we performed inference in parallel on 40 cores using an approximation to
the Gibbs Sampling procedure analogous to that presented by Newmann et. al. [128].

3After labeling some types were combined resulting in 37 distinct labels.
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Precision Recall F1

TwiCal-Classify 0.85 0.55 0.67

Supervised Baseline 0.61 0.57 0.59

Table 7.3: Precision and recall of event type categorization at the point of maximum F1

score.

In order to evaluate the ability of our model to classify aggregate events, we grouped

together all (entity,date) pairs which occur 20 or more times the data, then annotated the

500 with highest association (see Section 7.5) using the event types discovered by our model.

To help demonstrate the benefits of leveraging large quantities of unlabeled data for

event classification, we compare against a supervised Maximum Entropy baseline which

makes use of the 500 annotated events using 10-fold cross validation. For features, we treat

the set of event phrases that co-occur with each (entity, date) pair as a bag-of-words, and

also include the associated entity. Because many event categories are infrequent, there are

often few or no training examples for a category, leading to low performance.

Figure 7.4 compares the performance of our unsupervised approach to the supervised

baseline, via a precision-recall curve obtained by varying the threshold on the probability

of the most likely type. In addition table 7.3 compares precision and recall at the point

of maximum F-score. Our unsupervised approach to event categorization achieves a 14%

increase in maximum F1 score over the supervised baseline.

Figure 7.5 plots the maximum F1 score as the amount of training data used by the

baseline is varied. It seems likely that with more data, performance will reach that of our

approach which does not make use of any annotated events, however our approach both

automatically discovers an appropriate set of event types and provides an initial classifier

with minimal effort, making it useful as a first step in situations where annotated data is

not immediately available.
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Figure 7.5: Maximum F1 score of the supervised baseline as the amount of training data is
varied.
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Figure 7.6: Screenshot of popular events extracted from Twitter taken on October 26, 2012.
Examples include the US presidential elections on November 6, and the release of the new
James Bond movie on November 9.

7.6.2 Measuring Similarity Between Event Phrases

Because our approach is based on generative probabilistic models (as opposed to a discrimi-

natively trained approach), the learned model may be useful for additional purposes beyond

categorizing events into types. As a demonstration of our learned model’s generality, we

investigated its ability to generate paraphrases of extracted event phrases in Tweets similar

to those found in the DIRT database [104]. These paraphrases could be useful for a variety

of purposes, for example, answering natural language questions about events discussed in

Tweets, or summarization. To evaluate our model’s ability to generate paraphrases, we

took all event phrases which occurred 1,000 or more times in our data, and measured KL

divergence4 between each pair’s distribution over event types. The 10 event phrases which

have lowest KL-divergence to 10 randomly sampled phrases are listed in Table 7.4.
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Input Phrase Top 10 Most Similar Phrases by KL Divergence

closed canceled, vacation, prepare, wind, cancelled, alert, delayed, delayed, sched-

ule, holiday

sell published, sold, offer, progress, convering, discovered, issue, credit, jump,

delivered

watch watching, season, watched, showing, excited, stream, series, catch, missed,

shown

service running, services, preaching, praise, run, prayer, praying, blessing, begin-

ning, marathon

exam quiz, study, test, studying, teaching, lesson, class, lecture, homework, work-

out

listen listened, listening, songs, dropping, repeat, drop, buy, song, downloaded,

download

lesson studying, write, homework, workout, wore, finish, worked, learned, asked,

finished

loving enjoyed, waking up, exhausted, confused, finish, boring, doing, annoying,

spent, finished

passed dies, died, death, funeral, crashed, rest, anniversary, war, killed, passing

begins continues, returning, beginning, return, stops, living, prepare, begin,

evening, move

Table 7.4: Example paraphrases based on KL divergence between event phrases’ type dis-
tributions, θ.
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precision

# calendar entries ngram baseline entity + date event phrase event type entity + date + event + type

100 0.50 0.90 0.86 0.72 0.70

500 0.46 0.66 0.56 0.54 0.42

1,000 0.44 0.52 0.42 0.40 0.32

Table 7.5: Evaluation of precision at different recall levels (generated by varying the thresh-
old of the G2 statistic).

7.7 Experiments

To estimate the quality of the calendar entries generated using our approach we manually

evaluated a sample of the top 100, 500 and 1,000 calendar entries occurring within a 2-week

future window of November 3rd.

7.7.1 Data

For evaluation purposes, we gathered roughly the 100 million most recent tweets on Novem-

ber 3rd 2011 (collected using the Twitter Streaming API5, and tracking a broad set of

temporal keywords, including “today”, “tomorrow”, names of weekdays, months, etc.).

We extracted named entities in addition to event phrases, and temporal expressions from

the text of each of the 100M tweets. We then added the extracted triples to the dataset

used for inferring event types described in Section 7.6, and performed 50 iterations of Gibbs

sampling for predicting event types on the new data, holding the hidden variables in the

original data constant. This streaming approach to inference is similar to that presented by

Yao et al. [193].

We then ranked the extracted events as described in Section 7.5, and randomly sampled

50 events from the top ranked 100, 500, and 1,000. We annotated the events with 4 separate

criteria:

4KL-Divergence is an information theoretic measure of similarity between two probability distributions
which is defined as follows

∑
i P1(i) log P1(i)

P2(i)

5https://dev.twitter.com/docs/streaming-api
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1. Is there a significant event involving the extracted entity which will take place on the

extracted date?

2. Is the most frequently extracted event phrase informative?

3. Is the event’s type correctly classified?

4. Are each of (1-3) correct? That is, does the event contain a correct entity, date, event

phrase, and type?

Note that if (1) is marked as incorrect for a specific event, subsequent criteria are always

marked incorrect.

7.7.2 Baseline

To demonstrate the importance of natural language processing and information extraction

techniques in extracting informative events, we compare against a simple baseline which does

not make use of our named entity recognizer or our event recognizer; instead, it considers

all 1-4 grams in each tweet as candidate calendar entries, relying on the G2 test to filter out

phrases which have low association with each date.

7.7.3 Results

The results of the evaluation are displayed in table 7.5. The table shows the precision of

the systems at different yield levels (number of aggregate events). These are obtained by

varying the thresholds in the G2 statistic. Note that the baseline is only comparable to the

third column, i.e., the precision of (entity, date) pairs, since the baseline is not performing

event identification and classification. Although in some cases ngrams do correspond to

informative calendar entries, the precision of the ngram baseline is extremely low compared

with our system.

In many cases the ngrams don’t correspond to salient entities related to events; they

often consist of single words which are difficult to interpret, for example “Breaking” which is

part of the movie “Twilight: Breaking Dawn” released on November 18. Although the word
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“Breaking” has a strong association with November 18, by itself it is not very informative

to present to a user.6

Our high-confidence calendar entries are surprisingly high quality. If we limit the data

to the 100 highest ranked calendar entries over a two-week date range in the future, the

precision of extracted (entity, date) pairs is quite good (90%) - an 80% increase over the

ngram baseline. As expected precision drops as more calendar entries are displayed, but

remains high enough to display to users (in a ranked list). In addition to being less likely

to come from extraction errors, highly ranked entity/date pairs are more likely to relate to

popular or important events, and are therefore of greater interest to users.

In addition we present a sample of extracted future events on a calendar in figure 7.6

in order to give an example of how they might be presented to a user. We present the

top 5 entities associated with each date, in addition to the most frequently extracted event

phrase, and highest probability event type.

7.7.4 Error Analysis

We found 2 main causes for why entity/date pairs were uninformative for display on a

calendar, which occur in roughly equal proportion:

Segmentation Errors Some extracted “entities” or ngrams don’t correspond to named

entities or are generally uninformative because they are mis-segmented. Examples

include “RSVP”, “Breaking” and “Yikes”.

Weak Association between Entity and Date In some cases, entities are properly seg-

mented, but are uninformative because they are not strongly associated with a specific

event on the associated date, or are involved in many different events which happen

to occur on that day. Examples include locations such as “New York”, and frequently

mentioned entities, such as “Twitter”.

6In addition, we notice that the ngram baseline tends to produce many near-duplicate calendar entries,
for example: “Twilight Breaking”, “Breaking Dawn”, and “Twilight Breaking Dawn”. While each of these
entries was annotated as correct, it would be problematic to show this many entries describing the same
event to a user.
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7.8 Related Work

While we are the first to study open domain event extraction within Twitter, there are

two key related strands of research: extracting specific types of events from Twitter, and

extracting open-domain events from news [142].

Recently there has been much interest in information extraction and event identification

within Twitter. Benson et al. [8] use distant supervision to train a relation extractor which

identifies artists and venues mentioned within tweets of users who list their location as New

York City. Sakaki et al. [159] train a classifier to recognize tweets reporting earthquakes in

Japan; they demonstrate their system is capable of recognizing almost all earthquakes re-

ported by the Japan Meteorological Agency. Additionally there is recent work on detecting

events or tracking topics [105] in Twitter which does not extract structured representations,

but has the advantage that it is not limited to a narrow domain. Petrović et al. investigate

a streaming approach to identifying tweets which are the first to report a breaking news

story using Locally Sensitive Hash Functions [138]. Becker et al. [6], Popescu et al. [141;

140] and Lin et al. [101] investigate discovering clusters of related words or tweets which cor-

respond to events in progress. In contrast to previous work on Twitter event identification,

our approach is independent of event type or domain and is thus more widely applicable.

Additionally, our work focuses on extracting a calendar of events (including those occurring

in the future), extracting event-referring expressions and categorizing events into types.

Also relevant is work on identifying events [93; 40; 11], and extracting timelines [106] from

news articles.7 Twitter status messages present both unique challenges and opportunities

when compared with news articles. Twitter’s noisy text presents serious challenges for NLP

tools. On the other hand, it contains a higher proportion of references to present and future

dates. Tweets do not require complex reasoning about relations between events in order to

place them on a timeline as is typically necessary in long texts containing narratives [169].

Additionally, unlike news, tweets often discus mundane events which are not of general

interest, so it is crucial to exploit redundancy of information to assess whether an event is

significant.

7http://newstimeline.googlelabs.com/
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Previous work on open-domain information extraction [4; 183; 60] has mostly focused

on extracting relations (as opposed to events) from web corpora and has also extracted

relations based on verbs. In contrast, this work extracts events, using tools adapted to

Twitter’s noisy text, and extracts event phrases which are often adjectives or nouns, for

example: Super Bowl Party on Feb 5th.

Finally we note that there has recently been increasing interest in applying NLP tech-

niques to short informal messages such as those found on Twitter. For example, recent

work has explored Part of Speech tagging [69], geographical variation in language found on

Twitter [54; 55], modeling informal conversations [150; 151; 39], and also applying NLP tech-

niques to help crisis workers with the flood of information following natural disasters [124;

97; 126].

7.9 Conclusions

We have presented a scalable and open-domain approach to extracting and categorizing

events from status messages. We evaluated the quality of these events in a manual evaluation

showing a clear improvement in performance over an ngram baseline.

We proposed a novel approach to categorizing events in an open-domain text genre

with unknown types. Our approach based on latent variable models first discovers event

types which match the data, which are then used to classify aggregate events without any

annotated examples. Because this approach is able to leverage large quantities of unlabeled

data, it outperforms a supervised baseline by 14%.

A possible avenue for future work is extraction of even richer event representations,

while maintaining domain independence. For example: grouping together related entities,

classifying entities in relation to their roles in the event, thereby, extracting a frame-based

representation of events.

Our work makes a significant headway into our general goal of reducing information

overload by creating aggregate representations for the end-user. A possible avanue for future

work is adding functionality for personalized calendars based on the events of interest. We

also wish to induce semantic frames for open-domain events via unsupervised approaches,

using ideas similar to [26].
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Chapter 8

CONCLUSIONS AND FUTURE WORK

In this thesis we explored the challenges and opportunities which arise when extracting

information form large, heterogeneous and informal text corpora such as Twitter and the

Web. We developed a set of NLP tools which have been tuned to work on noisy Twitter text,

and have been made available online.1 These tools were then leveraged to extract a calendar

of popular events occurring in the near future from Twitter. The highly diverse nature of

information expressed in these corpora was addressed through a series of unsupervised and

weakly supervised methods which are able to learn from large quantities of unlabeled text,

and which are based on probabilistic latent variable models. We showed that for semantic

processing tasks where the number of categories is large and not known a-priori, the ability

to exploit large unlabeled text corpora is necessary, and relying on small manually annotated

text corpora and supervised learning is not practical.

In Chapter 3 we showed that off-the-shelf NLP tools are insufficient for handling Twit-

ter’s unique and noisy style. Issues such as misspellings and abbreviations, unreliable cap-

italization, and unique grammar cause news-trained NLP tools to perform very poorly on

Tweets. In response we developed a set of Twitter-tuned NLP tools which are trained on an

in-domain annotated corpus. These shallow syntactic annotation tasks are more challeng-

ing in noisy text than grammatical texts such as news articles, however once we get past

the noisy text issues, other challenges become more manageable due to Twitter’s simple

discourse structure.

Discourse is one of the more challenging and unsolved problems in NLP. How to link

information across sentences is not solved in the same way that we know how to take and

individual sentence and extract its meaning. By working with short informal messages from

Twitter we are able to sidestep some of these challenging discourse issues. Exploiting these

1https://github.com/aritter/twitter_nlp
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intuitions about Twitter’s simple discourse structure, and our Twitter-tuned NLP tools we

were able to automatically extract a calendar of popular events occurring in the near future

in Chapter 7.

In addition this thesis described a series of new probabilistic models for open-domain

information extraction. We presented a new approach to distant supervision based on

topic models which is capable of handling the situation of highly ambiguous training data,

for example as arises in the case of weakly supervised named entity categorization. We

investigated the issue of missing data in distant supervision, presenting an extension to

the model of Hoffmann et. al. [80] which results in large improvements to precision and

recall. In addition we showed how to model selectional preferences using topic models, and

demonstrated the effectiveness of this approach on a pseudodisambiguation evaluation as

well as through evaluation on the task of filtering improper applications of inference rules

in context. Finally we proposed a latent variable model which is capable of automatically

discovering an appropriate set of types to describe events automatically extracted from

Twitter.

8.1 Future Work

Moving forward, there are many unsolved and fundamental challenges to be addressed

towards the construction of scalable natural language understanding systems. This section

focuses specifically on the challenges and opportunities that arise from user-generated text,

time-sensitive information contained in text and the ever increasing availability of structured

data and unstructured text. Several possible directions for future work are outlined below.

8.1.1 Populating the Realtime Semantic Web

The semantic web vision is beginning to take shape based on efforts such as Freebase, which

present a consistent schema across large volumes of structured data from a huge variety of

domains. Such systems currently don’t address realtime data, however. Imagine the ability

to receive alerts based on queries which link information across both realtime text and

structured data. For example consider a system which is able to alert you instantly when

performances by Grammy nominated artists in your hometown are announced, enabling
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you to buy tickets before they sell out. Information extracted from text will likely play

an even more crucial role in the population of the realtime semantic web, as people are

generally more likely to mention new information in text than to fill out structured data

forms describing it.

8.1.2 Forecasting the News

Given that we can extract events occurring in the future, an exciting question is whether

it is possible to predict which will turn into important news stories before they take place.

More concisely stated: How well can we predict the topic of the front-page article of the New

York Times for an arbitrary date in the near future? This is actually quite easy in some

cases, for example I would bet that on the Wednesday after the first Monday in November

of any election year, the top story will be mostly about who won the U.S. elections. For

other dates the answer may be less obvious however, as multiple events could compete for

the top spot. A tool which can accurately predict the most important news in advance

would be useful for information analysts, journalists, event planners, political campaigns

or advertisers. Realtime text such as newspapers, blogs, Facebook and Twitter provide us

with a source of information for making such predictions. Perhaps the number and source of

future event mentions could serve as an indicator of their importance, in addition to features

such as the category of event, entities involved, or user sentiment. To learn a model which

makes such predictions, we have access to virtually limitless amounts of naturally occurring

training data in the form of important news articles paired with corpora of historically

written texts which reference them in future tense.

8.1.3 Planetary Scale Language Grounding

Children learn language by hearing it used in appropriate context, not by observing large

corpora of linguistic annotations. Previous work on grounded language acquisition has fo-

cused on limited environments, however the emergence of large quantities of user-generated

realtime text presents us with a unique opportunity to ground domain-independent language

in a diverse set of sensor measurements taken from the real world at scale. We would like to
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extend our previous work building semantic models from large quantities of unlabeled text

to include non-textual sources of information and thereby ground the meaning of these dis-

tributional semantics in real-world sensor data. Imagine a system which can link comments

on a recent news story with shifts in political polling numbers, realtime sports commentary

with box score data from baseball games, comments on the weather with meteorological

data, mentions of earthquakes with spikes in seismographic data, and complaints about

traffic jams with public data on traffic flow. Is it possible to ground language meaning in

sensor data at the scale of all important events taking place in the world?

8.1.4 Event Reference Resolution in Microblogs

An individual tweet can refer to an event in a wide variety of different ways. Because tweets

are short, they are likely to mention only a subset of entities involved in the event, and

might not even mention the date on which it occurs. Also there are many event phrases

which can be used to refer to the same type of event, for example either “game” or “plays”

might be used to refer to a sports event.

To address these issues, an important task is to cluster together all mentions of the same

distinct event. More accurate grouping of mentions into co-referring events will be useful

for many purposes, such as providing a better estimate of the number of references to an

individual event (and thus a better estimate of it’s importance), deduplication of events,2 in

addition to providing more complete information about each event for upstream tasks such

as schema discovery (see below). While there has been previous work on event reference

resolution in news articles, this is likely an even more important problem in the context of

Tweets, which are not organized into documents.

8.1.5 Event Schema Discovery

The entities involved in a given event can be seen as filling a particular field in the schema

determined by the event’s type. For example, a ProductRelease event might be expected

to involve a Company and Product (for instance Apple and iPhone 5 ). For systems focused

2Our current representation of events, while simple and effective, does lead to duplicates in situations
where multiple entities are involved in the same event.
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on extracting events within a narrow domain [8], the schema is easily specified in advance.

Because our events and types are extracted in a fully open-domain manner, however, we have

no way of knowing in advance what schema is appropriate for each of the types discovered

by our model [153].

Recent work by Cafarella et. al. [20] has explored schema discovery for open-domain

relation extraction using a data-mining style algorithm. We would like to investigate an

analogous approach to schema discovery for open-domain events extracted from Twitter.

Additionally we would like to explore an approach based on probabilistic generative models,

which could enable schema induction to be performed jointly with event type categorization

and event reference resolution, potentially leading to better performance than a pipelined

approach to these problems.

8.1.6 Learning to Resolve Temporal References Through Weak Supervision

In order to place events on a calendar, we need to extract and resolve temporal expressions.

For example, given the phrase “next Friday” we should be able to determine the unique

calendar date which is referenced because we have the time at which the tweet was written.

Currently we are using TempEx for this purpose [111]. TempEx is a rule-based system for

extracting and resolving temporal expressions designed for use in newswire text, which we

have found to have high precision when applied to tweets. TempEx’s high precision can be

explained by the fact that many temporal expressions are relatively unambiguous, however

the creative spelling variations often employed on Twitter (for example “nxt fri”) lead to

low recall.

A natural approach to improving recall would be to annotate a large corpus of tweets

with temporal expressions and manually resolve them to unique calendar dates for use as

in-domain training data by machine learning models. This annotation would be extremely

tedious and time-consuming, however, as non-trivial effort is required to calculate the ref-

erence date for each annotated temporal expression.

As an alternative to manual annotation, we would like to investigate a distantly su-

pervised approach to extracting and resolving temporal expressions. First, note that it
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is easy to retrospectively identify when important events take place based on frequency

spikes; significant {Entity,Date} tuples can readily be identified using a statistical test.

Once significant events are identified, we can apply a distant supervision assumption [121]

which states that tweets written within a fixed window around the date of the event3 which

mention a key entity involved in the event should also refer to the date on which the event

takes place. As a concrete example, assume the entity “LinkedIn” is frequently mentioned

on May 19, 2011 (the date of their IPO); we could then gather all tweets which mention

“LinkedIn” near the 19th, for example:

Tweeted on May 16: LinkedIn will go public on Thursday. I guess we’ll see what happens.

Tweeted on May 20: LinkedIn debuted on the NYSE yesterday - currently at $99.50/share

(premarket). WAY too overpriced: http://bit.ly/mtV8oO Thoughts?

We can consider each such {Tweet,ReferenceDate,TargetDate} tuple as a (distantly su-

pervised) training example. Negative examples can consist of dates within a window other

than the target date, and feature templates can consist of conjunctions of lexical features

from the tweet and properties of the target date. Example features generated using these

templates could include:

• TIME = Past ∧WORD = “debuted”

• DOW = Wednesday ∧WORD = “wed”.

In practice the distant supervision assumption presented above may be too unrealistic

to be effective because tweets which mention an event won’t always mention the date on

which it takes place. We therefore may need to introduce additional latent variables which

determine whether each word is part of a temporal expression. One possible approach would

be to model temporal expressions using a constrained Hidden Markov Model, where a subset

of the hidden states are arbitrarily mapped to date properties in advance (e.g. TIME =

Past, DOW = Wednesday, WEEK = Next, etc...) and during training the transition

3For example += 2 weeks.
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matrices of the HMMs are constrained such that the probability of transitioning into each of

these states is zero, except if the associated target date has that property active. Parameters

would be shared across HMMs except for those set to zero due to constraints. Learning

could proceed in a straightforward fashion using EM (the forward-backward algorithm)

or sampling-based inference [70]. During inference (decoding) the HMM would be left

unconstrained. After decoding, temporal expressions with associated properties of the target

date could be read off based on the inferred values of hidden variables. If necessary, feature

engineering (and overlapping correlated features such as prefixes, suffixes and dictionary-

based features) could be accommodated by modeling the emission distributions with locally

normalized logistic regression models [9]. Note that an additional (distantly supervised)

classification step would likely be necessary as date properties are often left semantically

ambiguous, even though they are pragmatically well defined. For example in the absence

of an explicit past tense marker a phrase like “the Wednesday meeting” is usually assumed

to refer to the future.
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