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Abstract

Inference Over the Web

Stefan Schoenmackers

Co-Chairs of the Supervisory Committee:
Professor Oren Etzioni

Computer Science and Engineering

Professor Daniel S. Weld
Computer Science and Engineering

The World Wide Web contains vast amounts of text written about nearly any topic

imaginable. Recent work in Information Extraction has sought to recover the information

stated in this text, aggregating it into massive bodies of knowledge. These knowledge

bases have the potential to significantly improve future Web search engines and Web-based

Question-Answering systems, allowing them to answer more complex queries.

However, despite its size there are still a large number of facts that are never explicitly

mentioned on the Web. Much of the knowledge available on the Web is implicit, and must

be inferred from other facts, possibly stated on separate pages. A system wishing to access

this implicit knowledge must not only determine what inferences should be made, but also

it must do so in a way that handles the noise, scale, and diversity of knowledge on the Web.

This dissertation demonstrates that it is possible for systems to discover the implicit

knowledge that exists within large knowledge bases extracted from the Web. It describes

SHERLOCK-HOLMES, an unsupervised system that learns first-order Horn-clauses from

facts extracted from the Web. Experiments show that the rules it learns can infer many

facts not explicitly stated in the corpus, and furthermore that the long-tailed nature of facts

on the Web allows the system to learn and use the rules in a scalable way.
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GLOSSARY

APF: Approximately Pseudo-Functional relations have a long-tailed property that al-

lows inference over them to scale linearly in the size of the corpus (Section 5.1).

ILP: Inductive Logic Programming is a subfield of machine learning which tries to

learn logic programs from a set of positive examples, a set of negative examples, and

background knowledge (Section 2.5).

KB: a Knowledge Base is a collection of knowledge in a formal language, such as

first-order logic (Section 2.1).

MLN: Markov Logic Networks are a method of combining logical and probabilistic

inference (Section 2.3).

MN: Markov Networks are probabilistic models for describing the joint distribution of

a set of random variables (Section 2.2).

NLP: Natural Langauge Processing is a field that tries to formalize the analysis and

machine understanding of natural language.

OPENIE: Open Information Extraction is a subfield of natural language processing that

tries to extract information from text over an arbitrary and unspecified set of object

and relations (Section 2.4).
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Chapter 1

INTRODUCTION

The World Wide Web has become a massive resource of knowledge, with billions of

pages containing information on just about any topic imaginable. Keyword-based search-

engines help make this information accessible, allowing people to quickly find Web pages

relevant to any question or interest they may have. However, in many cases the information

needed to answer a question is spread over multiple Web pages. For example, consider a

user wishing to know what drugs the FDA has banned. There is currently no single Web

page listing everything the FDA has proscribed, so to collect such a list a person would

need to read a large number of reports spread over multiple Web pages.

Information Extraction (IE) systems (e.g., [4, 8, 18, 70]) and Web based question-

answering (Q/A) systems (e.g., [29, 7]) seek to overcome this limitation by discovering

and aggregating individual facts stated on various Web pages. Using the previous example,

these systems might try to find all occurrences of the phrases “the FDA banned X”, “X was

banned by the FDA”, etc., thereby automatically constructing a large list of things the FDA

has banned.

However, these Web-based IE and Q/A systems have a substantial limitation — they

rely on Web pages that contain an explicit answer to a query. Such systems are helpless if

the information must be inferred from multiple sentences, possibly stated on different Web

pages. This is a significant obstacle in practice, since despite its size there are many inter-

esting facts never explicitly stated on the Web. For example, consider a system trying to

answer the question “What vegetables prevent osteoporosis?” As of this writing, Google’s

search engine returns no pages explicitly stating “broccoli prevents osteoporosis,” making

it challenging for a Q/A system to return “broccoli” as an answer. However, there are thou-
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sands of pages stating “broccoli contains calcium” and thousands more declaring “calcium

prevents osteoporosis.” If a system were able to combine these facts, it could infer that

broccoli was an answer to the question. The primary goal of this work is to make such

inferences, thereby uncovering the knowledge implicitly present on the Web.

A system making such inferences over facts on the Web must operate in a scalable

way. This means that not only must it compute such inferences efficiently, but also it must

find valid inference rules in a scalable way. To be useful, the system should be able to

combine facts extracted from potentially billions of Web pages, and it must do so within

minutes or seconds. To achieve this, the system’s runtime must scale at most linearly in the

size of the corpus. Learning and using inference rules has been studied extensively in the

Inductive Logic Programming (ILP) literature [16, 49], but ILP systems typically do not

have guarantees on scalability or runtime performance. Furthermore, ILP systems require

a well-defined set of objects and relations for rule learning, but information on the Web

is not limited to a single, well-defined domain. Rather, Web text describes a very large

and diverse set of objects and relations. The set of ground facts derived from Web text are

herein referred to as open-domain theories. For the purposes of this document, these facts

take the form of textual relations (e.g., Contains(Broccoli, Calcium)).

In addition to scale, a system capable of making inferences in open-domain theories

must overcome several other challenges. First, it must automatically identify which infer-

ence rules are true and when they are applicable. Since Web text contains information on an

unbounded and unknown number of classes and relations, manually specifying all inference

rules is infeasible. Even manual identification of true and false examples of all potentially

interesting relations is impractical. To be useful on a corpus as diverse as Web text, the sys-

tem must learn inference rules without using supervised training data or relation-specific

prior-knowledge.

The second challenge of open-domain theories is that facts derived from Web text are

both noisy and radically incomplete. The names used to denote both entities and relations

on the Web are rife with both synonyms and polysymes, making their referents uncertain.
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Ambiguous names, extraction errors, and blatantly false facts may lead to incorrect infer-

ences, so the system must track how confident it is in each result. Furthermore, negative

examples are mostly absent, but since many true facts are not explicitly stated (e.g., ‘broc-

coli prevents osteoporosis’), the system cannot make the closed-world assumption typically

used in ILP. The system must learn rules and make inferences in the presence of ambiguous,

noisy, radically incomplete, and positive-only facts.

This dissertation explores the challenges and feasibility of inference in open-domain

theories by investigating the following hypothesis:

We can automatically infer a large number of high-quality, unstated facts

from a noisy, diverse, and incomplete knowledge-base extracted from

Web text, using methods that scale linearly in the size of the corpus.

In this dissertation, we validate this hypothesis by demonstrating that it is possible to

learn rules and make high-quality, useful inferences in open-domain theories. This docu-

ment describes the SHERLOCK-HOLMES system, an inductive logic programming and in-

ference system optimized to answer questions from a noisy, diverse, and incomplete set of

Web extractions. SHERLOCK-HOLMES takes as input a large collection of facts extracted

from Web text, learns a set of Horn-clause inference rules related to those facts, and uses

the learned rules to infer answers to queries. Table 1.1 shows some example rules that were

learned by the system. At a high level, SHERLOCK-HOLMES addresses the challenges of

open-domain theories as follows: it handles noise and ambiguity by automatically identi-

fying a clean, well-defined set of facts to learn rules over; it identifies correct rules using

a novel rule-scoring function that is effective for noisy, incomplete, positive-only data; fi-

nally, SHERLOCK-HOLMES operates scalably by exploiting a long-tailed property of facts

on the Web.

The main contributions of this work are as follows:

1. The design, implementation, and evaluation of the SHERLOCK-HOLMES system, one
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IsHeadquarteredIn(company, state) :- IsBasedIn(company, state);

IsHeadquarteredIn(company, state) :-

IsBasedIn(company, city) ∧ IsLocatedIn(city, state);

Contains(food, chemical) :-

IsMadeFrom(food, ingredient) ∧ Contains(ingredient, chemical);

Reduce(medication, factor) :-

KnownGenericallyAs(medication, drug) ∧ Reduce(drug, factor);

Play(player1, sport) :-

Beat(player2, player1) ∧ Play(player2, sport);

ReturnTo(writer, place) :-

BornIn(writer, city) ∧ CapitalOf(city, place);

Make(company1, device) :-

Buy(company1, company2) ∧ Make(company2, device);

Table 1.1: Example rules learned by SHERLOCK-HOLMES from Web extractions. Each
rule states that the preconditions on the right imply the predicate on the left. The rules in
italics are unsound.

of the first unsupervised ILP systems able to learn first-order, Horn-clause inference

rules from open-domain Web text. SHERLOCK-HOLMES automatically identifies

10,000 well defined, high-precision relations extracted from a large Web corpus by

TEXTRUNNER [4], and learns rules allowing it to infer three times as many high

quality facts (precision ≥ 0.8) as were originally extracted from the corpus.

2. An innovative scoring function that is particularly well suited to unsupervised learn-

ing from noisy and incomplete facts. For facts extracted from Web text, the scoring

function yields more accurate results than several standard functions from the ILP

literature.

3. The approximately pseudo-functional (APF) property, which quantifies the ‘long-

tailed’ behavior of relations extracted from the Web. We prove that, for APF relations,
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SHERLOCK-HOLMES’s runtime will scale linearly in the size of the corpus. We

demonstrate empirically that most relations extracted from the Web are APF, and

furthermore that the runtimes of both rule learning and inference in SHERLOCK-

HOLMES do scale linearly in practice. Therefore, SHERLOCK-HOLMES’s techniques

should be able to operate at Web scale.

4. An extension of SHERLOCK-HOLMES to utilize self-supervised and minimally su-

pervised techniques, and an examination of how they affect the results. We demon-

strate that bootstrapping additional training examples helps the system handle noise

and sparsity better, allowing it to infer many additional facts. Finally, we demonstrate

that a small amount of supervision, in the form of mutual-exclusion constraints on

relations, can improve the system’s precision for those relations.

This dissertation is laid out as follows. We first provide some background definitions

and describe related work in Chapter 2. We then describe the SHERLOCK-HOLMES system

and rule scoring function in Chapter 3, and evaluate them in Chapter 4. Chapter 5 then

introduces the approximately pseudo-functional property, and demonstrates SHERLOCK-

HOLMES’s linear scalability both theoretically and empirically. Chapter 6 examines how

self-supervised and minimally supervised extensions to the system affect its performance.

Finally, we conclude and discuss directions for future research in Chapter 7.
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Chapter 2

PRIOR WORK

This work builds upon advances in several different subfields of computer science: in-

formation extraction (IE), natural language processing (NLP), inductive logic programming

(ILP), logic, and probabilistic inference. This chapter introduces some definitions, termi-

nology, and background work which are the basis for the SHERLOCK-HOLMES system, and

describes how SHERLOCK-HOLMES fits in with related work in rule learning and inference

in text.

2.1 First-Order Logic

A first-order knowledge base (KB) is a set of formulas in first order logic [23]. The formulas

are constructed using symbols of four types: constants, variables, functions, and predicates.

A constant symbol identifies an object in the domain of interest (e.g., Seattle, Broccoli,

etc.) A variable symbol ranges over objects in the domain. A function symbol maps tuples

of objects to objects in the domain. A predicate symbol represents a relation or property

of a tuple of objects in the domain (e.g., Contains(Broccoli, Calcium)). Constants and

variables may be typed, in which case the constant refers to an object of that type and the

variable may only range over objects of that type.

A term in first-order logic is an expression (constant, variable, or function applied to a

tuple of terms) representing an object in the domain. A ground term is a term containing

no variables. An atom or atomic formula is a predicate symbol applied to a tuple of terms

(e.g., IsBasedIn(x, Seattle)). A ground atom is an atom containing no variables (i.e.,

a predicate symbol applied to a tuple of ground terms). In this work will refer to ground

atoms extracted from the Web as ground facts, but we may alternatively refer to a ground
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atom as either a ground predicate or a ground relation.

Formulas in first-order logic are constructed recursively from atomic formulas using

logical operators and quantifiers. The logical operators include: ∧ (conjunction, or logical-

and), ∨ (disjuction, or logical-or), ¬ (logical negation), and ⇒ (logical implication). A

literal is an atomic formula (positive literal) or a negation of an atomic formula (negative

literal). A universally quantified formula (∀x F1) is true iff F1 is true for every object x

(possibly typed) in the domain. An existentially quantified formula (∃x F1) is true iff F1 is

true for at least one object x (possibly typed) in the domain.

The formulas in a knowledge base are implicitly conjoined. For automated reasoning,

KBs are typically represented in clausal form (also known as conjunctive normal form).

This format consists of a conjunction of clauses, where each clause is a disjunction of lit-

erals. Every KB in first-order logic can be converted into clausal form using an automated

process. In finite domains, first-order knowledge bases can be propositionalized by replac-

ing an universally quantified formula with a conjunction of all of its groundings, and an

existentially quantified formula with a disjunction of all of its groundings.

A possible world or Herbrand interpretation is an assignment of truth values to all

ground atoms. A formula is satisfiable if there is at least one possible world in which the

formula is true.

Since inference in first-order logic is only semidecidable, we impose some additional

restrictions in this work to make inference tractable. Specifically, we consider a finite,

function-free subset of first-order logic, and we require that all formulas be definite clauses.

A definite clause is a clause containing exactly one positive literal. These clauses corre-

spond to inference rules (logical implications) where the head is a single positive literal,

and the body is a conjunction of positive literals (e.g., the implication P ∧ Q ∧ R ⇒ S

is logically equivalent to the definite clause ¬P ∨ ¬Q ∨ ¬R ∨ S.) Such implications are

also often called Horn clauses. A Horn clause is a clause with at most one positive literal.

Although Horn clauses are a superset of definite clauses, we refer to inference rules in this

work using the terms interchangeably.
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A relation is said to have closed-world semantics if all ground atoms of that relation

are assumed to be false unless they are explicitly declared to be true in the KB. Otherwise

the relation is said to have open-world semantics. Declaring relations to be closed-world

provides an easy and compact way of restricting the set of possible worlds. As such, many

systems using first-order logic exploit this to improve efficiency. Unfortunately, due to

the sparsity and incompleteness of facts extracted from the Web we can not make this

assumption in this work.

Finally, we say that a clause is connected if the literals in the clause cannot be parti-

tioned into two sets such that the variables appearing in the literals of one set are disjoint

from the variables appearing in the literals of the other set. This essentially says that each

literal in the clause can reach any other literal in the clause via a path of shared variables.

Intuitively, this means that the literals in the clause are all interrelated and affect each other.

In this work, we use the following syntactic conventions when describing objects, rela-

tions, and rules:

1. Constants are written with the first letter in upper-case. When naming a fixed, specific

relation or object, we capitalize words and omit spaces (e.g., we represent the fact that

Seattle is located in Washington as: IsLocatedIn(Seattle, Washington)).

2. Variables are written in lower-case (e.g., IsLocatedIn(x, y)). If there are type re-

strictions on the variable, then for clarity we simply use the type as the name of the

variable (e.g., IsLocatedIn(city, state)).

3. We write rules using a Prolog-like notation, and assume all variables are universally

quantified. For example, we will write the implication P (x, y) ∧ Q(y, z) ⇒ S(x, z)

as S(x, z) : −P (x, y) ∧ Q(y, z);. This rule means: for all values of x, y, and z, if

P (x, y) is true and Q(y, z) is true then S(x, z) is true.
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2.2 Markov Networks

A Markov network or Markov random field is a model for the joint distribution of a set of

variables x = (x1, ..., xn) ∈ X [45]. It represents the distribution using an undirected graph

G which contains one node for each variable xi, and it models dependencies between vari-

ables as cliques in the graph. Each clique has a corresponding potential function φk, which

is a non-negative real-valued function whose value depends on the state of the variables in

the clique. The probability of a particular state x is given by

p(X = x) =
1

Z

∏
k

φk(x{k}) (2.1)

where the partition function Z =
∑

x∈X
∏

k φk(x{k}) is a normalizing term, and x{k} de-

notes the state of all variables in clique k.

The potential functions in a Markov network are often expressed as a log-linear model.

In this case, the potential functions are represented as an exponentiated weighted sum of

features of the state:

p(X = x) =
1

Z
exp(

∑
j

wj ∗ fj(x)) (2.2)

where fj(x) are features of state x, and wj are the corresponding weights. One can directly

translate the standard form of the Markov network (Equation 2.1) into the log-likelihood

form by creating a binary feature fj(x) ∈ {0, 1} for each state of a clique x{k}, and giving

it weight wj = log φk(x{k}).

Inference in Markov networks is #P-complete [54]. To make the problem tractable, a

number of approximation techniques such as Markov chain Monte Carlo (MCMC) [24] and

belief propagation [76] have been employed. One of the most popular techniques is Gibbs

sampling. Gibbs sampling is a form of MCMC that operates by sampling each variable

in turn given all of the variables in its Markov blanket, and counting the fraction of the

samples of that variable in each state. If the model obeys some assumptions, it can be

shown that the sequence of samples constitutes a Markov chain and that the desired joint
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distribution is equal to the stationary distribution of that chain [22].

2.3 Markov Logic Networks

Markov logic networks (MLNs) [52] can be seen as a relaxation of the rigid constraints

imposed on first-order KBs. In a first-order KB, if a particular world violates even one

formula, then that world is impossible. MLNs soften this constraint by making a world

which violates a formula less probable, but not impossible. This is achieved by attaching a

penalty weight to each formula. Intuitively, higher weights represent stronger constraints,

so worlds violating these constraints become increasingly unlikely.

The formal definition of an MLN is given by [52] as follows:

Definition 1. A Markov logic network L is a set of pairs (Fi, wi), where Fi is a formula

in first-order logic and wi is a real number. Together with a finite set of constants C =

{c1, c2, ..., c|C|}, it defines a Markov network ML,C (Equations 2.1 and 2.2) as follows:

1. ML,C contains one binary node for each possible grounding of each predicate ap-

pearing in L. The value of the node is 1 if the ground atom is true, and 0 otherwise.

2. ML,C contains one feature for each possible grounding of each formula Fi in L. The

value of this feature is 1 if the ground formula is true, and 0 otherwise. The weight

of the feature is the wi associated with Fi in L.

An MLN may be viewed as a template for compactly describing and constructing

Markov networks. Although different sets of constants will define networks of different

sizes, the networks have structural regularities as given by the MLN. For example, all

groundings of the same formula will have the same weight. This property, combined with

the fact that features are binary valued, allows us to rewrite the probability distribution as:

p(X = x) =
1

Z
exp(

∑
j

wj ∗ nj(x)) =
1

Z

∏
j

φj(x{j})
nj(x) (2.3)
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where nj(x) is the number of true groundings of Fj in x, x{j} is the truth values of the

atoms appearing in Fj , and φj(x{j}) = ewj

The SHERLOCK-HOLMES system described in Chapter 3 uses techniques of the MLN

framework as a way of modeling uncertainty in extractions and inferences.

2.4 Information Extraction

Despite many successes in extracting target semantic classes and relations from text, many

researchers realized that these approaches have a fundamental limitation. The classes and

relations must be specified in advance. Prespecifying classes and relations is a substantial,

if not impossible, task on a corpus as diverse as the Web [5].

The Open Information Extraction (OpenIE) paradigm [4] overcomes this limitation,

extracting information describing an unknown and unspecified set of objects and relations.

OpenIE systems typically represent their extractions as tuples of strings (e.g.,

〈arg1, rel, arg2〉) with only lightweight restrictions on their values (e.g., arg1 and arg2

are noun phrases, and rel is a verb phrase describing their relationship). Although this

format has less semantic information than the output of a traditional IE system, it is more

flexible and can capture many interesting relations that are present in Web text.

There have been several approaches to OpenIE. Shinyama and Sekine [59] used a

named-entity tagger to find arguments, and then clustered relation strings that occurred

between the arguments. The StatSnowball system [78] is similar, but uses part of speech

tags rather than a named entity tagger. Schubert et al. [58, 67] and Clark and Harrison [9]

use dependency information to extract general, common-sense knowledge that is implicit

in text. Unsupervised Semantic Parsing [48] simultaneously clusters words and parses sen-

tences, identifying semantic relations in text. The Kylin [70] and Yago [63] systems extract

information based on Wikipedia infoboxes and Wikipedia category pages, respectively.

NELL [8] performs coupled semi-supervised learning to extract a large knowledge base of

instances, relations, and inference rules from Web text. It bootstraps from a few seed ex-

amples of each class and relation of interest and a few constraints among them. It extracts
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additional facts from Web pages using a variety of techniques (e.g., learned extraction pat-

terns, wrapper induction, and learned inference rules). Finally, the TEXTRUNNER [4] and

WOE [71] systems extract relational triples from arbitrary sentences using a conditional

random field and part-of-speech tags or parse features.

Although this work uses TEXTRUNNER’s extractions as its knowledge base, the meth-

ods presented are more general. TEXTRUNNER’s extractions take the form of simple tex-

tual triples 〈arg1, rel, arg2〉, where arg1 and arg2 are noun phrases, and rel is a string

representing the relation between the two arguments. We treat the extractions as first-order,

ground atoms of the form rel(arg1, arg2), but call them extracted facts to reinforce that

rel, arg1, and arg2 are noisy, ambiguous, and arbitrary strings extracted by TEXTRUN-

NER, and not the clean, well-defined, and uniquely named objects and relations typically

used in first-order KBs. To give a sense of scale, TEXTRUNNER extracted 800 million such

facts from over 500 million high quality Web pages. While this is only a small fraction of

the Web, it approximates the large scale behavior of relations in Web text.

2.5 Inductive Logic Programming

For systems that learn and use inference rules, there is a general trade-off between the

amount of prior knowledge required and the expressivity of the rules. Systems that learn

more expressive rules typically require more prior information.

The learning method in SHERLOCK-HOLMES belongs to the inductive logic program-

ming (ILP) subfield of machine learning [30]. However, classical ILP systems (e.g.,

FOIL [49] and Progol [41]) make strong assumptions that are inappropriate for open do-

mains. First, ILP systems assume high-quality, hand-labeled training examples for each re-

lation of interest. Second, ILP systems assume that constants uniquely denote individuals;

in Web text, however, strings such as “dad” or “John Smith” are highly ambiguous. Third,

ILP systems typically assume complete, largely noise-free data whereas tuples extracted

from Web text are both noisy and radically incomplete. Finally, ILP systems typically uti-

lize negative examples, which are not available when learning from open-domain facts. ILP
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systems, and the Markov logic structure learning systems that are their probabilistic coun-

terparts (e.g., [28, 27]), require training data and relatively clean background knowledge.

They are not designed to handle the noise and incompleteness of open-domain, extracted

facts.

A few systems have tried to relax some of these requirements. Claudien [15] and Ter-

tius [20] are unsupervised ILP systems which learn rules from a database of ground rela-

tions. These systems look for statistical regularities in the database and create inference

rules capturing those regularities. Muggleton [42] extended the Progol ILP system to learn

inference rules from only positive examples, but his results depend on noise-free training

data. The LIME ILP system [37] derived more general results that account for random

errors in the training data. Unfortunately, all of these systems require completely specified,

noise-free background data and domain specific priors describing how likely an inference

rule is to be true. These assumptions are not valid for Web extractions, which are noisy, am-

biguous, and incomplete. We compare SHERLOCK-HOLMES’s rule scoring function with

LIME’s in Section 4.2.

ILP has also been used for information extraction on the Web. Craven et al.[11] used

ILP to help extract information from Web pages, but required training examples and fo-

cused on a single domain. More recently, the NELL system [8] has learned inference

rules over a larger number of relations extracted from the Web. For accuracy, inference

rules must be validated by a human before being used by NELL. In contrast, SHERLOCK-

HOLMES focuses mainly on learning inference rules and using them to answer queries, but

does not require any manually validated rules, seeds, or constraints.

2.6 Textual Inference

Two other notable systems that learn inference rules from text are DIRT [32] and RE-

SOLVER [75]. DIRT and RESOLVER are unsupervised, open-domain systems that learn a

set of rules capturing synonyms, paraphrases, and simple entailments. For example, these

systems may learn the rule x Acquired y =⇒ x Bought y, which captures different ways
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of describing a purchase. Applications of these rules often depend on context (e.g., if a per-

son acquires a skill, that does not mean they bought the skill). To add the necessary context,

the ISP [44] system learned selectional preferences [51] for DIRT’s rules. The selectional

preferences act as type restrictions on the arguments, and attempt to filter out incorrect in-

ferences. However, these systems only consider rules with one relation in the body. They

do not learn more expressive, multi-part Horn-clauses. As such, the rules learned by these

approaches are useful, but they are strictly more limited than the rules learned and used by

SHERLOCK-HOLMES.

The Recognizing Textual Entailment (RTE) task [13] is to determine whether one short

text (typically a sentence or two) entails another. Approaches to RTE include those of Tatu

and Moldovan [64], which generated inference rules from WordNet lexical chains and a

set of axiom templates, and Pennacchiotti and Zanzotto [47], which learned inference rules

based on similarity across entailment pairs. In contrast with SHERLOCK-HOLMES, RTE

systems reason over full sentences, but benefit from being given a limited set of sentences

to consider. RTE systems may ignore all other text. SHERLOCK-HOLMES operates over

simpler facts extracted from Web text, but is not given guidance as to which facts may

interact.

2.7 Association Rule Mining

Other work on unsupervised rule learning in large databases includes association rule min-

ing [2, 3]. The association rule mining task is to find rules predicting what items frequently

appear together in a database of transactions. For instance, when looking at grocery store

purchases, it is interesting to know that if a person buys milk and bread then they are likely

to also purchase butter. The rules are typically required to have some minimum support

(observed frequency in the database), as well as some minimum confidence (conditional

probability). Although SHERLOCK-HOLMES uses similar concepts when learning rules,

there are a number of important distinctions. Firstly, the database schema is well-defined

in association rule mining, whereas the objects and relations described in facts extracted
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from the Web are arbitrary strings. Secondly, the database in association rule mining is

complete and noise free, whereas facts extracted from the Web are both noisy and radically

incomplete. As such, SHERLOCK-HOLMES must use different methods for creating and

evaluating the rules.

2.8 Learning from Only Positive Examples

Elkan and Noto [17] considered the problem of learning a classifier from only positive and

unlabeled data. In the noise free case, they proved that probabilities predicted by a classifier

in this setting differ from the true probabilities by only a constant factor. However, their

results are defined in a propositional setting, where they can assume that examples are

independent and identically distributed (IID).

Yu, Han, and Chang introduced the PEBL framework [77] for classifying web pages

using only positive and unlabeled examples. To do so, they initialize a set of negative

examples as the unlabeled examples that are furthest from positive examples. They then

train an SVM to recognize the negative examples, and iteratively expand the set of negative

examples using the SVM’s classifications. The net effect is that, at each iteration, the SVM

gets closer to the true decision boundary. They demonstrated that this technique yielded

results comparable to learning a classifier using positive and negative labeled data.

Unfortunately, both of these systems assume that examples are IID and have a large

number of features. These assumptions are not valid for the facts extracted from Web text

by TEXTRUNNER. Specifically, popular entities are much more likely to appear in TEX-

TRUNNER’s extractions, since they are mentioned more frequently in Web text. The flip

side of this is that TEXTRUNNER is much more likely to be missing information about rare

entities, and so we are disproportionally less likely to infer facts about rare entities. Addi-

tionally, TEXTRUNNER makes some systematic extraction errors. These errors will be cor-

related, violating the assumption that these ‘observed’ examples are IID. Finally, the facts

extracted by TEXTRUNNER are simple textual relations, not full textual documents. As

such, we have less contextual information than these prior, positive-only learning-systems.
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Chapter 3

SHERLOCK-HOLMES SYSTEM DESIGN

The goal of the SHERLOCK-HOLMES system is to learn inference rules from open-

domain Web text, and then to use those rules to help answer queries. SHERLOCK-HOLMES

is one of the first unsupervised, open-domain systems capable of going beyond simple

paraphrase rules to learn complex, multi-part inference rules from Web text. These rules

enable the system to infer answers to queries even when the answers are not stated on

any single page in the corpus. This chapter describes how SHERLOCK-HOLMES learns

inference rules and uses them to answer queries.

3.1 System Overview

The SHERLOCK-HOLMES system consists of two components: SHERLOCK [56], which

learns inference rules offline, and HOLMES [57], which uses inference rules to answer

queries online. The architecture of SHERLOCK-HOLMES is depicted in Figure 3.1.

SHERLOCK takes as input a large set of open-domain facts, and returns a set of weighted,

first-order, Horn-clause inference rules. These rules take the form

Head(v1, v2) : −Body1(v11, v12) ∧ ... ∧ Bodyk(vk1, vk2);

where Head and Bodyi are function-free, non-negated, first-order relations.1 This rule

means that if Body1(v11, v12) ∧ ... ∧ Bodyk(vk1, vk2) is true, then Head(v1, v2) is true. Ta-

ble 1.1 in the introduction previously showed some example rules which were learned by

SHERLOCK.

1For simplicity we show only relations with two arguments, but the techniques presented are more general.
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Figure 3.1: Architecture of the SHERLOCK-HOLMES system. SHERLOCK learns inference
rules offline and provides them to the HOLMES inference engine, which uses the rules to
answer queries online.

In order to learn inference rules, SHERLOCK performs the following steps:

1. Identify a “productive” set of classes and instances of those classes

2. Discover relations between classes

3. Learn inference rules using the discovered relations

4. Determine the confidence in each rule

Steps 1 and 2 combat the challenges of synonyms, homonyms, and noise present in open-

domain theories by identifying a smaller, cleaner, and more cohesive set of facts to learn

rules over. These learned rules are then used by HOLMES to answer queries.

HOLMES takes as input a set of open-domain facts, weighted Horn-clause inference

rules, and a conjunctive query. To answer the query it performs a form of Knowledge

Based Model Construction [69], first finding candidate answers using logical inference,
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kale
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Figure 3.2: Partial proof ‘tree’ (DAG) generated by HOLMES when using the
rule Prevents(food, disease) : −IsHighIn(food, nutrient) ∧ Prevents(nutrient,
disease); to answer the query ‘What vegetables help prevent osteoporosis?’ Rectangles
depict ground facts extracted from the Web, rounded boxes are inferred facts, and filled
squares represent the application of an inference rules. HOLMES converts this DAG into a
Markov network to estimate the probability of each result.

then estimating how likely each is to be true. Specifically, HOLMES iteratively chains

backwards from the query and uses the inference rules to construct a forest of proof trees

from the facts. HOLMES then converts the forest into a Markov network [45] in a manner

pioneered by the Markov logic framework [52], and evaluates the confidence in each result

using probabilistic inference over the network. Figure 3.2 shows an example of this process.

HOLMES operates in an anytime fashion – if desired it can keep iterating: searching for

more proofs and further elaborating the Markov network. From the perspective of a lay

user this means that some initial results can be returned quickly, with more complete and

accurate results coming in over time.

SHERLOCK-HOLMES uses a collection of open-domain facts extracted by TEXTRUN-

NER [4]. TEXTRUNNER is an Open Information Extraction system that extracts facts from



19

Web pages in a domain independent way. The extracted facts represent simple textual

relations of the form r(x, y) where x and y are strings referring to entities and r is a

string describing the relation between them. For example, TEXTRUNNER extracts the facts

Contains(Broccoli, Calcium), IsLocatedIn(Seattle, Washington), and

Acquired(Google, YouTube).

Unfortunately, sentences on the Web rarely describe when a relation does not hold; for

example, we are unlikely to see a sentence explicitly declaring that ‘Seattle is not located in

Arizona’ (Not(IsLocatedIn(Seattle, Arizona)). The facts extracted by TEXTRUNNER

are positive instances of relations, and TEXTRUNNER does not provide reliable negative

facts. Furthermore, we cannot make the closed-world assumption or even assume that re-

lations are mutually exclusive, since many facts are never explicitly stated and many of

the extracted relations are similar (e.g., IsTheCapitalOf and IsLocatedIn). Finally,

SHERLOCK-HOLMES’s focus is on rule learning and inference within open-domain theo-

ries, and so it delegates syntactic problems (e.g., anaphora, relative clauses) and semantic

challenges (e.g., quantification, counterfactuals, temporal qualification) to the extraction

system or simply ignores them. SHERLOCK-HOLMES’s methods therefore are geared to-

wards learning rules in the presence of positive-only, noisy, and radically-incomplete data

as is found on the Web.

Although SHERLOCK-HOLMES currently uses the facts extracted by TEXTRUNNER,

the techniques presented are more broadly applicable. The next sections describe

SHERLOCK-HOLMES’s design in more detail.

3.2 Finding Classes and Instances

As its first step, SHERLOCK searches for a set of well-defined classes and class instances.

Instances of the same class should tend to behave similarly, so identifying a good set of

instances will make it easier to discover the general properties of the entire class.

Options for identifying interesting classes include manually created methods (e.g., Word-

Net [39]), textual patterns [25], automated clustering [33], and combinations of all three [61].
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SHERLOCK identifies classes and instances using the Hearst patterns [25] (e.g., ‘Class such

as Instance’), because the patterns are simple, capture how classes and instances are men-

tioned in Web text, and yield intuitive, explainable groups. Using these patterns, 29 million

(instance, class) pairs were extracted from a large Web crawl. They were then cleaned

using word stemming, normalization, and by dropping modifiers.

Unfortunately, the Hearst patterns make systematic errors (e.g., extracting ‘Canada’ as

the name of a city from the phrase ‘Toronto, Canada and other cities.’) To address this issue,

SHERLOCK discards the low frequency classes of each instance. This heuristic reduces

the noise due to systematic error while still capturing the important senses of each word.

Additionally, the extraction frequency is used to estimate the probability that a particular

mention of an instance refers to each of its potential classes (e.g., New York appears as a

city 40% of the time, a state 35% of the time, and a place, area, or center the remaining

25% of the time).

Ambiguity presents a significant obstacle when learning inference rules. For example,

the corpus contains the sentences ‘broccoli contains this vitamin’ and ‘this vitamin prevents

scurvy’, but it is unclear if the sentences refer to the same vitamin. To address this, we elim-

inate ambiguous instances and only retain facts with unambiguous arguments. We observed

two main sources of ambiguity: references to a more general class instead of a specific in-

stance (e.g., the string ‘vitamin’ is often extracted as an instance of the ‘nutrient’ class),

and references to a person by only their first or last name (e.g., ‘Jane’ or ‘Smith’). SHER-

LOCK eliminates the first case by removing terms that frequently appear as the class name

with other instances (e.g., the string ‘vitamin’ is ambiguous since it frequently appears as

a class name with instances such as ‘vitamin c’, ‘folic acid’, etc.). SHERLOCK eliminates

the second case by removing the 2,500 most common first and last names, according to the

US Census Bureau.2

After eliminating ambiguous instances, we identify a set of common, well-defined

2http://www.census.gov/genealogy/names/names_files.html

http://www.census.gov/genealogy/names/names_files.html
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classes. The 250 most frequently mentioned class names include a large number of in-

teresting classes (e.g., companies, cities, foods, nutrients, locations) and some ambiguous

concepts (e.g., ideas, things.) SHERLOCK focuses on the less ambiguous classes by elim-

inating any class not appearing as a descendant of physical entity, social group, physical

condition, or event in WordNet. Beyond this filtering, classes are treated independently and

no use of a type hierarchy is made.

This process identifies 1.1 million distinct, cleaned (instance, class) pairs for 156 classes.

A complete listing of the classes is given in Appendix B.

3.3 Discovering Relations between Classes

Next, SHERLOCK discovers how classes relate to and interact with each other. Prior work

in relation discovery [59] has investigated the problem of finding relationships between dif-

ferent classes. However, since SHERLOCK’s focus is on rule-learning and not on relation-

discovery, the system uses a few simple heuristics to automatically identify interesting re-

lations.

For every pair of classes (C1, C2), SHERLOCK finds a set of typed, candidate relations

from the 100 most frequent relations in the corpus where the first argument is an instance

of C1 and the second argument is an instance of C2. For terms with multiple senses (e.g.,

New York), their weights are split based on how frequently they appear with each class in

the Hearst patterns.

However, many discovered relations are incorrect or meaningless, arising from either

extraction errors or word-sense ambiguity. For example, the extracted fact

IsBasedIn(Apple, Cupertino) gives some evidence that a fruit may possibly be based

in a city. These incorrectly-typed relations are filtered using two heuristics. First, any re-

lation whose weighted frequency falls below a threshold is discarded, since rare relations

are more likely to arise due to extraction errors or word-sense ambiguity. Additionally,

relations whose pointwise mutual information (PMI) is below a threshold T=exp(2) ≈ 7.4
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are also removed. A relation’s PMI is:

PMI(R(C1, C2)) =
p(R,C1, C2)

p(R, ·, ·) ∗ p(·, C1, ·) ∗ p(·, ·, C2)
(3.1)

where p(R, ·, ·) is the probability a random fact has relation R, p(·, C1, ·) is the probability

a random fact has an instance of C1 as its first argument, p(·, ·, C2) is the probability a ran-

dom fact has an instance of C2 as its second argument, and p(R,C1, C2) is the probability

that a random fact has relation R and instances of C1 and C2 as its first and second argu-

ments, respectively. A low PMI indicates the relation occurred by random chance, which is

typically due to ambiguous terms or extraction errors.

Finally, two TEXTRUNNER specific cleaning heuristics are used: a small set of stop-

relations (‘be’, ‘have’, and ‘be preposition’) are ignored, and extracted facts whose argu-

ments are more than four tokens apart are discarded. This process identifies over 10,000

typed relations from the facts extracted by TEXTRUNNER. We note that, although there is

some overlap in relations with related types (e.g., IsBasedIn(company, city) vs.

IsBasedIn(company, place)), this overlap will implicitly allow the system to learn rules

at different granularities. A complete listing of the relations is available on the Web. See

Appendix A for details.

3.4 Learning Inference Rules

SHERLOCK attempts to learn inference rules for each typed relation in turn. It receives a

target relation, R, a set of observed examples of the relation, E+, a maximum clause length

k, a minimum support, s, and an acceptance threshold, t, as input. SHERLOCK generates

inference rules for R by constructing all first-order, definite clauses up to length k, where R

appears as the head of the clause (i.e., all rules of the form R(...):-B1(...) ∧ ... ∧ Bn(...); for

1 ≤ n ≤ k). We accept all rules that obey the following constraints:

1. Contains no unbound variables
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2. Has a connected rule body

3. Infers at least s examples from E+

4. Scores at least t according to the score function

The next section describes the score function SHERLOCK uses to evaluate rules, and Sec-

tion 4.2 validates it empirically.

3.5 Evaluating Rules by Statistical Relevance

The problem of evaluating candidate rules has been studied by many researchers, but typ-

ically in either a supervised or propositional context. However, SHERLOCK’s goal is to

learn first-order Horn-clauses from an unsupervised, noisy, positive-only set of facts ex-

tracted from Web text. Moreover, due to the incomplete nature of the input corpus and the

imperfect yield of extraction—many true facts are not stated explicitly in the set of ground

facts used by the learner to evaluate rules.

The absence of negative examples, coupled with noise and incomplete data, means

that standard ILP evaluation functions (e.g., information gain [49] or the M-Estimate rule

scoring function [16]) are not appropriate. Furthermore, when evaluating a particular rule

Head:-Body, it is natural to consider p(Head|Body) but, due to missing data, this absolute

probability estimate is often misleading: in many cases Head will hold given Body but the

Head is not explicitly mentioned in the corpus.

To address this problem when evaluating propositional rules, Salmon et al. [55] pro-

posed using relative probability estimates. I.e., is p(Head|Body) � p(Head)? If so, then

Body is said to be statistically relevant to Head. At a high level, statistical relevance tries to

infer the simplest set of factors which explain an observation. It can be viewed as searching

for the simplest propositional Horn-clause which increases the likelihood of a goal propo-

sition g. The two key ideas in determining statistical relevance are (1) discovering factors
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which substantially increase the likelihood of g (even if the probabilities are small in an

absolute sense), and (2) dismissing irrelevant factors.

To illustrate these concepts, consider the following example. Suppose our goal is to

predict if New York City will have a storm (S). On an arbitrary day, the probability of

having a storm is fairly low (p(S) � 1). However, if we know that the atmospheric pres-

sure on that day is low, this substantially increases the probability of having a storm (al-

though that probability may still be small in an absolute sense). According to the principle

of statistical relevance, low atmospheric pressure (LP ) is a factor which predicts storms

(S : −LP ), since p(S|LP )� p(S).

The principle of statistical relevance also identifies and removes irrelevant factors. For

example, let M denote the gender of New York’s mayor. Since p(S|LP,M) � p(S), it

naı̈vely appears that storms in New York depend on the gender of the mayor in addition

to the air pressure. The statistical relevance principle sidesteps this trap by removing any

factors which are conditionally independent of the goal, given the remaining factors. In

this example we would observe that p(S|LP )=p(S|LP,M), and so we say that M is not

statistically relevant to S. This test applies Occam’s razor by searching for the simplest rule

which explains the goal.

Statistical relevance is useful in an open-domain setting, since all the necessary proba-

bilities can be estimated from only positive examples. Furthermore, approximating relative

probabilities in the presence of missing data is much more reliable than determining abso-

lute probabilities.

Unfortunately, Salmon et al. [55] defined statistical relevance in a propositional con-

text. One technical contribution of our work is to lift statistical relevance to first-order

Horn-clauses as follows. For the Horn-clause Head(v1, ..., vn):-Body(v1, ..., vm) (where

Body(v1, ..., vm) is a conjunction of function-free, non-negated, first-order relations, and

vi ∈ V is the set of typed variables used in the rule), the Body helps explain the Head if:

1. Observing a grounding of Body(v1, ..., vm) substantially increases the probability of
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observing the corresponding ground instance of Head(v1, ..., vn).

2. Body(v1, ..., vm) contains no irrelevant (conditionally independent) terms.

Conditional independence of terms is evaluated using ILP’s technique of Θ-subsumption,

ensuring there is no more general clause that is similarly predictive of the head. For-

mally, clause C1 Θ-subsumes clause C2 if and only if there exists a substitution Θ such

that C1Θ ⊆ C2 where each clause is treated as the set of its literals. For example, R(x, y)

Θ-subsumes R(x, x), since {R(x, y)}Θ ⊆ {R(x, x)} when Θ={y/x}. Intuitively, if C1 Θ-

subsumes C2, it means that C1 is more general than C2.

Definition 2. A first-order Horn-clause Head(...):-Body(...) is statistically relevant if

p(Head(...)|Body(...)) � p(Head(...)) and if there is no clause body B′(...)Θ ⊆ Body(...)

such that p(Head(...)|Body(...)) ≈ p(Head(...)|B′(...)).

In practice it is difficult to determine the probabilities exactly, so when checking for

statistical relevance the system ensures that the probability of the rule is at least a factor

t greater than the probability of any subsuming rule, that is, p(Head(...)|Body(...)) ≥ t ∗

p(Head(...)|B′(...)). We use this value of t as the statistical relevance score.

For all values of B(...), the probability p(Head(...)|B(...)) is estimated from the observed

facts by assuming values of Head(...) are generated by sampling values of B(...) as follows:

for variables vs shared between Head(...) and B(...), values of vs are sampled uniformly

from all observed groundings of B(...). For variables vi, if any, that appear in Head(...)

but not in B(...), their values are sampled according to a distribution p(vi|classi). The

distribution p(vi|classi) is approximated using the relative frequency that vi was extracted

using a Hearst pattern with classi.

Finally, the increase in likelihood must be statistically significant. This is tested using

the likelihood ratio statistic:

2Nr

∑
H(...)∈{Head(...),¬Head(...)}

p(H(...)|Body(...)) ∗ logp(H(...)|Body(...))

p(H(...)|B′(...))
(3.2)
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where p(¬Head(...)|B(...)) = 1−p(Head(...)|B(...)) andNr is the number of results inferred

by the rule Head(...):-Body(...). This test is distributed approximately as χ2 with one degree

of freedom. It is similar to the statistical significance test used in mFOIL [16], but has two

modifications since SHERLOCK does not have labeled training data. In lieu of positive

and negative examples, the system uses whether or not the inferred value of Head(...) was

observed, and compares against the distribution of a subsuming clause B′(...) rather than a

known prior.

This method of evaluating rules has two important differences from ILP under a closed-

world assumption. First, these probability estimates consider the fact that examples pro-

vide varying amounts of information. Second, statistical relevance finds rules with large

increases in relative probability, not necessarily a large absolute probability. This is cru-

cial in an open-domain setting where most facts are false, which means the trivial rule that

everything is false will have high accuracy. Even for true rules, the observed estimates

p(Head(...)|Body(...))� 1 due to missing data and noise.

3.6 Making Inferences

The rules learned by SHERLOCK are provided to the HOLMES inference engine. As input,

HOLMES requires a conjunctive query Q, an evidence set E and set of weighted rules R.

It performs a form of knowledge based model construction [69], first finding facts using

logical inference, then estimating the confidence of each fact using a Markov logic network

(MLN) [52].

Prior to running inference, it is necessary to assign a weight to each rule learned by

SHERLOCK. Since the rules and inferences are based on a set of noisy and incomplete

extractions, the algorithms used for both weight learning and inference should capture the

following characteristics of facts extracted from the Web:

C1. Any arbitrary unknown fact is highly unlikely to be true.
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C2. The more frequently a fact is extracted from the Web, the more likely it is to be true.

However, facts in E should have a confidence bounded by a threshold, pmax, such

that pmax < 1. E contains systematic extraction errors, so uncertainty is a desired

trait in even the most frequently extracted facts.

C3. An inference that combines uncertain facts should be less likely than each fact it uses.

Next, the modifications to the weight learning and inference algorithm needed to achieve

the desired behavior are described.

3.6.1 Weight Learning

SHERLOCK uses the discriminative weight learning procedure described by Huynh and

Mooney [27]. This weight learning method is efficient since it avoids computing the parti-

tion function by computing probabilities in closed form. However, to do so it assumes that

(1) all rules infer a single head predicate, (2) all other predicates are evidence, and (3) all

ground atoms of the target predicate are conditionally independent, given the evidence. As

a consequence of these assumptions, this method does not allow recursive rules. This is a

substantial limitation on expressivity, but it enables efficient probabilistic inference.

To meet the assumptions we only allow inferences of depth one (i.e., we do not con-

sider inference chains over multiple rules,) and introduce the following modifications to

help account for noise. Deeper inferences over noisy extractions tend to be much more

error prone, so in practice these limitations reduces recall, but substantially improves both

precision and computational efficiency.

Learning the weights involves counting the number of true groundings for each rule in

the data [52]. However, the noisy nature of Web extractions will make this count an over-

estimate. Consequently, ni(E), the number of true groundings of rule i from Equation 2.3,
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is computed as follows:

ni(E) =
∑

j

max
k

∏
B(...)∈Bodyijk

p(B(...)) (3.3)

where E is the evidence, j ranges over the observed values of the head of the rule, Bodyijk

is the body of the kth grounding for the jth head of rule i, and p(B(...)) is approximated

using a logistic function of the number of times B(...) was extracted,3 scaled to be in

the range [0, 0.75]. This models C2 by giving increasing but bounded confidence for

more frequently extracted facts. In practice, this also helps address C3 by giving longer

rules smaller values of ni, which reflects that inferences arrived at through a combination

of multiple, noisy facts should have lower confidence. Longer rules are also more likely

to have multiple groundings that infer a particular head, so keeping only the most likely

grounding prevents a head from receiving undue weight from any single rule.

Finally, SHERLOCK places a very strong Gaussian prior (i.e., L2 penalty) on the weights.

Longer rules have a higher prior to capture the notion that they are more likely to make in-

correct inferences. Without a high prior, each rule would receive an unduly high weight as

there are no negative examples available.

3.6.2 Probabilistic Inference

After learning the weights, the following two rules are added to the rule set:

1. H(...) with negative weight wprior

2. H(...):-ExtractedFrom(H(...),sentencei) with weight 1

The first rule models C1 by saying that most facts are false. The second rule models C2

by stating that the probability of a fact depends on the number of times it was extracted.

The weights of these rules are fixed. These rules are not included during weight learning as

3This approximation is equivalent to an MLN which uses only the two rules defined in 3.6.2
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doing so swamps the effects of the other inference rules (i.e., forces their weights to zero).

HOLMES’s probabilistic inference also requires computing ni(E); this is done according to

Equation 3.3 as in weight learning.

We limit HOLMES’s inferences to depth one so that it meets the assumptions needed for

weight learning and for computing the probabilities in closed form. However, if desired,

the HOLMES inference engine can perform anytime, incremental inference. As time allows,

it augments the Markov network with deeper and deeper inferences, and uses a form of

loopy belief propagation [45] to estimate the probabilities of each of its inferred facts. The

experiments in [57] take advantage of this ability, but for efficiency the experiments in

Chapters 4-6 used the depth-limited, closed-form method as described above.
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Chapter 4

EVALUATION OF THE SHERLOCK-HOLMES SYSTEM

This chapter demonstrates the utility of the SHERLOCK-HOLMES system empirically.

There are two ways of evaluating a rule learner: directly estimating the quality of the

learned rules, or measuring the impact of the rules on a system that uses them. Since

the notion of ‘rule quality’ is vague outside the context of an application, we evaluate

SHERLOCK-HOLMES in the context of the an inference-based question answering system.

One of the primary goals of the SHERLOCK-HOLMES system is to better answer com-

plex queries such as ‘What foods prevent disease?’, where the information needed to com-

pute the answers may be spread over multiple pages. Therefore, our evaluation focuses on

the task of computing as many instances as possible of an atomic pattern Rel(x, y). In this

example, Rel would be bound to ‘Prevents’, x would have type ‘Food’ and y would have

type ‘Disease.’

But which relations should be used in the test? There is a large variance in behavior

across relations, so examining any particular relation may give misleading results. Instead,

these experiments examine the global performance of the system by querying HOLMES for

all open-domain relations identified in Section 3.3 as follows:

1. Score all candidate rules according to the rule scoring metric M , accept all rules

with a score at least tM , and learn weights for all accepted rules. tM was tuned to

maximize the F1 measure over a small development set of rules, which was created

by sampling approximately 700 rules (of the 4.9M candidate rules which had some

minimum support), and then manually judging whether the rule was correct or not.

2. Find all facts inferred by the rules and estimate their probabilities using the rule
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weights.

3. Reduce type information. For each fact, (e.g., IsBasedIn(Diebold, Ohio)) which

has been deduced with multiple type signatures (e.g., Ohio is both a state and a geo-

graphic location), keep only the one with maximum probability (i.e., conservatively

assuming dependence).

4. Estimate the precision and number of inferred facts that are correct (relative recall)

in the results. This is done by placing all inferred facts into bins based on their

probabilities and estimating the precision and relative recall of the bin by manually

evaluating 50 randomly sampled facts from the bin.

Since TEXTRUNNER [4] does not extract temporal information, we judge an inferred

fact as correct if it was true at any point in time (e.g., both IsBasedIn(Boeing, Seattle)

and IsBasedIn(Boeing, Chicago) would be considered true, since Boeing moved its com-

pany headquarters from Seattle to Chicago in 2001). Additionally, we estimate the relative

recall (number of correct facts) instead of true recall since most of these relations have no

exhaustive ground truth to compare against.

These experiments consider rules with up to k = 2 relations in the body. Although this

number may seem small, learning rules with multiple relations in the body represents an

important leap beyond previous open-domain rule-learning systems. Previous systems such

DIRT [32] and RESOLVER [75] only consider rules with one relation in the body, and so

can only infer paraphrases of other directly stated facts. These systems are helpless if two

entities are not mentioned in the same sentence. By considering rules with two relations in

the body, SHERLOCK can overcome this limitation. The rules learned by SHERLOCK can

combine facts extracted from multiple pages to infer results not stated in any form within

the corpus.

These experiments use a corpus of 1 million raw extractions, corresponding to 250,000

distinct facts. The facts represent a wide variety of domains, covering a total of 10,672
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typed relations. There are between a dozen and 2,375 ground facts observed for each

typed relation. Out of 110 million possible rules satisfying type constraints, SHERLOCK-

HOLMES found 5 million candidate rules that infer at least two of the observed facts. Un-

less otherwise noted, SHERLOCK’s rule scoring function is used to evaluate the rules (as

described in Section 3.5). Learning all rules, rule weights, and inferring all the results took

approximately 50 minutes when coarsely parallelized on a cluster with 72 cores.Each node

in our cluster had two mutlti-threaded, 2.8 GHz Intel Xeon processor cores and a total of

4GB system memory. The runtime could be improved with additional engineering efforts,

but was fast enough for our purposes. The rules learned by SHERLOCK are available on the

Web. See Appendix A for details.

It should be noted that for half of the relations SHERLOCK-HOLMES accepts no in-

ference rules, and that the performance on any particular relation may be substantially

different, depending on the facts observed and rules learned.

4.1 Benefits of Inference

The first experiment demonstrates the utility of the learned Horn-clause inference-rules by

contrasting precision and recall with and without inference over learned rules. We compare

SHERLOCK-HOLMES with two simpler variants. The first is a no-inference baseline that

uses no learned rules, returning only facts that are explicitly extracted. The second baseline

represents existing open-domain rule-learning systems which only accept rules of length

k = 1, allowing simple entailments, but not more complicated inferences using multiple

facts.

Figure 4.1 compares the precision and estimated number of correct facts with and with-

out inference. As is apparent, the learned rules substantially increase the number of correct

facts, quadrupling the relative recall beyond what is explicitly extracted. The length-two

Horn-rules boost relative recall by 30% over the simpler length-one rules. Furthermore, the

Horn-rules yield slightly increased precision at comparable levels of recall, although the

increase is not statistically significant. This behavior can be attributed to learning smaller
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Figure 4.1: Inference discovers many facts which are not explicitly extracted, identifying
3x as many high quality facts (precision 0.8) and more than 5x as many facts overall. Horn-
clauses with multiple relations in the body identify 30% more facts than simpler entailment
rules, inferring many facts not present in the corpus in any form.

weights for the length-two rules than the length-one rules, allowing the length-two rules to

provide a small amount of additional evidence as to which facts are true, but typically not

enough to overcome the confidence of a more reliable length-one rule.

Analyzing the errors, we found that about 30% of SHERLOCK-HOLMES’s mistakes

are due to metonymy (referring to one object using the name of a related object, such as

using ‘Seattle’ to refer to the ‘Seattle Seahawks’) and word sense ambiguity (e.g., con-

fusing Vancouver, British Columbia with Vancouver, Washington), 20% are due to in-

ferences based on incorrectly-extracted facts (e.g., inferences based on the incorrect fact

IsLocatedIn(New York, Suffolk County), which was extracted from sentences like ‘Deer

Park, New York is located in Suffolk County’), and the rest are due to unsound or incor-
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rect inference rules (e.g., IsBasedIn(company, city) :-IsBasedIn(company, country) ∧

CapitalOf(city, country)). Without negative examples it is difficult to distinguish cor-

rect rules from these unsound rules, since the unsound rules are correct much more often

than expected by chance.

Finally, we reiterate that although simple, length-one rules capture many of the results,

in some respects they are just rephrasing facts that are extracted in another form. The more

complex, length-two rules synthesize facts extracted from multiple pages, and infer results

that are not stated in any simple form anywhere in the corpus.

4.2 Effect of Scoring Function

This experiment examines how SHERLOCK-HOLMES’s rule scoring function affects its

results, by comparing it with three rule scoring functions used in prior work:

LIME. The LIME ILP system [37] proposed a metric that generalized Muggleton’s [42]

positive-only score function by modeling noise and limited sample sizes.

M-Estimate of rule precision. This is a common approach for handling noise in ILP [16].

It requires negative examples, which are generated by randomly swapping arguments

between positive examples (while ensuring that each generated negative is not in the

observed set of positive examples).

L1 Regularization. As proposed by Huynh and Mooney [27], this method learns weights

for all candidate rules using L1-regularization and retains only those with non-zero

weight. L1-regularization encourages sparsity by penalizing nonzero weights much more

than L2-regularization. As with weight learning (Section 3.6.1), we place a stronger

penalty on longer rules, and we tune the L1 penalty using the development set as before.

Figure 4.2 compares the precision and estimated number of correct facts inferred by

the rules of each scoring function. SHERLOCK-HOLMES has consistently higher precision,

and finds nearly twice as many correct facts at precision 0.8. M-Estimate accepted eight
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Figure 4.2: SHERLOCK-HOLMES identifies rules that lead to more accurate inferences
over a large set of open-domain extracted facts, deducing 2x as many facts at precision 0.8.

times as many rules as SHERLOCK-HOLMES, increasing relative recall at the cost of pre-

cision and longer inference times. More than half of the errors in M-Estimate come from

incorrect or unsound rules, whereas 60% of the errors for LIME stem from systematic ex-

traction errors or ambiguous relations (e.g., the relation Love(sport, sport), which stems

from systematic extraction errors such as extracting Love(Basketball, Football) from

the sentence ‘I like basketball, and I love football’). For L1 Regularization the errors were

split between the incorrect rules and ambiguous relations. Section 4.4 contains a more

detailed analysis.

4.3 Scoring Function Design Decisions

SHERLOCK requires a rule to have statistical relevance and statistical significance, as de-

scribed in Section 3.5. We now perform an ablation study to understand how each of these

contribute to the system’s results.

Figure 4.3 compares the precision and estimated number of correct facts obtained when
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Figure 4.3: By requiring rules to have both statistical relevance and statistical significance,
SHERLOCK-HOLMES rejects many error-prone rules that are accepted by the metrics indi-
vidually. This better rule set yields more accurate inferences, but identifies fewer correct
facts overall.

requiring rules to be only statistically relevant, only statistically significant, or both. As

is expected, there is a precision/recall tradeoff. SHERLOCK’s rules have higher precision,

finding more than twice as many results at precision 0.8 than the rules learned by either

method alone, and reducing the error by 39% at a recall of 1 million correct facts. Statistical

significance finds twice as many correct facts as SHERLOCK-HOLMES, but the extra facts

it discovers are rife with errors, having precision less than 0.4.

Comparing the rules accepted in each case, we found that the statistical relevance

and statistical significance metrics each accepted about 180,000 rules, compared to about

31,000 for SHERLOCK-HOLMES. The smaller set of rules accepted by SHERLOCK-HOLMES

not only leads to higher precision inferences, but also speeds up inference time by a factor

of five.

In a qualitative analysis, we found the statistical relevance metric overestimates prob-

abilities for sparse rules, which leads to a number of very high scoring, but meaningless,
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rules. The statistical significance metric handles sparse rules better, but is still overconfident

in many unsound rules.

4.4 Analysis of Rule Scoring Functions

Pinpointing the exact cause of inference errors is difficult, especially when a fact is inferred

by multiple rules. Seemingly correct rules may have low precision if they incorporate

relations with many systematic extraction errors or ambiguous arguments. Should these

errors be attributed to the rule learner for accepting rules based on extraction errors, or to

the extractor for making the errors? To better understand the causes of errors we placed

each fact judged to be incorrect into one of three broad categories:

• Extraction Errors (Extr.) - The inference was based on an incorrectly extracted fact

or an ambiguous relation (e.g., Acquired(Google, Microsoft) or

Love(sport, sport) ). A perfect extractor would eliminate these errors.

• Unsound or Incorrect Inference Rule (Rule) - The inference was based on an rule

which is unsound or otherwise incorrect. To be placed in this category, the rule

used must consist of relations which are reasonable individually (not ambiguous or

systematic errors such as Love(sport, sport)), but are not combined in a sound way.

For example:

IsBasedIn(company, city):-IsBasedIn(company, place)∧IsLocatedIn(city, place);

• Metonymy and Word Sense Ambiguity (WSA) - The inference was based on an

incorrect interpretation of the arguments. For example, ambiguity about which city

Cambridge refers to may cause the system to infer that MIT is located in England.

Similarly, in the FIFA World Cup each nation’s team is metonymously referred to

by the country name (e.g., Beat(Germany, Uruguay)). Incorrect inferences based on

such ambiguities are placed into this category.
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Although several of the judgements are subjective (e.g., how should one categorize a fact

inferred from both an unsound rule and a correct rule applied to an extraction error), the

general trends in the breakdown of errors should hold. Table 4.1 summarizes the number

of rules, inference time, relative recall at precision 0.8, total number of inferences, overall

precision, and a breakdown of the errors obtained when using each of the scoring functions.

The different rule scoring functions have different biases; Table 4.1 gives insight into

how each of their respective biases affect the results. For example, although the statistical

relevance and statistical significance metrics learn a similar number of rules, statistical rel-

evance takes less than half the time and infers a third fewer facts. This can be understood

from their respective biases. Statistical relevance prefers rules which behave like functions,

where each argument value appears in only a small number of the results. As such, statis-

tical relevance’s rules lead to fewer total inferences. The statistical significance metric, on

the other hand, prefers rules which predict more of the observed head values and rare head

values, but has a relatively small penalty for rules with a larger total number of inferences.

SHERLOCK’s rule scoring function requires both statistical relevance and statistical sig-

nificance, so it is unsurprising that it learns fewer rules and infers fewer facts overall. The

extra time needed to compute both statistical relevance and statistical significance is fairly

minor because they rely in the same set of probability estimates, and so eliminating more

rules allows SHERLOCK to run in less time over-all. What is surprising is that the relative

proportion of errors changes, making more errors due to word sense ambiguity than any

of the others. In SHERLOCK’s scoring function, statistical relevance eliminates many of

the overly general rules and statistical significance eliminates many of the rules with little

support. However, there are a small set of relations about sporting events and company

acquisitions where the rules have strong correlations, but suffer from metonymy and word

sense ambiguity. For example, if San Diego played Seattle (in baseball) and Seattle played

San Jose (in soccer), then San Diego isn’t likely to play San Jose. However, if the system

used another city with a baseball team instead of San Jose, then the inference would be

reasonable. Given the ambiguous nature of facts within our corpus, even a perfect ruler
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Num. Rules Weight Learning Est. Facts
Rule Scoring Function simple / complex + Inference Time at p=0.8
SHERLOCK 12,897 / 18,015 6.9 minutes 777,000
Statistical relevance 25,254 / 160,876 15.6 minutes 311,000
Statistical significance 19,141 / 159,776 36.7 minutes 331,000
LIME 4,347 / 42,673 12.4 minutes 381,000
M-Estimate 13,954 / 230,401 34.9 minutes 408,000
L1 Regularization 31,440 / 4,658 136.0 minutes -

Total Num. Estimated Fraction of Errors
Rule Scoring Function Inferred Facts Precision Extr. Rule WSA
SHERLOCK 3,007,805 0.44 20% 51% 29%
Statistical relevance 8,574,160 0.22 16% 69% 15%
Statistical significance 12,559,119 0.20 19% 66% 15%
LIME 5,150,431 0.20 59% 26% 15%
M-Estimate 13,224,506 0.18 20% 61% 19%
L1 Regularization 18,380,284 0.08 44% 52% 4%

Table 4.1: SHERLOCK’s rule scoring function accepts fewer rules than all others, allowing
it to run faster and achieve higher precision at the cost of fewer total inferences. Incorrect
rules account for the majority of errors in all systems except LIME. LIME’s errors were
primarily due to systematic extraction errors. The number of rules, runtime, and error
distributions can be understood based on the biases of each rule scoring function (details
discussed in the text).
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learner would make a number of mistakes due to word sense ambiguity. Although all of the

scoring functions accept rules which make such mistakes, SHERLOCK makes fewer total

mistakes due to incorrect rules or extraction errors. As such, the proportion of errors due to

word sense ambiguity is higher.

The M-Estimate rule scoring function favors rules with high precision on the labeled

data. It does not factor in the total number of facts the rule infers. However, rules which

infer more facts in total are likely to infer more correct facts coincidentally. Without a good

set of negative examples, these coincidental inferences will cause the M-Estimate scoring

function to rate such rules highly. Thus, as with the results for the statistical significance

metric, the rules M-Estimate learns tend to infer more facts overall.

The L1 Regularization rule scoring method is similar to M-Estimate in its biases, but

favors finding a small number of rules which ‘explain’ most of the observed facts. However,

because it places a larger L1-regularization penalty on longer rules, it accepts mainly short

rules. The small number of longer rules that it does accept tend to be rules which behave

like cross-products. For example, if there was a rule that inferred all |class1| × |class2|

values for a particular relation R(class1, class2), then that rule would ‘explain’ all of the

observed values despite the fact that the rule is most likely incorrect. As with M-Estimate,

this problem stems from not having a good set of negative examples. Additionally, it takes

significantly longer than all of the other systems. This is because it must perform weight

learning over all 4.9 million candidate rules that have sufficient support, whereas using the

other scoring functions only requires learning weights over high-scoring rules.

The LIME rule scoring function behaves differently than the other rule scoring func-

tions. The majority of its mistakes can be attributed to systematic extraction errors and the

rules that stem from them. For example, the LIME scoring function accepts many rules

using the relations Love(sport, sport) and Chop(food, food) (the latter of which stems

from systematic extraction errors such as extracting Chop(carrots, onions) from recipe

sentences like ‘Add peeled carrots, chopped onions, and diced celery to pot’). These rela-

tions have dense subsets, where many of the possible values of the relation occur together
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(e.g., many recipes call for adding some chopped vegetable after some previous step). Al-

though LIME penalizes each rule based on the total number of facts it infers, it also assumes

that the observed facts and errors are drawn randomly. Relations based on systematic ex-

traction errors violate this assumption, causing rules inferring such relations to appear to

have substantial support.

Finally, although the final precision in all cases is fairly low, such low precision results

may be useful for applications preferring high recall. We compared the results to two types

of random guessing - uniform sampling and biased sampling. In the first case, we sampled

instances of the typed-relation R(class1, class2) uniformly and independently from all in-

stances of class{1,2}. However, since more companies are likely to be based in major cities,

famous people are more likely to attend major universities, etc., we also sampled instances

of each class{1,2} biased by how frequently the instance appeared with a Hearst pattern

for that class. We generated 250 random relation-instances according to each method and

evaluated them as before. The uniform random-sampling method had a precision less than

0.01. The biased random-sampling method did much better, having precision 0.09. All

scoring functions except L1 Regularization are at least twice as good as random guessing,

and SHERLOCK’s inference rules outperform random guessing by a factor of five.

4.5 Analysis of Weight Learning

Finally, we empirically validate the modifications of the weight learning algorithm from

Section 3.6.1.

The learned weights do not affect which facts are inferred, they only affect the confi-

dence of each inferred fact. For a fixed set of rules, the set of results inferred by the system

will remain the same. Thus, to measure the influence of the weight learning algorithm we

hold the rules constant and examine how the following modifications affect the probabilities

of the inferred facts:

• Fixed vs. Variable Penalty - Do we use the same L2 penalty on the weights for all
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Recall
(p=0.8) AUC

Variable Penalty, Weighted 0.35 0.735
Counts (used by SHERLOCK-HOLMES)
Variable Penalty, Full Counts 0.28 0.726
Fixed Penalty, Weighted Counts 0.27 0.675
Fixed Penalty, Full Counts 0.17 0.488

Table 4.2: The confidences computed by SHERLOCK-HOLMES’s modified weight learning
algorithm give a better ranking over noisy and incomplete Web extractions. Most of the
gains come from stronger penalties on longer rules, but using weighted grounding counts
further improves recall by 0.07, which corresponds to almost 100,000 additional correct
facts at precision 0.8.

rules or a stronger L2 penalty for longer rules?

• Full vs. Weighted Grounding Counts - Do we count all unweighted rule groundings

(as in [27]), or only the best weighted one (as in Equation 3.3)?

To quantify the effects of each of these modifications, we compute the recall at precision

0.8 and the area under the precision-recall curve (AUC) on a fixed test set. We built the test

set by holding SHERLOCK-HOLMES’s inference rules constant, randomly sampling 700 in-

ferred facts, and tagging each fact as correct or incorrect. We vary each of the modifications

independently, and give the performance of all four combinations in Table 4.2.

The modifications from Section 3.6.1 improve both the AUC and the recall at precision

0.8. Most of the improvement is due to using stronger penalties on longer rules, but using

weighted counts in Equation 3.3 improves recall by a factor of 1.25 at precision 0.8. While

this may not seem like much, the scale is such that it leads to almost 100,000 additional

correct facts at precision 0.8.
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Chapter 5

SCALING SHERLOCK-HOLMES TO THE WEB

The previous chapters demonstrated the utility of SHERLOCK-HOLMES, showing that

it significantly increases recall over what is explicitly extracted. However, to operate at

Web scale inference also needs to be efficient.

In the general case, logical inference over a Horn theory is polynomial in the number of

ground facts, and hence in the size of the corpus.1 This is problematic, since even low-order

polynomial growth is prohibitive on the TEXTRUNNER [4] corpus, let alone the full Web.

Fortunately, the Web’s long tail works in our favor. The relations TEXTRUNNER extracts

from the Web are “approximately” functional in a well-defined sense. Formally, we say that

such relations are approximately pseudo-functional (APF), a property which guarantees that

SHERLOCK-HOLMES’s inference will scale linearly in the size of the corpus.

The following example illustrates the intuitions. Consider the rule

R(x, z) : −Married(x, y) ∧ LivedIn(y, z);

In the worst case, there is some person y who married everyone and who lived in every

place. This rule will then generate a polynomial (O(|Married| ∗ |LivedIn|)) number of

results. However, this worst-case scenario rarely occurs for relations mentioned on the

Web. The relations in this example are APF — most people have at most a few spouses,

and live in only a few places — so in general this rule will infer a much smaller number of

results from each person y than the worst case predicts. The definition of APF quantifies

‘most’ and ‘few’, and allows us to prove that SHERLOCK-HOLMES’s inference over APF

1In fact, it is P-complete – as hard as any polynomial-time problem
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relations scales linearly in the size of the corpus.

This chapter examines how SHERLOCK-HOLMES scales with respect to both infer-

ence and rule learning. We formalize the approximately pseudo-functional property in

Section 5.1 and show how it ensures that HOLMES’s inference scales linearly. Section 5.2

then demonstrates empirically that most relations are APF, and that HOLMES’s inference

scales linearly in practice. We then extend the analysis to include rule-learning in SHER-

LOCK, showing that the system scales linearly in the size of the corpus (Section 5.3) and in

the number of relations considered (Section 5.4).

5.1 The Approximately Pseudo-Functional Property

HOLMES was designed to infer answers to queries using facts extracted from Web pages.

However, to be useful it must be able to infer these answers in a reasonable amount of time.

If it is applied to a corpus containing hundreds of millions or even billions of pages, its run

time has to be at most linear in the size of the corpus. This section shows that, under some

reasonable assumptions, inference does scale linearly.

In this section we assume that the query and set of inference rules given as input to

HOLMES is fixed. We analyze this case first, and remove this assumption in later sections.

Our analysis makes three additional assumptions.

Assumption 1. The number of distinct, ground facts in the KB, |F |, grows at most linearly

with the size of the corpus.

This assumption is certainly true for facts extracted by TEXTRUNNER and Kylin [70],

and follows from our exclusion of texts with complex quantified sentences. Our analysis

now proceeds to consider scaling with respect to |F | for a fixed query and set of inference

rules (i.e., “data complexity” in database lingo.)

Assumption 2. The body of each rule is a connected clause.

In general, we want the objects we are making inferences over to be related in some

way. Without this assumption, a rule may compute a cross-product combining all results
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from one subclause with all results from another. Although this can occasionally be useful,

it rarely is for facts extracted from the Web. SHERLOCK and most other ILP systems only

consider connected rules, and in practice this limitation on expressivity allows us to avoid

computing cross-products, leading to a huge improvements in speed and memory usage.

Assumption 3. The size of every proof tree is bounded by some constant, m.

This is a strong assumption and one that depends on the precise set of inference rules

and pattern of ground facts. However, this limitation is useful in practice, since larger proof

trees are more likely to contain errors. It can be enforced by limiting the search for proof

trees to a certain depth, e.g., log(m), and by disallowing recursive rules or allowing only

a limited depth of recursion. These limitations are already required by the weight learning

and probabilistic inference method described in Section 3.6.

HOLMES’s inference has three steps:

1. Logical inference to construct a proof forest identifying the answers

2. Conversion of the forest into a Markov network

3. Probabilistic inference over that network.

The probabilistic inference method used by SHERLOCK-HOLMES runs in time linear in the

size of the Markov network. Since the Markov network is essentially isomorphic to the

proof forest, the conversion will take O(|F |) time and space if the forest is linear in size,

which is ensured if the time to construct the proof trees is O(|F |). We show this bounded

construction time is in fact the case in the remainder of this section.

HOLMES requires inference rules to be function-free, first-order Horn clauses. While

this limits expressivity to some degree, it provides a huge speed benefit; logical inference

over Horn clauses can be done in polynomial time, whereas general propositional inference

(i.e., from grounded first-order rules) is NP-complete.
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Alas, even low-order polynomial blowup is unacceptable when the corpus reaches Web

scale; it must have linear growth. Intuitively, there are two places where polynomial ex-

pansion could cause trouble. First, the number of different types of proofs (i.e., first-order

proofs) could grow too quickly, and secondly, a given type of proof tree might apply to too

many ground facts (i.e., “tuples” in database terminology). We treat these issues in turn.

Under the above assumptions, each proof tree can be represented as an expression in

relational algebra with at most m equijoins [66],2 each stemming from the application of

an inference rule. Since the number of rules is fixed, as is m, there are a constant number

of possible first-order proof trees.

The bigger concern is that any one of these first-order trees might result in a polynomial

number of ground trees; if so, the size of the ground forest (and corresponding Markov

network) could grow too quickly. In fact, polynomial growth is a common phenomena

in database query evaluation. Fortunately, most relations in the Web corpus behave more

favorably. We introduce a property of relations that ensuresm-way equijoins, and therefore

all proof trees up to size m, can be computed in O(|F |) time.

The intuition for this property is that most relations derived from large corpora have a

‘long-tailed’ distribution, wherein a few objects appear many times in a relation, but most

appear only once or twice. Therefore, joins involving rare objects lead to a small number

of results, and so the main limitation on scalability is common objects. We now prove that

if these common objects account for a small enough fraction of the relation, then joins will

still scale linearly. We focus on binary relations, but these results can easily be extended to

relations of larger arity.

Definition 3. A relation, R = {(xi, yi)} ⊆ X × Y , is pseudo-functional (PF) in x with

degree k, if ∀x ∈ X : |{y|(x, y) ∈ R}| ≤ k. When the precise variable and degree is

irrelevant to the discussion, we simply say “R is PF.”

2Note that an inference rule of the form H(X) : −R1(X, Y) ∧ R2(Y, Z) is equivalent to the algebraic expres-
sion πX(R1 ./ R2). First a join is performed between R1 and R2 testing for equality between values of
Y ; then a projection eliminates all columns besides X .
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An m-way equijoin over relations that are PF in the join variables will have at most

km ∗ |R| results. Since km is constant for a given join and |R| scales linearly in the size of

the textual corpus, proof tree construction over PF relations also scales linearly.

However, due to their long-tailed distributions, most relations extracted from the Web

fit the pseudo-functional definition in most, but not all values of X . Fortunately, in most

cases these “bad” values of X are rare and hence do not influence the join size significantly.

We formalize this intuition by defining a class of approximately pseudo-functional (APF)

relations and proving that joining two APF relations produces at most a linear number of

results.

Definition 4. A relation, R = {(xi, yi)} ⊆ X × Y , is approximately pseudo-functional

(APF) in x with degree k, if X can be partitioned into two sets XG and XB such that for all

x ∈ XG R is PF with degree k and x ∈ XB have
∑

x∈XB

|{y|(x, y) ∈ R}| ≤ k ∗ log(|R|)

Theorem 1. If relation R1 is APF in y with degree k1 and R2 is APF in y with degree k2

then the relation Q = R1 ./ R2 has size at most O(max(|R1|, |R2|)).

Proof. Since R1 and R2 are APF, we know that Y can be partitioned into four groups:

YBB = YB1
⋂
YB2, YBG = YB1

⋂
YG2, YGB = YG1

⋂
YB2, YGG = YG1

⋂
YG2.3 We can

show that each group leads to at most O(|F |) entries in Q. For y ∈ YBB there are at most

k1 ∗ k2 ∗ log(|R1|) ∗ log(|R2|) entries in Q. The y ∈ YGB and y ∈ YBG lead to at most

k1 ∗ k2 ∗ log(|R2|) and k1 ∗ k2 ∗ log(|R1|) entries, respectively. For y ∈ YGG there are at

most k1 ∗ k2 ∗max(|R1|, |R2|). Summing the results from the four partitions, we see that

|Q| is O(max(|R1|, |R2|)), thus it is O(|F |).

This theorem and proof can easily be extended to an m-way equijoin, as long as each

relation is APF in all arguments that are being joined.

3YBB are the “doubly bad” values of y that violate the PF definition for both relations, YGG are the values
that do not violate the PF definition for either relation, and YBG and YGB are the values that violate it in
only R1 or R2, resp.
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Theorem 2. IfQ is the relation obtained by an equijoin over m relationsR1..m, each having

size at most O(|F |), and if all R1..m are APF in all arguments that they are joined in with

degree at most kmax, and if
∏

1≤i≤m

log(|Ri|) ≤ c ∗ |F | for some constant c, then |Q| is

O(|F |).

The proof of this is a straightforward extension of the proof of Theorem 1.

Proof Sketch. We partition the domain of each Ri and each argument into sets of ‘good’

and ‘bad’ values (which meet or violate, respectively, the pseudo-functional definition).

Each result of the join must come from exactly one combination of those sets, so we can

partition Q into a fixed number of sets accordingly. Performing a case-by-case analysis as

before, we can show that each partition yields at most O(|F |) results. Therefore, the sum

over the fixed set of partitions must be O(|F |), and so |Q| must also be at most O(|F |).

The inequality in Theorem 2 relates the sizes of the relations (|R|), the size of the

equijoin (m), and the number of ground facts (|F |). In particular, given Assumption 1 this

inequality is guaranteed to hold if the join size m is O(log|F |/log log|F |). However, in

many cases we are interested in much smaller joins than the inequality allows. For example,

the rules learned by SHERLOCK in Chapter 4 as well as the manually crafted rules in [57]

lead to proof-trees having at most m = 2-way equijoins. If we are willing to limit the

maximum join size, we can relax the APF definition to allow a broader, but still scalable,

class of m-way-APF relations.

Corollary 3. If Q is the relation obtained by an m-way join, and if each participating

relation is APF in their joined variables with a bound of ki∗ m
√
|Ri| instead of ki∗log(|Ri|),

then the join is O(|F |).

The proof of this is similar to the proof of Theorem 2. Using ki ∗ m
√
|Ri| in the case-

by-case analysis also allows us to show that each group is O(|F |). For example, in the
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2-way-join case, the “doubly bad” term y ∈ YBB would be k1 ∗ k2 ∗
√
|R1| ∗

√
|R2| ≤

const ∗
√
|F | ∗

√
|F | = O(|F |). Since each partition is O(|F |), their sum is also O(|F |).

The final step in our scaling argument concerns probabilistic inference, which is #P-

Complete if performed exactly. This can be addressed in two ways. First, when using a

closed-form, discriminative inference method (Section 3.6), the probabilities can be com-

puted exactly in time linear in the size of the proof forest. Second, when not using that

method, HOLMES may alternatively use approximate methods (e.g., loopy belief propa-

gation) which avoid the cost of exact inference — at the cost of reduced accuracy. Fur-

thermore, at a practical level, HOLMES’s incremental construction of the Markov network

allows it to artificially bound the size of the network and the cost of inference by terminating

the search for additional proofs.

5.2 Scalability of Inference

As shown in the previous section, for approximately pseudo-functional relations HOLMES’s

inference will scale linearly in the size of the corpus. This section addresses two empirical

questions from those results. First, how common are APF relations in facts extracted from

the Web? Second, how does HOLMES’s runtime scale in practice?

To determine the prevalence of APF relations in Web text, we examined a sample of

500 binary relations selected randomly from TEXTRUNNER’s ground facts. The surface

forms of the relations and arguments may misrepresent the true properties of the under-

lying concepts. To better estimate the true properties we ignored type information in this

experiment, and instead merged synonymous values as given by Resolver [74] or the most

frequent sense of the word in WordNet [39]. For example, in this experiment we con-

sider BornIn(baby, hospital) and BornAt(infant, infirmary) to represent the same

concept, and merged them into one instance of the ‘Born In’ relation. The largest two rela-

tions had over 1.25 million unique instances each, and 52% of the relations had more than

10,000 instances.

For each relation R, we first found all instances of R extracted by TEXTRUNNER and
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Figure 5.1: Prevalence of APF relations in Web text. The x-axis depicts the degree of
pseudo-functionality, e.g., Kmin and K2./, (see definition 4); the y-axis lists the fraction of
relations that are APF with that degree. Results are averaged over both arguments.

merged all synonymous instances as described above. Then, for each argument of R we

computed the smallest value,Kmin, such thatR is APF with degreeKmin. Since many facts

can be inferred from simply joining two relations, we also considered the special case of

2-way joins using Corollary 3. We computed the smallest value, K2./, such that the relation

is two-way-APF with degree K2./. This corresponds to the rules learned by SHERLOCK in

Chapter 4.

Figure 5.1 shows the fraction of relations withKmin andK2./ of at mostK as a function

of varying values of K, and Appendix C provides a list of the 25 test relations with the

highest APF degrees. The results are averaged over both arguments of each binary relation.

For arbitrary joins in this KB, 80% of the relations are APF with degree less than 496;

for 2-way joins (like the ones in the inference rules learned by SHERLOCK or in the test
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questions in Schoenmackers et al. [57] ), 80% of the relations are APF with degree less

than 65. These results indicate that the majority of relations TEXTRUNNER extracted from

text are APF, and so we can expect HOLMES’s techniques will allow efficient inference

over most relations.

The sharp rise for low values of K in the graphs is ideal, since it indicates that the vast

majority of relations are APF with a fairly small degree. Since the APF degree (K) acts

as a constant scaling factor in HOLMES’s inference, smaller values of K lead to smaller

probabilistic networks, and allow HOLMES to operate faster or handle larger relations with

less space. Thus, Figure 5.1 indicates that even in limited environments HOLMES can

perform inference over a large number of relations.

However, although Theorem 2 guarantees that joins over such relations will be O(|F |),

that notation hides a potentially large constant factor of Kmin
m. This can potentially make

inference expensive, even for relatively small values of K. Fortunately, the constant factor

is significantly smaller in practice. To see why, we re-examine the proof: the large factor

comes from assuming that all of the relation’s first arguments that meet the PF definition

are associated with exactly Kmin distinct second arguments. However, in our corpus 83%

of first arguments are associated with only one second argument. Clearly, our worst-case

analysis substantially over-estimates inference time for most queries. Moreover, the mea-

sured join sizes and number of inferred results grew linearly in the size of the corpus, but

were on average two to three orders of magnitude smaller than the bounds given in the

theory. This observation held across relations with different sizes and values of Kmin.

While the results in Figure 5.1 may vary for other extraction systems or sets of rela-

tions, we believe the general trend holds. This is promising for HOLMES, as well as for

other Question Answering and Textual Inference systems. If true it implies that combining

information from multiple different sources is feasible, and can allow such systems to infer

answers not explicitly seen in any source.

Since most relations are APF in their arguments, our theory predicts HOLMES’s infer-

ence will scale linearly in the size of the corpus. We validate this empirically by measuring
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the running time of HOLMES’s inference while varying the number of pages in the corpus.

We consider two workloads. First, we consider the experiment used in the previous

chapter to measure the benefits of the rules learned by SHERLOCK. We use the 30,000

rules learned by SHERLOCK to infer as many facts as possible for each of its 10,000 typed

relations. In this experiment, we learn rules using the entire corpus first, and then simulate

smaller corpora by randomly deleting a fraction of TEXTRUNNER’s extractions.4 This

workload represents a large number of queries using a large number of rules, but only

operates over the subset of TEXTRUNNER’s facts corresponding to the well-defined typed-

relations (Section 3.3).

The second workload we consider is twenty questions in three domains from Schoen-

mackers et al. [57]. This workload considers only a small number of manually created

rules, but operates over the entire TEXTRUNNER corpus, WordNet, and allows for fuzzier

sub-string matches within the rules. As such, this workload examines scalability under

different question-answering conditions.

Figures 5.2 and 5.3 show how HOLMES’s inference scales under the first and second

workloads, respectively. As predicted, in both cases the runtime scales linearly in the size

of the corpus. Based on these results we believe that HOLMES, as well as other systems

leveraging APF relations, can provide scalable inference over a wide variety of domains.

5.3 Scalability of Rule Learning

Although HOLMES can infer answers to queries efficiently, the previous section assumed

that good rules were provided as input. However, for SHERLOCK-HOLMES to scale to

the Web, it must also learn rules efficiently. This section extends the previous results to

examine how the entire SHERLOCK-HOLMES system, both rule learning and inference,

scales with corpus size.

4We delete individual, raw extractions, rather than the distinct facts, since we are likely to see very com-
mon facts even in very small corpora. Deleting raw extractions retains the long-tailed behavior of the Web,
whereas deleting distinct facts skews this behavior.
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The primary problem with applying the previous analysis is that the number of rules is

no longer constant. With a larger corpus, SHERLOCK has more evidence and will evaluate

and learn more rules. Indeed, Figure 5.4 shows that the number of rules SHERLOCK evalu-

ates (i.e., those that have sufficient support) and learns (i.e., those that have high statistical

relevance and statistical significance) both scale linearly in the size of the corpus. Since

each rule is O(|F |), if the number of rules increases then the total runtime may increase

super-linearly.

Fortunately, the rules learned by the system also have long-tailed behavior. Most typed-

relations have only a few rules inferring them, and only a small number of relations are

the head of a large number of rules. Figure 5.5 ranks the relations by the number of rules

inferring them, and shows that for 90% of the relations there are fewer than 8 rules inferring

the relation. This long-tailed behavior can be exploited by considering a second-order form

of approximate pseudo-functionality.

Our analysis requires the same assumptions as before, except rather than assuming that

the rules are given as input, we instead assume the following:

Assumption 4. The set of classes, instances, and typed relations is fixed as input to SHER-

LOCK’s rule learning component. Additionally, all of the typed relations are APF with

some degree K.

This assumption will be relaxed in the next section, but having a pre-defined notion of

the objects and relations of interest is a reasonable assumption in practice. Most ILP sys-

tems assume that objects and relations are given as input. Finally, most relations extracted

from the Web are APF, so assuming that all relations we use are APF is not a limitation in

practice.

Under the bounded proof-tree size assumption (Assumption 3), there are a fixed number

of templates describing the high-level structure of the proof tree. For example, SHERLOCK

learns rules of the form R1(x, y) : −R2(x, y), R1(x, z) : −R2(x, y) ∧ R3(y, z),

R1(x, z) : −R2(x, y) ∧ R3(z, y), etc. Such templates have been used in other rule learning
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systems to bias search [40] or to help with transfer learning [14].

Each first-order proof-tree can be written as an instantiation of the relations in one

of the templates. To reason over this formally, we define a second-order relation for

each template, such that groundings of that relation describe instantiations of the cor-

responding template (i.e., different rules). For example, let the second-order template-

relation Txyyz(r1, r2, r3) correspond to the rule template r1(x, z) : −r2(x, y) ∧ r3(y, z).

Then we can express the rule BornIn(x, z) : −BornIn(x, y) ∧ LocatedIn(y, z) simply as

Txyyz(BornIn, BornIn, LocatedIn) Using this notation, SHERLOCK’s rule learning can be

seen as discovering the truth values for each of these second-order template-relations.

Furthermore, this representation allows us to examine properties of large collections of

rules. Perhaps most relevant to this section, we can ask if the template-relations we defined

are APF. If they are, then we can expect SHERLOCK-HOLMES to scale linearly in the size

of the corpus. The proof of this is identical to the proof of Theorem 2. Namely, we only

need to consider a fixed set of second-order rules corresponding to the templates, e.g.,

Head(x, y) : −Txy(Head, b1) ∧ b1(x, y);

Head(x, z) : −Txyyz(Head, b1, b2) ∧ b1(x, y) ∧ b2(y, z);

Head(x, z) : −Txyzy(Head, b1, b2) ∧ b1(x, y) ∧ b2(z, y);

etc.

Under the assumptions above, if the template-relations are APF, then this meets the pre-

requisites for the theorem. More specifically, we can make the following statement about

the SHERLOCK-HOLMES system:

Corollary 4. Given a set of typed-relations, each of which is APF with degree at most K,

then if the template-relations defined above are APF with degree at most K, SHERLOCK-

HOLMES’s runtime will scale linearly in the size of the corpus.

We now empirically examine whether the template-relations are APF. There are two
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related definitions of template-relations we need to consider: (1) the candidate rules eval-

uated by SHERLOCK, which have some minimum support, and (2) the rules accepted by

SHERLOCK, which also have some minimum score. Groundings in the first case are cheap

to find, and can help the system avoid computing the more expensive rule scoring function.

Groundings in the second case are a subset of the first, and so the runtime of the second

will clearly be bounded by the runtime of the first. However, we examine them separately

since the first measures the scalability of SHERLOCK’s rule learning, whereas the second

measures the scalability of HOLMES’s inference using an increasing number of rules. Em-

pirically we found that, in our corpus, all of the template-relations used by SHERLOCK are

two-way-APF with degree at most 650 in the first case, and degree at most 22 in the second

case. This suggests that the system’s runtime will scale linearly in the size of the corpus.
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Figure 5.6 validates that SHERLOCK-HOLMES’s runtime does scale linearly in practice.

As before, we vary the corpus size by randomly deleting some of TEXTRUNNER’s raw

extractions. We then measure the time taken by SHERLOCK and HOLMES to learn all

inference rules and to infer all facts implied by the rules, respectively. Although learning

inference rules is an expensive operation, its cost scales linearly in the size of the corpus.

Additionally, even though SHERLOCK learns more rules, HOLMES’s inference still scales

linearly in the size of the corpus. Thus, for a fixed set of APF relations, it should be possible

to scale the entire SHERLOCK-HOLMES system to the Web.

5.4 Scalability with Respect to the Number of Relations

The evaluations presented thus far have focused on 10,000 of the most common typed-

relations. However, this is by no means an exhaustive collection. To run SHERLOCK-

HOLMES over the entire Web, it will need to consider many additional relations. This

section examines how SHERLOCK-HOLMES scales with respect to the number of relations,

Nrel, it uses.

As before, we consider proof-trees up to some bounded size m. There are potentially

O((Nrel)
m) first-order proof trees, each of which has a potentially large number of ground-

ings. Although argument-type restrictions eliminate a large number of them, a polynomial

number of proof trees are still possible. Figure 5.7 shows how the total number of legal

proof trees (satisfying the type constraints) varies when SHERLOCK-HOLMES uses only

the Nrel most frequently observed typed-relations from the TEXTRUNNER corpus.5 As is

apparent, the number of possible proof-trees does scale polynomially with Nrel.

Fortunately, we are again saved by the long-tailed nature of relations extracted from the

Web; most of the possible rules have insufficient support, and can easily be avoided. Fig-

ure 5.8 shows that the number of rules evaluated (having minimum support), and accepted

(also having score above threshold) by SHERLOCK scales linearly with Nrel. Thus, with

5We use the most frequent relations to model the long-tailed distribution of relations we would consider
with a larger corpus, as we currently exclude relations that are not observed a minimum number of times.
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appropriate indexing and rule generation algorithms, we can quickly find the rules with

sufficient support and avoid the polynomial number of rules without support.

The reason for this linear behavior is that the typed relations are also long-tailed with

respect to the number of relations they interact with. Most classes are closely related to,

and share many relations with, only a small number of other classes. Thus, due to type

restrictions, each additional typed-relation is likely to appear in rules with only few other

relations. This behavior is formally captured by the the template relations defined in the

previous section. Since these template relations are APF, the theory predicts that the number

of groundings of the second-order rules (i.e., the number of first-order rules generated by

each template) will scale linearly in Nrel (the size of its arguments). This is precisely the

behavior we see in Figure 5.8. Furthermore, since all of the relations in these first-order

rules are APF, we also can expect that SHERLOCK-HOLMES can ground these rules and

find the facts inferred by them in time linear in Nrel.

Figure 5.9 shows how SHERLOCK-HOLMES’s runtime for rule learning and inference

scales with respect to Nrel. As before, vary the number, Nrel, of the most frequent typed-

relations, but consider all facts in TEXTRUNNER matching those relations (i.e., we hold the

corpus constant). As is expected, the entire SHERLOCK-HOLMES system scales linearly in

the number of typed-relations.

5.5 Summary

SHERLOCK-HOLMES’s rule learning and inference has linear runtime scalability in prac-

tice, despite the fact that it may theoretically be much worse. The reason for this stems

from the long-tailed property of facts extracted from the Web. The approximately pseudo-

functional property quantifies the long-tailed behavior, and allows us to prove theoretically

that SHERLOCK-HOLMES’s runtime scales linearly for APF relations. Furthermore, we

have demonstrated that this property is common in relations extracted from the Web, and

that in practice SHERLOCK-HOLMES’s performance scales linearly in the size of the corpus

and the number of relations. Based on these results, SHERLOCK-HOLMES, and other sys-
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tems combining information gathered across multiple Web pages, should be able to scale

and run over the entire Web.
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Chapter 6

RULE LEARNING EXTENSIONS

The quality of HOLMES’s inference depends on the quality of the rules it is given. Al-

though SHERLOCK learns many good inference rules, it also learns a number of unsound

or incorrect rules (as evidenced by the sharp drop in precision in the tail end of Figure 4.1).

SHERLOCK uses a high threshold to help filter out many of the incorrect rules, but this

has the drawback that many useful rules are also rejected due to insufficient support (e.g.,

SHERLOCK does not return any rules inferring Prevents(Food, Disease)). This prob-

lem is most pronounced in sparse relations such as Prevents(Food, Disease), which has

only 29 distinct groundings observed in our corpus. Unfortunately, this is precisely where

inference rules would provide the greatest benefits.

Having a sufficient number of positive and negative training examples helps ILP sys-

tems avoid such issues (e.g., [42] contains an analysis of the expected error in a noise free

case). However, facts extracted from Web text are noisy and incomplete, and although pos-

itive facts can be extracted fairly well, the extractions are not a reliable source of negative

examples. Furthermore, though it is very likely that a fact drawn at random will be false,

such random facts are not likely to be useful; most rules will not infer that fact, so it will

not provide information about the quality of the rule.

Additional high-quality positive and negative examples should help SHERLOCK address

its current errors, but where would such examples come from? There are several possibili-

ties with different trade-offs:

1. Expand the corpus - The TEXTRUNNER corpus used in these experiments contains

extractions from around 500 million Web pages. One way to address sparsity of

positive examples would be to run TEXTRUNNER over a larger corpus. Although
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this would certainly find more new facts, this technique is not ideal for two reasons.

First, just as with the current corpus, it will not provide a reliable source of negative

examples. Second, it will simply be shifting the sparsity issue down to other relations;

SHERLOCK currently does not consider many relations due to sparsity. A larger

corpus will help alleviate this problem, but due to the long-tailed nature of the Web

there will still be some relations with fairly little evidence.

2. Crowdsourcing - One could solicit additional facts from a large number of people

over the Internet. Previous research has successfully crowdsourced tasks in natural

language processing (NLP) [62, 31], image labeling [68], building a common sense

knowledge base [60], and content creation in Wikipedia [26]. However, even at a size

of just 25 positive and negative examples for each relation, more than half a million

labeled examples would be necessary in SHERLOCK-HOLMES’s experiments. This

is for only a fraction of the total number of relations on the Web! Using techniques

from active learning, asking people to validate rules directly, or building efficient

workflows for querying users (e.g., [46]) may reduce this burden, but it would still be

a substantial undertaking.

3. Mutual-exclusion constraints - Properties such as functionality or antonymy pro-

vide additional constraints on the members of a relation. These constraints could

compactly specify a large amount of negative evidence, which would hopefully help

SHERLOCK avoid many unsound inference rules. However, SHERLOCK would either

need to learn these constraints, or it would require a small amount of supervision to

obtain them.

4. Self-supervised learning - SHERLOCK could annotate positive and negative exam-

ples for itself. Very low scoring rules tend to be incorrect, leading to a large number

of incorrect inferences. Rather than simply ignoring these rules, SHERLOCK could

use them as a source of negative examples. Similarly, very high scoring rules tend to
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be correct, so SHERLOCK could use them to augment the set of positive examples.

In this chapter we examine the latter two approaches for identifying negative examples:

self-supervised learning techniques and providing additional mutual exclusion constraints

to the relations. Although the first two methods are also interesting, they are items of

future work as they require a substantially higher overhead for setup and management (e.g.,

crowdsourcing would require attracting and managing workers, as well as determining the

best way for workers to provide evidence.)

6.1 Self-Supervised Learning

As many of SHERLOCK’s rule learning mistakes can be attributed to insufficient positive

and negative examples, a way of overcoming this limitation is to find additional data. A

promising method for doing so is to bootstrap additional examples by using techniques

from semi-supervised or self-supervised learning.

A number of systems have shown that augmenting a small amount of labeled data with

a large amount of unlabeled data can significantly improve results for a variety of NLP and

classification tasks (e.g., [6, 10, 17, 36, 43, 73]). These techniques treat unlabeled data as

additional, weak signal about the true distribution. Approaches typically identify unlabeled

examples which can be confidently labeled, and then treat these examples as additional

labeled data. By performing this process iteratively, these systems expand their training

data, which helps them perform more accurately in later iterations.

Of particular note is the work of Blum and Mitchell on co-training [6] as a framework

for semi-supervised classification. As input, their formula takes a small number of labeled

examples and a large number of unlabeled examples, assumed to be drawn independently

and identically distributed (IID). Furthermore they require that the examples have features

which can be partitioned into two views, such that the views are conditionally independent

of each other given the class, and such that either view alone can be used to classify the

examples (e.g., to classify a Web page the features might be the text on the page and the
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anchor text of links to that page). By training classifiers on each view with the restriction

that the classifiers must agree, Blum and Mitchell showed that this problem is PAC (prob-

ably approximately correct) learnable. Collins and Singer [10] extended the co-training

framework using techniques from boosting (e.g., [21]) to form the co-boosting framework.

6.1.1 Extending SHERLOCK for Self-Supervised Rule Learning

Although many of the assumptions of co-training/co-boosting are violated for our problem

(e.g., neither the observed facts or the rules are IID), we will try to leverage the core intu-

itions by exploiting the following observations: first, different scoring metrics tend to make

different mistakes, so we can treat them as independent classifiers for the rules. Second,

most facts are false, most rules are incorrect, and incorrect rules infer mostly false facts.

Using these assumptions we can iteratively identify rules that are likely to be correct (or

incorrect) and augment the known positive (or negative) facts using the results inferred by

those rules.

More formally, we assume that the typed-relations are independent of each other, and

try to learn all rules inferring each of the typed-relations in turn (treating all other observed

facts as evidence, as before). For each typed-relation, we first identify all candidate rules

inferring that relation which have some minimum overlap with the observed facts. We treat

all results inferred by the candidate rules as unlabeled facts, all observed groundings of

the relation as positively labeled facts, and generate a set of negatively labeled facts by

randomly permuting the arguments of the positive facts (as was done for M-Estimate in

Section 4.2). We then iteratively identify a small number of correct and incorrect rules and

then label their inferred facts as positive or negative, respectively. The goal of this is to

help SHERLOCK identify ‘near-miss’ negative examples (i.e., those close to the decision

boundary), and to help address problems of sparsity in the positive examples. Pseudo-code

for these modifications to SHERLOCK’s rule learning algorithm is given in Figure 6.1.

Let us now examine several methods for identifying the good rules, the bad rules, and

the final rule evaluation. Just as with the decision-list co-training algorithm of [10], this
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Algorithm 1 Pseudo-code for SHERLOCK’s self-supervised rule learning technique.
function FINDINFERENCERULES(HeadRel, CandidateRules, ScoreFns, Corpus, Nu-
mIter, τ )

PosFacts← {f : f ∈ Corpus and f is a ground atom of HeadRel}
NegFacts← GeneratePseudoNegatives(PosFacts)
UnusedRules← {r : r ∈ CandidateRules}

for i ∈ 1..NumIter do
BestRules← FindBestRules(ScoreFns,UnusedRules,PosFacts,NegFacts,Corpus)
WorstRules← FindWorstRules(ScoreFns,UnusedRules,PosFacts,NegFacts,Corpus)
PosFacts← PosFacts ∪{f : f inferred by r ∈ BestRules using Corpus}
NegFacts← NegFacts ∪{f : f inferred by r ∈WorstRules using Corpus}
UnusedRules← UnusedRules \ (BestRules ∪WorstRules)

end for

GoodRules← ∅
for all rule ∈ CandidateRules do

score← GetRuleScore(ScoreFns,PosFacts,NegFacts,Corpus)
if score ≥ τ then

GoodRules← GoodRules ∪ rule
end if

end for
return GoodRules

end function

Figure 6.1: Pseudo-code describing how SHERLOCK learns rules using self-supervised
techniques. As input it takes a target head relation, a set of candidate inference rules infer-
ring that relation, a set of scoring functions which evaluate a rule based on a set of positive
and negative facts, a corpus of observed facts, the number of iterations of self-supervision to
run, and a threshold τ for determining ultimately whether to accept or reject a rule. It then
bootstraps additional positive and negative facts, and uses the bootstrapped facts to identify
and return the correct rules. Sections 6.1.2 and 6.1.3 describe and evaluate several varia-
tions for determining the best and worst rules and performing the final rule evaluation (i.e.,
different implementations of the FindBestRules(), FindWorstRules(), and GetRuleScore()
functions).
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modified version of SHERLOCK labels all facts deduced from the ‘good’ and ‘bad’ rules,

rather than a subset of those facts. This helps bootstrapping since at each iteration the

system can label a large number of facts, but it has the risk of exacerbating errors if an

incorrect or unsound rule is selected early on.

This is a self-supervised algorithm since SHERLOCK bootstraps from observed (but not

manually validated) facts, rather than requiring labeled data. As such, even with these

modifications SHERLOCK-HOLMES can scale to open domains. Finally, we note that this

rule learning method assumes that the corpus (evidence) is fixed, and does not consider

inference of or interactions with other rules. Avoiding these computations of longer-range

inferences is done primarily for efficiency, but in preliminary tests it seems to improve

precision as well. The intuition for this effect is that deeper inferences tend to be more

susceptible to errors in our corpus, as many of the inferences are based on noisy facts.

Considering joint interactions between rules is an important item of future work.

6.1.2 Methodology for Evaluation

To evaluate the effects of self-supervised rule learning in Algorithm 1, we need to determine

three things: (1) what rule scoring functions should we use, (2) how do we define the

FindBestRules() and FindWorstRules() functions, and (3) how do we determine the final

rule score?

To answer the first question, in this work we will use the two best rule scoring functions

found previously: SHERLOCK’s statistical relevance + statistical significance rule scoring

function (Section 3.5) and the M-Estimate rule scoring function [16]. These two scoring

functions focus on different features of the problem. SHERLOCK’s rule scoring function

uses only positive examples, but makes use of object frequency (e.g., NewYork is more

likely to appear in an extraction than LasCruces). On the other hand, the M-Estimate

rule scoring function leverages negative examples. Since the rule scoring functions exploit

different features and make qualitatively different errors, we would expect that combining

both will lead to improved results.
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We consider four methods of combining the scoring functions: a simple, self-training

variant and three others inspired by co-training and co-boosting. At every iteration in the

algorithm the rules are scored as described below, using the scoring functions with the

currently bootstrapped set of positive and negative examples. The four ways of combining

the scoring functions are:

Self-training. This method considers the best and worst rules according to a single scor-

ing function (SHERLOCK’s or M-Estimate), ignoring the other one. At every itera-

tion the FindBestRules() function returns the single highest scoring rule and the Find-

WorstRules() returns the single lowest scoring rule according to the scoring function

used.

Co-training. This method considers the two scoring functions independently from each

other, selecting the best and worst rules according to each function individually. At

every iteration the FindBestRules() function returns two rules - the highest scoring rule

according to the M-Estimate scoring function and the highest scoring rule according to

SHERLOCK’s scoring function. Similarly, the FindWorstRules() function returns the two

rules scoring lowest according to M-Estimate and SHERLOCK, independently.

Agreement Co-boosting. This method considers the two scoring functions jointly. This

matches the intuition that if a rule scores highly according to both scoring functions,

it is probably a good rule, and if a rule scores low according to both scoring func-

tions, it is probably a bad rule. Since the two scoring functions give scores in signif-

icantly different scales, it is unclear how to directly combine the scores. Therefore,

we rank the rules in order of decreasing score according to each of the scoring func-

tions, and use the rank information as a proxy for rule quality. Then at every itera-

tion the FindBestRules() function returns the two rules with the lowest sum of ranks:

argmin
rule

[rankM−Estimate(rule)+rankSherlock(rule)] (i.e., rules which both scoring func-

tions agree are good). Similarly, the FindWorstRules() function returns the two rules
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with the highest sum of ranks: argmax
rule

[rankM−Estimate(rule) + rankSherlock(rule)]

(i.e., rules which both scoring functions agree are bad).

Disagreement Co-boosting. This method is similar to agreement co-boosting, but chooses

the worst rules as the ones where the the two rule scoring functions most disagree. In-

tuitively, the goal of this technique is to find a better set of negative examples by using

one rule scoring function to identify and correct the mistakes of the other. To do so,

this technique makes the assumption that if one rule scoring function determines that

a rule is incorrect, then the rule is probably incorrect. This assumption is strong, but

not unreasonable, since most rules are incorrect. The FindBestRules() function uses

agreement between the scoring functions as with agreement co-boosting. However,

the FindWorstRules() function returns two rules having largest difference in rank. I.e.,

argmax
rule

[rankM−Estimate(rule)−rankSherlock(rule)] and argmax
rule

[rankSherlock(rule)−

rankM−Estimate(rule)]

After several rounds of bootstrapping additional positive and negative facts, Algo-

rithm 1 uses the bootstrapped facts to evaluate candidate rules. In the experiments be-

low, we compare three methods for this final evaluation of the rules. (1) using a thresh-

old on SHERLOCK’s rule scoring function, (2) using a threshold on the M-Estimate rule

scoring function, and (3) using a simple ensemble by voting over both scoring functions:

scoreM−Estimate > τm ∧ scoreSherlock > τs. We expect the improved set of positive and

negative examples will increase the performance of M-Estimate, and furthermore that the

additional positive examples will also improve SHERLOCK by providing more accurate

probability estimates for computing statistical relevance and statistical significance. Fi-

nally, we expect that the voting method will lead to improved precision, but at the cost of

recall.

We consider all twelve variations of the four score function combinations and three

final rule scoring methods in the evaluation section below. Finally, we note that although

it is likely that the best rules selected during bootstrapping will be in the final set, it is by
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no means guaranteed. In some cases there is still insufficient confidence in some of these

rules, even with the additional bootstrapped facts.

6.1.3 Evaluation

Qualitatively, self-supervised rule learning overcomes many of the limitations from the ini-

tial version of SHERLOCK. In many cases the bootstrapped facts provide sufficient support

for rules which previously had only sparse evidence. For example, several variations accept

useful rules that were missing before, such as

Prevents(food, disease) : −Provides(food, nutrient)

∧ Prevents(nutrient, disease);

Additionally, the bootstrapped examples help the system avoid many unsound inference

rules that were accepted previously. For example, the M-Estimate scoring function previ-

ously accepted the unsound rule

IsHeadquarteredIn(company, city) : −IsHeadquarteredIn(company, place)

∧ IsLocatedIn(city, place);

but correctly rejects it using the bootstrapped negative examples.

Unfortunately, in some cases incorrect rules which were previously rejected are ac-

cepted. For example, in some variations the rule

Prevents(food, disease) : −Causes(food, disease);

is learned, whereas it was correctly rejected before.

Qualitatively, the overall trend is that the rules learned tend to be more bimodal. In

the initial version of SHERLOCK there was a mix of correct and incorrect rules learned for
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any particular head relation. With the rule learning modifications, the rules learned for any

particular head relation tend to be either mostly correct or mostly incorrect, depending on

the particular relation and variation of self-supervision.

To better understand the overall cost and benefits of the rule learning modifications, we

evaluate the system using the large-scale question answering task as in Chapter 4. For all

twelve variations of self-supervised rule learning described above we consider up to twenty

iterations of bootstrapping. For each variation we tune the number of iterations NumIter

as well as the rule acceptance threshold τ using the small development set of rules as before.

We then learn rules inferring all typed relations, find all facts inferred by those rules, and

compute the precision/relative recall curve of the results. These results measure the global

performance of the system, but again we note that results on individual relations may vary.

Figures 6.2 - 6.5 show how different variants of self-supervised learning in SHERLOCK-

HOLMES affect the results, as compared to the ‘no self-supervision’ results from the initial

version. For legibility, the results are separated based on whether they make the final rule

acceptance decision based on SHERLOCK’s scoring function (Figure 6.2), the M-Estimate

scoring function (Figure 6.3), or voting based on both SHERLOCK and M-Estimate accept-

ing the rule (Figure 6.4). Figure 6.5 compares the best result of each of the previous three.

Self-supervision using SHERLOCK’s rule scoring function (Figure 6.2) generally in-

creases recall at a small cost to precision. In all cases augmenting the set of positive facts

enables SHERLOCK to identify many correct rules that were rejected before. However, this

increase in recall has a small cost in precision. Qualitatively, many of the incorrect rules

still have sparse support. Although sparsity causes SHERLOCK to overestimate the confi-

dence in the rule, it also means that many of these incorrect rules only generate a handful of

incorrect inferences. Thus, they cause only a small cost in the overall precision. The sim-

ple technique of self-training with SHERLOCK seemed to yield higher precision inferences

without much loss in recall, as compared to the other methods that incorporate M-Estimate.

This was unexpected, since the initial hypothesis was that M-Estimate would provide some

additional information which SHERLOCK was missing before. This behavior emerges from



72

 0

 0.2

 0.4

 0.6

 0.8

 1

0 500000 1000000 1500000 2000000 2500000 3000000

P
re

ci
si

o
n

 o
f 

In
fe

rr
ed

 F
ac

ts

Estimated Number of Correct Facts

Comparison of Self-Training Methods Using Sherlock’s Score

Sherlock - no self-supervision
Sherlock - self-training

Sherlock - co-training
Sherlock - agreement co-boosting

Sherlock - disagreement co-boosting

Random

Figure 6.2: Self-supervision enables SHERLOCK to learn many rules it previously rejected
due to sparsity. These rules infer twice as many facts as the rules learned without self-
supervision, but have slightly lower precision.
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the fact that SHERLOCK relies only on positive data. Since M-Estimate has lower precision,

it introduces more errors into the positive facts, which ultimately cause SHERLOCK to have

false confidence in many incorrect rules.

When using the M-Estimate scoring function (Figure 6.3), the results were surprising.

Self-training and agreement co-boosting both yielded overall lower precision results, and

co-training gave only minor improvements. However, the disagreement co-boosting tech-

nique, which uses SHERLOCK’s scoring function to correct rules that M-Estimate is over-

confident in, led to more precise inferences with only a small cost to recall. This behavior

stems from the fact that most of M-Estimate’s errors come from rules which are unsound,

but which also infer a fairly large number of (mostly incorrect) facts. ILP systems typi-

cally use ‘near-miss’ negative examples to help avoid these rules. The negative examples

identified by self-training, co-training, and agreement co-boosting come from rules which

are obviously bad (according to several scoring functions), but unfortunately these rules are

in some sense far from decision boundary. By using information about where M-Estimate

and SHERLOCK disagree, the disagreement co-boosting technique identifies rules which

are much closer to the decision boundary, leading to better, near-miss negative facts. This

helps improve M-Estimate’s precision overall.

Finally, we hoped to further improve the results by accepting only rules that both M-

Estimate and SHERLOCK both agree on (Figure 6.4). Although this improves the results

over those of only using M-Estimate, in general the results are worse than when only using

SHERLOCK. This poor performance seems to be caused by self-supervision introducing

some correlated errors. For example, when an unsound rule is selected as a good rule

during self-supervision, treating its inferences as positive facts causes both M-Estimate and

SHERLOCK to gain confidence in that rule. As such, when voting on the final decision for

that rule, both scoring functions are likely to be confident in it.

Overall, the best results in terms of area-under-the-curve (AUC) come from self-training

using SHERLOCK’s rule scoring function (Figure 6.5). However, in terms of recall at pre-

cision 0.8, the best results come from disagreement co-boosting using M-Estimate (with
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SHERLOCK’s original, unsupervised method a close second.) These techniques enable the

system to infer an order of magnitude more correct facts than are explicitly extracted,1 and

yields inferences that are 2-4x better than the best case of random guessing.

6.2 Mutual Exclusion Constraints

Another possible way to improve rule learning is to leverage properties of the relations. In

this section we focus on mutual exclusion constraints, as they provide a way of quickly

and compactly specifying a large number of negative examples. The drawback of this

approach is that these constraints must be manually specified. However, for a proof-of-

concept evaluation this is a fairly small amount of supervision, and furthermore there has

been promising research on automatically learning these constraints.

Previous work has demonstrated the utility of such constraints. Quinlan [50] found that

using functionality constraints can improve accuracy and make it faster for an ILP system to

learn rules. The NELL system [8] uses constraints to help guide its information extraction

and rule learning processes. A number of other information extraction systems have found

that using functionality constraints [1] or multiple, mutually exclusive categories [12, 19,

35, 38, 65, 72] improves extraction and avoids semantic drift.

Although typically these constraints are manually specified, there has been some re-

search on learning them automatically. Lin et al. [34] built a system for automatically

identifying functional relations from Web text, Ritter et al. [53] designed a method for au-

tomatically detecting contradictions in Web text, and McIntosh [38] automatically learned

mutual exclusion categories for information extraction. We perform a proof-of-concept

study by manually specifying mutual exclusion constraints in this work, but we would ide-

ally use techniques such as those listed above to automatically discover the constraints.

We consider the following properties providing mutual exclusion:

Functional Relations. In a functional relation each first argument appears with at most

1For the relations used in our tests
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one distinct second argument (or vise-versa); all other values are illegal. Formally, we

can express this by the constraint:

∀x, y1, y2, R(x, y1) ∧ ¬Equals(y1, y2)⇒ ¬R(x, y2)

(or a similar constraint for a relation that is functional in the second argument).

Antonymy. Relations such as Causes(x, y) and Prevents(x, y) are antonyms of each

other. As such, the facts from one of those relations can be used as negative examples of

the other. Formally, we can express this by the constraint:

∀x, y, R1(x, y)⇒ ¬R2(x, y)

Anti-symmetry. Some relations have a directional property where knowing that the re-

lation occurs from A to B means that the relation does not occur in the other direction

as well (e.g., if comany A acquires company B, then company B does not also acquire

company A). Formally, we can express this by the constraint:

∀x, y, R(x, y)⇒ ¬R(y, x)

Although these properties seem clear logically, there are a number of issues which arise

when using these properties on facts extracted from the Web. Whether or not these prop-

erties hold depend on context, which is often missing in the simple representation of facts

extracted by TEXTRUNNER. For example, the relation IsBasedIn(company, location)

is apparently functional (e.g., a company is based in only one location). However, the facts

IsBasedIn(Amazon, Seattle) and IsBasedIn(Amazon, Washington) are not mutually

exclusive. Furthermore, even with the appropriate type restrictions (e.g.,

IsBasedIn(company, city) ), many apparently functional relations have unextracted tem-

poral context. For example, Boeing was based in Seattle until 2001, when they moved com-
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pany headquarters to Chicago. TEXTRUNNER contains both IsBasedIn(Boeing, Seattle)

and IsBasedIn(Boeing, Chicago). Similarly, many antonym relations are only mutually

exclusive in a particular temporal context which is typically not extracted. For example,

Beat(team1, team2) and LostTo(team1, team2) are antonyms, but only if we know the

particular game event that is being discussed. Since most rivals have defeated and lost

to each other at some point, both facts are likely to be extracted. Thus, without knowing

which game is being discussed, it is impossible to say whether the two facts are mutually

exclusive.

6.2.1 Evaluating the Utility of Mutual Exclusion Constraints

To study how these mutual exclusion constraints affect rule learning, we first need to iden-

tify a set of relations where the constraints hold. For this experiment we sampled 250 typed

relations at random from the 10,000 identified by SHERLOCK, and manually identified the

mutual exclusion constraints, if any, that applied to each sampled relation. Our sample

contained 51 relations that had at least one applicable mutual exclusion constraint, and

16 relations with multiple mutual exclusion constraints (e.g., CapitalOf(city, state) is

both functional and anti-symmetric.) In our test set, 8 relations have antonyms, 24 are anti-

symmetric, and 35 are functional in either the first or the second argument. Additionally,

we found 36 relations in our sample that were mutual exclusive within a particular temporal

context, but we eliminated these as the extractions do not contain chronologic information.

For relations identified as having antonymy constraints, we manually identified their

antonyms within our corpus. Additionally, to overcome sparsity issues in the anti-symmetric

relations, we augmented them with a small number of synonyms. These synonyms were

only used to generate anti-symmetric, negative examples for rule learning, and were not

used to augment the set of positive examples.

To examine how mutual exclusion constraints affect the quality of the learned rules, we

use the same question-answering task as in prior experiments. SHERLOCK’s rule scoring

function (Section 3.5) was designed to learn rules from only positive examples, so it can not
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make use of the negative examples implied by the mutual exclusion constraints. We instead

provide these negative examples to the M-Estimate scoring function [16], as it has been

shown to be effective when learning rules with positive and negative training examples.

We compare the overall precision and relative-recall of SHERLOCK-HOLMES when

inferring results for the 51 test relations, using the following rule-learning variants: (1) a

no-inference baseline, (2) inference using the rules learned by SHERLOCK’s rule scoring

function, (3) inference using the rules learned by the M-Estimate scoring function [16], with

negative examples generated randomly as before (Section 4.2), and (4) inference using the

rules learned by the M-Estimate scoring function, but with negative examples generated

from the mutual exclusion constraints.

We found that the mutual exclusion constraints were generating many false negatives,

based on extraction errors, hyperbolic statements, or simply false information. These false

negatives lowered the m-estimate scores for almost all rules when using mutual exclusion

constraints. To counteract this, we lowered the rule acceptance threshold and tuned it with

a small development set as before.2

Figure 6.6 shows how the mutual exclusion constraints affect SHERLOCK-HOLMES’s

results. As is apparent, rules learned accounting for the mutual exclusion constraints are

more accurate than rules learned without them, leading to both higher precision and higher

relative-recalls of facts for the 51 test relations.

The negative examples provided by the mutual exclusion constraints help eliminate

many rules which are unsound, but which have a decent amount of support in the corpus.

For example, without mutual exclusion information, the following rules are learned:

2We examined re-tuning the thresholds from the other scoring methods as well, but found that doing so
decreased their performance on this dataset. As such, we use the thresholds found in prior experiments.
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Figure 6.6: Mutual exclusion constraints provide a good set of negative examples to the
M-Estimate rule scoring function. These negative examples help the system avoid many
unsound rules over 51 test relations, leading to higher precision than either M-Estimate
using randomly-generated pseudo-negatives or SHERLOCK’s rule scoring function.

IsBasedIn(company, town) : −IsBasedIn(company, place)

∧ IsLocatedIn(town, place);

Cause(factor, disorder) : −CanLeadTo(factor, complication)

∧ LeadsTo(disorder, complication);

By themselves, these rules infer over a thousand facts each, most of which are incorrect.

However, with a functionality constraint on IsBasedIn(company, town), the system can

easily reject the first rule. Similarly, anti-symmetry constraints on Cause(factor, disorder)

(i.e., if x causes y, then y does not cause x) helps the system reject the second rule. These

unsound rules, and many similar ones, are responsible for the substantial drop in precision

at a relative recall of about 30,000 facts. Avoiding these rules leads to higher precision
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inferences with little or no loss in relative recall.

However, noise and ambiguity cause the system to incorrectly reject some useful rules.

For example, the system rejects the rule

IsBasedIn(company, town) : −IsHeadquarteredIn(company, town)

due to extraction errors, temporal ambiguity, and unresolved synonyms (e.g.we may ob-

serve that a company is headquartered in either ‘New York’ (the city) or ‘New York City’.)

These issues cause a large number of apparent, but incorrect, violations of the functionality

constraint.

6.2.2 Analysis of Mutual Exclusion Constraints

The previous section explored the effects of using all three types of mutual exclusion con-

straints together. To better understand the behavior of the system, we now explore how the

mutual exclusion constraints perform individually.

For each type of mutual exclusion constraint, we learn rules for the relations in the test

set with that constraint, and use those rules to infer new facts as before. We learn rules using

the M-Estimate rule scoring function, either using randomly generated psuedo-negatives

or negatives derived using only the mutual exclusion constraint under consideration. We

compare the precision and relative recall of the inferred facts, as before. The results for

functional relations, antonymy, and anti-symmetry constraints are shown in Figures 6.7,

6.8, and 6.9, respectively.

We first consider how functionality information affects the quality of the rules learned

by the system. The precision and relative recall of the inferred facts are shown Figure 6.7.

For the functional relations in our test set, we accept far fewer rules when using function-

ality constraints than when not using this information. This causes the system to only infer

one fourth of the results overall.

This behavior is primarily due to the strict nature of the functionality constraint. A
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Figure 6.7: Functionality constraints are a powerful way of generating negative examples,
allowing the system to reject a large number of rules. However, these constraints are very
sensitive to noise and ambiguity, unfortunately causing many useful rules to be rejected.

small amount of noise or word sense ambiguity can cause a large number of false nega-

tives. For example, the relation Acquire(company1, company2) is functional in the second

argument, since a company is typically acquired by at most one other company. However,

on the Web a large number of people speculate that Google, Microsoft, Apple, Nintendo,

Sony, and Disney will buy each other. These incorrect facts lead to many violations of

the functionality constraints, which in turn causes the system to incorrectly reject the rule:

Acquire(company1, company2):-Buy(company1, company2). Similarly, functionality vio-

lations stemming from extraction errors such as IsLocatedIn(Washington, King County)

(instead of ‘Seattle, Washington’) and ambiguities between cities (e.g., Cambridge, Eng-

land vs. Cambridge, MA) cause the system to reject all rules that are ‘transitive-through’ a

location.

Figure 6.8 shows how antonym constraints affect the rules learned for the 8 test rela-

tions. Somewhat surprisingly, rules learned with antonym constraints lead to significantly
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Figure 6.8: Using antonym constraints leads to rules which infer many additional facts,
but do so at low precision (precision < 0.5). Most of these facts are inferred for a single
head relation, and stem from sparse negative examples for this relation combined with a
lower rule acceptance threshold. Including anti-symmetry constraints eliminates most of
the unsound rules generating these inferences.

more inference than rules learned using only psuedo-negatives. The majority of the new re-

sults results are inferred for a single head relation: CanResultIn(disorder, effect). In

our dataset the antonyms of this relation (e.g., Prevents(disorder, effect) are sparse,

and so only lead to a small number of negative examples. This, combined with a lower

rule acceptance threshold, causes the system to learn many unsound rules that were re-

jected previously due to insufficient support. Fortunately, this problematic relation is also

anti-symmetric. Including the anti-symmetry constraints causes the system to reject these

unsound rules.

Finally, Figure 6.9 examines how anti-symmetry constraints influence the results. These

constraints have a clear benefit, leading to higher precision inferences at all levels of relative

recall. Furthermore, the rules in this case lead to 2-3 times as many facts than were inferred

for the functional relations or the antonym relations.
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Figure 6.9: Antisymmetry constraints help the system avoid many unsound or incorrect
rules, leading to higher precision inferences for all relations in the test set.

Anti-symmetry constraints capture the directionality of the concepts of causation and

containment. This helps the system avoid many bad rules such as:

Cause(factor, disorder) : −Cause(disorder, factor);

IsBasedIn(company, town) : −IsBasedIn(company, place)

∧ IsLocatedIn(town, place);

At the same time, anti-symmetry constraints are not as strict as the functionality con-

straints. As such, they are less sensitive to noise and are less likely to reject correct rules

due to a small number of extraction errors or ambiguous words.

Overall, the anti-symmetry constraints have the largest influence on the results. Func-

tionality constraints and antonymy constraints are helpful for some relations, but tend to be

much more sensitive to noise and ambiguity. Fortunately, many of the problematic func-
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tional or antonym relations are also anti-symmetric, allowing a system using all three types

of mutual exclusion information (as in Section 6.2.1) to outperform a system using only a

single type.
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Chapter 7

CONCLUSIONS AND FUTURE WORK

The Web has become a vast repository of knowledge, containing information on nearly

any topic imaginable. However, when accessing that knowledge it is typically treated as a

set of independent pages, sentences, or facts. Systems seeking to support more complex

queries that infer information not explicitly stated on the Web must overcome several chal-

lenges. Information on the Web is open-domain (there are an unbounded number of objects

and relations described on the Web), noisy (the Web contains many false statements), am-

biguous (referents are typically not disambiguated), and radically incomplete (many facts

are never explicitly stated). Furthermore, to be useful a system must be able to combine

information gathered across potentially billions of pages, and so its techniques must be

scalable.

The contributions of this dissertation provide solutions which overcome these chal-

lenges. We built and analyzed the SHERLOCK-HOLMES system, one of the first unsu-

pervised systems able to learn first-order, Horn-clause inference rules from open-domain

Web text. SHERLOCK-HOLMES does so by automatically identifying a relatively clean and

well-defined subset of the facts extracted from the Web by TEXTRUNNER, and then evalu-

ating inference rules using a scoring function designed to handle the noise and missing data

prevalent in facts extracted from the Web. The learned rules are useful, allowing the system

to infer three times as many high-quality facts (precision ≥ 0.8) as are in the original sub-

set, and more than five times as many facts overall (albeit at lower precision, but still more

than four times better than random guessing).

To identify correct rules, we defined a novel rule scoring function based on statistical

relevance. We showed that it is effective even when using only a noisy and radically incom-
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plete collection of facts extracted from the Web. Over a wide variety of relations extracted

from the Web, the rules it learns lead to more accurate inferences than previous rule scoring

functions used in the ILP literature.

This dissertation has also defined the approximately pseudo-functional property (APF),

which characterizes the long-tailed behavior of relations extracted from the Web. We

demonstrated that this property is common within the facts extracted by TEXTRUNNER,

and showed theoretically and empirically that it guarantees SHERLOCK-HOLMES’s run-

time will scale linearly in the size of the corpus and in the number of relations considered.

Thus, SHERLOCK-HOLMES, and other systems using similar techniques, should be able to

scale to the entire Web.

Finally, we examined extensions to SHERLOCK-HOLMES to further improve its results.

Using techniques from self-supervised learning, we demonstrated that using the best and

worst rules to bootstrap additional positive and negative examples allows SHERLOCK to

discover many useful rules that were rejected before due to data sparsity. The additional

rules allow SHERLOCK-HOLMES to infer twice as many facts as before, but with a small

decrease in precision. Additionally, we found that, for the subset of relations where it is ap-

plicable, adding a small amount of supervision in the form of mutual exclusion constraints

can significantly increase SHERLOCK-HOLMES’s precision.

SHERLOCK-HOLMES opens several directions for future work. An important direc-

tion is to consider interactions between multiple rules (i.e., learning and making inferences

at depth greater than one.) Learning rule weights and computing probabilities within the

Markov logic network becomes expensive in this case, as we no longer can do so in closed

form. Additionally, noise becomes a significant challenge with deeper inference. Currently,

a single extraction error or false statement may only lead to a small number of incorrect con-

clusions. However, deriving additional facts based on those incorrect conclusions may lead

to significantly more incorrect results. Addressing these issues is a significant challenge.

A second direction for future work is to include a small amount of supervision into

the system. We demonstrated that mutual exclusion constraints can be useful, but they
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do not apply to all relations. Instead, it may be useful to have a person validate a subset

of the learned rules, either the best rules or the ones the system is most unsure about.

Techniques from active learning and crowdsourcing may make this a feasible option. The

results of such research would not only explore the question of how this would affect the

system’s results, but also what the most cost-effective ways of gathering information from

crowdsourced workers are.

Another direction for future work would be to examine how SHERLOCK-HOLMES per-

forms on other datasets. The statistical relevance scoring function is useful on facts ex-

tracted from the Web by TEXTRUNNER, but would it be useful on other, cleaner open-

domain datasets such as Freebase1 or Wikipedia? Finally, studying different methods

for identifying classes, instances, typed-relations, and fact extraction should help extend

SHERLOCK-HOLMES to an even broader collection of facts.

The SHERLOCK-HOLMES system presented in this dissertation shows that it is both

possible and useful to infer new facts from information on the Web. This result has a range

of potential uses, from more advanced question-answering systems to enabling machines

better reasoning capabilities over information in the world.

1http://www.freebase.com/

http://www.freebase.com/
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Appendix A

DOWNLOADABLE RESOURCES

We have made the following data available at:

http://www.cs.washington.edu/research/sherlock-hornclauses/

• The complete list of 156 well defined classes used by SHERLOCK (Section 3.2).

• The 1.1M (class, instance) pairs identified by SHERLOCK (Section 3.2). SHERLOCK

uses these to identify interesting typed-relations.

• The complete list of 10,672 typed-relations found by SHERLOCK (Section 3.3).

SHERLOCK learns rules over these typed-relations.

• The complete list of 30,912 rules accepted by SHERLOCK (Having statistical rele-

vance and statistical significance above thresholds, Section 3.5).

• The complete list of 4.9M rules that have the minimum support (s = 2) in the corpus.

SHERLOCK’s rules are a subset of these rules.

The rules files include the statistical relevance, statistical significance, M-Estimate, and

LIME scores, computed over the entire corpus. They also contain the number of facts

observed in the head relation, inferred by the rule body, and the overlap (number of facts

both observed and inferred).

Unfortunately, due to licensing restrictions we are unable to distribute the raw facts.

http://www.cs.washington.edu/research/sherlock-hornclauses/
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Appendix B

CLASSES IDENTIFIED BY SHERLOCK

acid complication fish nutrient state
activity consultant food organ store
agency corporation fruit organisation structure
agent country game organization student
animal course gas partner study
application crop graduate piece subsidiary
approach design guide place substance
area destination herb plant supplier
art development hormone platform system
artist device hotel player teacher
association director house practice team
attraction directory illness procedure technology
author disease industry process therapy
award dish infection product time
band disorder ingredient professor tool
bird distributor inhibitor project town
blend division institution protein treatment
body drug instrument provider tree
book editor island publication university
browser effect leader region use
building effort library resort utility
business employer location risk vegetable
card engine magazine room village
cause equipment man school vitamin
center event manager selection web site
charity expert manufacturer service website
chemical facility material site work
city factor measure solution writer
client family medication source
club field member speaker
community film metal specialist
company firm mineral sport
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Appendix C

EXAMPLE RELATIONS WITH LARGE APF DEGREE

Argument 1 Argument 2
Relation APF Degree 2-way APF Degree APF Degree 2-way APF Degree
be free of 50 15 7250 60
think of 5183 60 66 17
create in 3625 65 20 8
relate to 3542 47 33 12
play 47 11 2181 130
suggest that 2087 169 99 23
pose 31 12 1825 106
single to 5 4 1824 145
stress 86 20 1542 35
believe that 1500 71 130 34
be approve for 49 12 1485 26
change on 1472 33 18 5
be grateful to 1227 25 26 8
come into 65 19 1150 118
find that 1101 103 221 25
can be find on 1034 43 474 36
be support in 14 6 1015 21
be dedicate to 915 82 105 27
be shoot to 3 2 853 58
will take 126 25 792 85
will do 71 18 773 86
be place upon 768 24 8 4
lie in 732 72 163 27
ground out to 118 23 705 117
will be hold on 228 37 703 63

Table C.1: Relations with high APF degrees contain a few of frequently appearing, but am-
biguous arguments (e.g., IsFreeOf(x, Disease), ThinkOf(People, y)). These problem-
atic extractions would be eliminated by SHERLOCK as being too ambiguous (Section 3.2).
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