
Probabilistic Theorem Proving

Vibhav Gogate and Pedro Domingos
University of Washington

Computer Science & Engineering
Seattle, WA 98195, USA

{vgogate,pedrod}@cs.washington.edu

Abstract

Many representation schemes combining first-
order logic and probability have been proposed
in recent years. Progress in unifying logical and
probabilistic inference has been slower. Exist-
ing methods are mainly variants of lifted vari-
able elimination and belief propagation, neither
of which take logical structure into account. We
propose the first method that has the full power
of both graphical model inference and first-order
theorem proving (in finite domains with Herbrand
interpretations). We first define probabilistic the-
orem proving, their generalization, as the prob-
lem of computing the probability of a logical for-
mula given the probabilities or weights of a set of
formulas. We then show how this can be reduced
to the problem of lifted weighted model count-
ing, and develop an efficient algorithm for the lat-
ter. We prove the correctness of this algorithm,
investigate its properties, and show how it gen-
eralizes previous approaches. Experiments show
that it greatly outperforms lifted variable elimina-
tion when logical structure is present. Finally, we
propose an algorithm for approximate probabilis-
tic theorem proving, and show that it can greatly
outperform lifted belief propagation.

1 INTRODUCTION

Unifying first-order logic and probability enables uncertain
reasoning over domains with complex relational structure,
and is a long-standing goal of AI. Proposals go back to
at least Nilsson [27], with substantial progress within the
UAI community starting in the 1990s (e.g., [1, 19, 40]), and
added impetus from the new field of statistical relational
learning starting in the 2000s [16]. Many well-developed
representations now exist (e.g., [9, 14, 23]), but the state
of inference is less advanced. For the most part, inference
is still carried out by converting models to propositional
form (e.g., Bayesian networks) and then applying standard
propositional algorithms. This typically incurs an exponen-

tial blowup in the time and space cost of inference, and for-
goes one of the chief attractions of first-order logic: the
ability to perform lifted inference, i.e., reason over large
domains in time independent of the number of objects they
contain, using techniques like resolution theorem proving
[32].

In recent years, progress in lifted probabilistic inference has
picked up. An algorithm for lifted variable elimination was
proposed by Poole [29] and extended by de Salvo Braz [10]
and others. Lifted belief propagation was introduced by
Singla and Domingos [38] and extended by others (e.g.,
[21, 36]). These algorithms often yield impressive effi-
ciency gains compared to propositionalization, but still fall
well short of the capabilities of first-order theorem proving,
because they ignore logical structure, treating potentials as
black boxes. This paper proposes the first full-blown prob-
abilistic theorem prover, capable of exploiting both lifting
and logical structure, and having standard theorem proving
and standard graphical model inference as special cases.

Our solution is obtained by reducing probabilistic theorem
proving (PTP) to lifted weighted model counting. We first
do the corresponding reduction for the propositional case,
extending previous work by Darwiche [6] and Sang et al.
[34] (see also [4]). We then lift this approach to the first-
order level, and refine it in several ways. We show that
our algorithm can be exponentially more efficient than first-
order variable elimination, and is never less efficient (up to
constants). For domains where exact inference is not fea-
sible, we propose a sampling-based approximate version of
our algorithm. Finally, we report experiments in which PTP
greatly outperforms first-order variable elimination and be-
lief propagation, and discuss future research directions.

2 LOGIC AND THEOREM PROVING

We begin with a brief review of propositional logic, first-
order logic and theorem proving [15]. The simplest for-
mulas in propositional logic are atoms: individual sym-
bols representing propositions that may be true of false in a
given world. More complex formulas are recursively built
up from atoms and the logical connectives ¬ (negation),
∧ (conjunction), ∨ (disjunction), ⇒ (implication) and ⇔

Algorithm 1 TP(KB K, query Q)
KQ ← K ∪ {¬Q}
return ¬SAT(CNF(KQ))

(equivalence). For example, ¬A ∨ (B ∧ C) is true iff A is
false or B and C are true. A knowledge base (KB) is a set of
logical formulas. The fundamental problem in logic is de-
termining entailment, and algorithms that do this are called
theorem provers. A knowledge base K entails a query for-
mula Q iff Q is true in all worlds where all the formulas
in K are true, a world being an assignment of truth val-
ues to all atoms. A world is a model of a KB iff the KB
is true in it. Theorem provers typically first convert K and
Q to conjunctive normal form (CNF). A CNF formula is
a conjunction of clauses, each of which is a disjunction of
literals, each of which is an atom or its negation. For ex-
ample, the CNF of ¬A ∨ (B ∧ C) is (¬A ∨ B) ∧ (¬A ∨ C). A
unit clause consists of a single literal. Entailment can then
be computed by adding ¬Q to K and determining whether
the resulting KB KQ is satisfiable, i.e., whether there exists
a world where all clauses in KQ are true. If not, KQ is un-
satisfiable, and K entails Q. Algorithm 1 shows this basic
theorem proving schema. CNF(K) converts K to CNF, and
SAT(C) returns True if C is satisfiable and False otherwise.

The earliest theorem prover is the Davis-Putnam algorithm
(henceforth called DP) [8]. It makes use of the resolution
rule: if a KB contains the clauses A1 ∨ . . . ∨ An and B1 ∨
. . .∨Bm, where the a’s and b’s represent literals, and some
literal Ai is the negation of some literal Bj , then the clause
A1 ∨ . . . ∨ Ai−1 ∨ Ai+1 ∨ . . . ∨ An ∨ B1 ∨ . . . ∨ Bj−1 ∨
Bj+1 ∨ . . . ∨ Bm can be added to the KB. For each atom
A in the KB, DP resolves every pair of clauses C1, C2 in
KB such that C1 contains A and C2 contains ¬A, adds the
result to the KB, and deletes C1 and C2. If at some point
the empty clause is derived, the KB is unsatisfiable, and the
query formula (previously negated and added to the KB) is
therefore proven. As Dechter [11] points out, DP is in fact
just the variable elimination algorithm for the special case
of 0-1 potentials.

Modern propositional theorem provers use the DPLL algo-
rithm [7], a variant of DP that replaces the elimination step
with a splitting step: instead of eliminating all clauses con-
taining the chosen atom A, resolve all clauses in the KB
with A, simplify and recurse, and do the same with ¬A. If
both recursions fail, the KB is unsatisfiable. DPLL has lin-
ear space complexity, compared to exponential for Davis-
Putnam. DPLL is the basis of the algorithms in this paper.

First-order logic inherits all the features of propositional
logic, and in addition allows atoms to have internal struc-
ture. An atom is now a predicate symbol, representing a
relation in the domain of interest, followed by a parenthe-
sized list of variables and/or constants, representing ob-
jects. For example, Friends(Anna, x) is an atom. A
ground atom has only constants as arguments. First-order
logic has two additional connectives, ∀ (universal quan-

tification) and ∃ (existential quantification). For example,
∀x Friends(Anna, x) means that Anna is friends with ev-
eryone, and ∃x Friends(Anna, x) means that Anna has at
least one friend. In this paper, we assume that domains are
finite (and therefore function-free) and that there is a one-
to-one mapping between constants and objects in the do-
main (Herbrand interpretations).

As long as the domain is finite, first-order theorem proving
can be carried out by propositionalization: creating atoms
from all possible combinations of predicates and constants,
and applying a propositional theorem prover. However, this
is potentially very inefficient. A more sophisticated alterna-
tive is first-order resolution [32], which proceeds by resolv-
ing pairs of clauses and adding the result to the KB until
the empty clause is derived. Two first-order clauses can be
resolved if they contain complementary literals that unify,
i.e., there is a substitution of variables by constants or other
variables that makes the two literals identical up to the nega-
tion sign. Conversion to CNF is carried out as before, with
the additional step of removing all existential quantifiers by
a process called skolemization.

First-order logic allows knowledge to be expressed vastly
more concisely than propositional logic. For example, the
rules of chess can be stated in a few pages in first-order
logic, but require hundreds of thousands in propositional
logic. Probabilistic logical languages extend this power to
uncertain domains. The goal of this paper is to similarly
extend the power of first-order theorem proving.

3 PROBLEM DEFINITION

Following Nilsson [27], we define probabilistic theorem
proving as the problem of determining the probability of an
arbitrary query formulaQ given a set of logical formulas Fi

and their probabilities P (Fi). For the problem to be well
defined, the probabilities must be consistent, and Nilsson
[27] provides a method for verifying consistency. Probabil-
ities estimated by maximum likelihood from an observed
world are guaranteed to be consistent [13]. In general, a set
of formula probabilities does not specify a complete joint
distribution over the atoms appearing in them, but one can
be obtained by making the maximum entropy assumption:
the distribution contains no information beyond that spec-
ified by the formula probabilities [27]. Finding the maxi-
mum entropy distribution given a set of formula probabil-
ities is equivalent to learning a maximum-likelihood log-
linear model whose features are the formulas; many algo-
rithms for this purpose are available (iterative scaling, gra-
dient descent, etc.) [13].

We call a set of formulas and their probabilities together
with the maximum entropy assumption a probabilistic
knowledge base (PKB). Equivalently, a PKB can be directly
defined as a log-linear model with the formulas as features
and the corresponding weights or potential values. Poten-
tials are the most convenient form, since they allow deter-
minism (0-1 probabilities) without recourse to infinity. If x

LWSAT

LMC

MC

CountingWeig
htedL

if
te

d

PTP = LWMC

TP1

TP = SAT0

MPE = WSAT PI = WMC

Figure 1: Inference problems addressed in this paper. TPo and
TP1 is propositional and first-order theorem proving respectively,
PI is probabilistic inference (computing marginals), MPE is com-
puting the most probable explanation, SAT is satisfiability, MC is
model counting, W is weighted and L is lifted. A = B means A
can be reduced to B.

is a world and Φi(x) is the potential corresponding to for-
mula Fi, by convention (and without loss of generality) we
let Φi(x) = 1 if Fi is true, and Φi(x) = φi ≥ 0 if the for-
mula is false. Hard formulas have φi = 0 and soft formu-
las have φi > 0. In order to compactly subsume standard
probabilistic models, we interpret a universally quantified
formula as a set of features, one for each grounding of the
formula, as in Markov logic [14]. A PKB {(Fi, φi)} thus
represents the joint distribution

P (X=x) =
1

Z

∏
i

φ
ni(x)
i , (1)

where ni(x) is the number of false groundings of Fi in x,
and Z is a normalization constant (the partition function).
We can now define PTP succinctly as follows:

Probabilistic theorem proving (PTP)
Input: Probabilistic KB K and query formula Q
Output: P (Q|K)

If all formulas are hard, a PKB reduces to a standard log-
ical KB. Determining whether a KB K logically entails a
queryQ is equivalent to determining whether P (Q|K) = 1
[14]. Graphical models are easily converted into equiva-
lent PKBs [4]. Conditioning on evidence is done by adding
the corresponding hard ground atoms to the PKB, and the
conditional marginal of an atom is computed by issuing the
atom as the query. Thus PTP has both logical theorem prov-
ing and inference in graphical models as special cases. In
this paper we solve PTP by reducing it to lifted weighted
model counting. Model counting is the problem of deter-
mining the number of worlds that satisfy a KB. Weighted
model counting can be defined as follows [4]. Assign a
weight to each literal, and let the weight of a world be the
product of the weights of the literals that are true in it. Then
weighted model counting is the problem of determining the
sum of the weights of the worlds that satisfy a KB:

Weighted model counting (WMC)
Input: CNF C and set of literal weights W
Output: Sum of weights of worlds that satisfy C

Figure 1 depicts graphically the set of inference problems

Algorithm 2 WCNF(PKB K)
for all (Fi, φi) ∈ K s.t. φi > 0 do
K ← K ∪ {(Fi⇔Ai, 0)} \ {(Fi, φi)}

C ← CNF(K)

for all ¬Ai literals do W¬Ai ← φi

for all other literals L do WL ← 1

return (C,W)

Algorithm 3 PTP(PKB K, query Q)
KQ ← K ∪ {(Q, 0)}
return WMC(WCNF(KQ))/WMC(WCNF(K))

addressed by this paper. Generality increases in the di-
rection of the arrows. We first propose an algorithm for
propositional weighted model counting and then lift it to
first-order. The resulting algorithm is applicable to all the
problems in the diagram. (Weighted SAT/MPE inference
requires replacing sums with maxes and an additional trace-
back step, but we do not pursue this here; cf. Park [28], and
de Salvo Braz [10] on the lifted case.)

4 PROPOSITIONAL CASE

This section generalizes the Bayesian network inference
techniques in Darwiche [5] and Sang et al. [34] to arbi-
trary propositional PKBs, evidence, and query formulas.
Although this is of value in its own right, its main purpose
is to lay the groundwork for the first-order case.

The probability of a formula is the sum of the probabilities
of the worlds that satisfy it. Thus to compute the probability
of a formula Q given a PKB K it suffices to compute the
partition function of K with and without Q added as a hard
formula:

P (Q|K) =

∑
x 1Q(x)

∏
i Φi(x)

Z(K)
=
Z(K ∪ {(Q, 0)})

Z(K)
(2)

where 1Q(x) is the indicator function (1 if Q is true in x
and 0 otherwise).

In turn, the computation of partition functions can be re-
duced to weighted model counting using the procedure in
Algorithm 2. This replaces each soft formula Fi in K by
a corresponding hard formula Fi⇔Ai, where Ai is a new
atom, and assigns to every ¬Ai literal a weight of φi (the
value of the potential Φi when Fi is false).
Theorem 1 Z(K) = WMC(WCNF(K)).

Proof. If a world violates any of the hard clauses in K or
any of the Fi⇔Ai equivalences, it does not satisfyC and is
therefore not counted. The weight of each remaining world
x is the product of the weights of the literals that are true in
x. By the Fi⇔Ai equivalences and the weights assigned
by WCNF(K), this is

∏
i Φi(x). (Recall that Φi(x) = 1 if

Fi is true in x and Φi(x) = φi otherwise.) Thus x’s weight
is the unnormalized probability of x under K. Summing
these yields the partition function Z(K). 2

Equation 2 and Theorem 1 lead to Algorithm 3 for PTP.

Algorithm 4 WMC(CNF C, weights W)
// Base case
if all clauses in C are satisfied then

return
∏

A∈A(C)
(WA +W¬A)

if C has an empty unsatisfied clause then return 0
// Decomposition step
if C can be partitioned into CNFs C1, . . . , Ck sharing no

atoms then
return

∏k

i=1
WMC(Ci,W)

// Splitting step
Choose an atom A

return WAWMC(C|A; W) +W¬AWMC(C|¬A; W)

(Compare with Algorithm 1.) WMC(C,W) can be any
weighted model counting algorithm [4]. Most model coun-
ters are variations of Relsat, itself an extension of DPLL
[3]. Relsat splits on atoms until the CNF is decomposed
into sub-CNFs sharing no atoms, and recurses on each sub-
CNF. This decomposition is crucial to the efficiency of the
algorithm. In this paper we use a weighted version of Rel-
sat, shown in Algorithm 4. A(C) is the set of atoms that
appear in C. C|A denotes the CNF obtained by resolving
each clause in C with A, which results in removing ¬A
from all clauses it appears in, and setting to Satisfied all
clauses in whichA is true. Notice that, unlike in DPLL, sat-
isfied clauses cannot simply be deleted, because we need to
keep track of which atoms they are over for model counting
purposes. However, they can be ignored in the decomposi-
tion step, since they introduce no dependencies. The atom
to split on in the splitting step can be chosen using various
heuristics [35].
Theorem 2 Algorithm WMC(C,W) correctly computes the
weighted model count of CNF C under literal weights W .
Proof sketch. If all clauses in C are satisfied, all assign-
ments to the atoms in C satisfy it, and the corresponding
total weight is

∏
A∈A(C)(WA +W¬A). If C has an empty

unsatisfied clause, it is unsatisfiable given the truth assign-
ment so far, and the corresponding weighted count is 0. If
two CNFs share no atoms, the WMC of their conjunction is
the product of the WMCs of the individual CNFs. Splitting
on an atom produces two disjoint sets of worlds, and the to-
tal WMC is therefore the sum of the WMCs of the two sets,
weighted by the corresponding literal’s weight. 2

5 FIRST-ORDER CASE

We now lift PTP to the first-order level. We consider first
the case of PKBs without existential quantifiers. Algo-
rithms 2 and 3 remain essentially unchanged, except that
formulas, literals and CNF conversion are now first-order.
In particular, for Theorem 1 to remain true, each new atom
Ai in Algorithm 2 must now consist of a new predicate
symbol followed by a parenthesized list of the variables and
constants in the corresponding formula Fi. The proof of the
first-order version of the theorem then follows by proposi-
tionalization. Lifting Algorithm 4 is the focus of the rest of
this section.

Algorithm 5 LWMC(CNF C, substs. S, weights W)
// Lifted base case
if all clauses in C are satisfied then

return
∏

A∈A(C)
(WA +W¬A)nA(S)

if C has an empty unsatisfied clause then return 0
// Lifted decomposition step
if there exists a lifted decomposition {C1,1, . . . , C1,m1 ,

. . . , Ck,1, . . . , Ck,mk} of C under S then
return

∏k

i=1
[LWMC(Ci,1, S,W)]mi

// Lifted splitting step
Choose an atom A

Let {Σ(1)
A,S , . . . ,Σ

(l)
A,S} be a lifted split of A for C under S

return
∑l

i=1
niW

ti
A W

fi
¬ALWMC(C|σj ; Sj ,W)

where ni, ti, fi, σj and Sj are as in Proposition 3

We begin with some necessary definitions. A substitution
constraint is an expression of the form x=y or x 6=y, where
x is a variable and y is either a variable or a constant. (Much
richer substitution constraint languages are possible, but we
adopt the simplest one that allows PTP to subsume both
standard function-free theorem proving and first-order vari-
able elimination.) Two literals are unifiable under a set of
substitution constraints S if there exists at least one ground
literal consistent with S that is an instance of both, up to the
negation sign. A (C, S) pair, where C is a first-order CNF
whose variables have been standardized apart and S is a set
of substitution constraints, represents the ground CNF ob-
tained by replacing each clause in C with the conjunction
of its groundings that are consistent with the constraints in
S. For example, using upper case for constants and lower
case for variables, if C = R(B, C) ∧ (¬R(x, y) ∨ S(y, z))
and S = {x=y, z 6=B}, (C, S) represents the ground CNF
R(B, C)∧(¬R(B, B)∨S(B, C))∧(¬R(C, C)∨S(C, C)). Clauses
with equality substitution constraints can be abbreviated in
the obvious way (e.g., T(x, y, z) with x = y and z = C can
be abbreviated as T(x, x, C)).

We lift the base case, decomposition step, and splitting step
of Algorithm 4 in turn. The result is shown in Algorithm 5.
In addition to the first-order CNF C and weights on first-
order literals W , LWMC takes as an argument an initially
empty set of substitution constraints S which, similar to
logical theorem proving, is extended along each branch of
the inference as the algorithm progresses.

5.1 LIFTING THE BASE CASE

The base case changes only by raising each first-order atom
A’s sum of weights to nA(S), the number of groundings of
A compatible with the constraints in S. This is necessary
and sufficient since each atom A has nA(S) groundings,
and all ground atoms are independent because the CNF is
satisfied irrespective of their truth values. Note that nA(S)
is the number of groundings ofA consistent with S that can
be formed using all the constants in the original CNF.

5.2 LIFTING THE DECOMPOSITION STEP

Clearly, if C can be decomposed into two or more CNFs
such that no two CNFs share any unifiable literals, a lifted
decomposition of C is possible (i.e., a decomposition of C
into first-order CNFs on which LWMC can be called re-
cursively). But the symmetry of the first-order represen-
tation can be further exploited. For example, if the CNF
C can be decomposed into k CNFs C1, . . . , Ck sharing no
unifiable literals and such that for all i, j, Ci is identical to
Cj up to a renaming of the variables and constants,1 then
LWMC(C) = [LWMC(C1)]k. We formalize these condi-
tions below.
Definition 1 The set of first-order CNFs {C1,1, . . . ,
C1,m1 , . . . , Ck,1, . . . , Ck,mk

} is called a lifted decomposi-
tion of CNF C under substitution constraints S if, given
S, it satisfies the following three properties: (i) C =
C1,1 ∧ . . . ∧ Ck,mk

; (ii) no two Ci,j’s share any unifiable
literals; (iii) for all i, j, j′, such that j 6= j′, Ci,j is identical
to Ci,j′

Proposition 1 If {C1,1, . . . , C1,m1 , . . . , Ck,1, . . . , Ck,mk
}

is a lifted decomposition of C under S, then

LWMC(C, S,W) =

k∏
i=1

[LWMC(Ci,1, S,W)]mi . (3)

Rules for identifying lifted decompositions can be derived
in a straightforward manner from the inversion argument in
de Salvo Braz [10] and the power rule in Jha et al. [20].
An example of such a rule is given in the definition and
proposition below. Note that this rule is more general than
de Salvo Braz’s inversion elimination [10].
Definition 2 A set of variables X = {x1, . . . , xm} is called
a decomposer of a CNF C if it has the following three prop-
erties: (i) X is the union of all variables appearing as the
same argument of a predicate R in C; (ii) every xi in X
appears in all atoms of a clause in C; (iii) if xi and xj ap-
pear as arguments of a predicate R′, they must appear as
the same argument of R′. (R′ may or may not be the same
as R.)

For example, {x1, x2} is a decomposer of the CNF (R(x1)∨
S(x1, x3)) ∧ (R(x2) ∨ T(x2, x4)). Given a decomposer
{x1, . . . , xm} and a CNF C, it is easy to see that for every
pair of substitutions of the form SX = {x1 =X, . . . , xm =X}
and SY = {x1 = Y, . . . , xm = Y}, with X 6= Y, the CNFs CX

and CY obtained by applying SX and SY to C do not share
any unifiable literals. A decomposer thus yields a lifted de-
composition. Given a CNF, a decomposer can be found in
linear time.

When there are no substitution constraints on the variables
in the decomposer, as in the example above, all CNFs
formed by substituting the variables in the decomposer
with a constant are identical. Thus, k = 1 in Equation
3 and m1 equals the number of constants (objects) in the

1Henceforth, when we say that two clauses are identical, we
mean that they are identical up to a renaming of constants and
variables.

PKB. However, when there are substitution constraints, the
CNFs may not be identical. For example, given the CNF
(R(x1) ∨ S(x1, x3)) ∧ (R(x2) ∨ T(x2, x4)) and substitution
constraints {x1 6= A, x2 6= B}, the CNF formed by substitut-
ing {x1 = A, x2 = B} is not identical to the CNF formed by
substituting {x1=C, x2=C}.
Intuitively, if all the clauses in the CNF have the same set
of groundings relative to the decomposer, then any two
CNFs formed by substituting the variables in the decom-
poser with any two (valid) distinct constants will be iden-
tical. Thus, we need to split the CNF into disjoint CNFs
that have identical groundings relative to the decomposer.
We can achieve this by considering all possible combi-
nations of the substitution constraints. For instance, we
can decompose our example CNF into the following four
CNFs, each of which has an identical set of groundings
relative to x1 and x2 (for readability, we do not standard-
ize variables apart and show the constraints separately for
each CNF): (1) (R(x1) ∨ S(x1, x3)) ∧ (R(x2) ∨ T(x2, x4)),
{x1 6= A, x1 6= B, x2 6= A, x2 6= B}; (2) (R(x1) ∨ S(x1, x3)) ∧
(R(x2) ∨ T(x2, x4)), {x1 6= A, x1 = B, x2 6= A, x2 = B};
(3) (R(x1) ∨ S(x1, x3)) ∧ (R(x2) ∨ T(x2, x4)), {x1 = A,
x2 = A, x1 6= B, x2 6= B}; and (4) (R(x1) ∨ S(x1, x3)) ∧
(R(x2) ∨ T(x2, x4)), {x1 = A, x1 = B, x2 = A, x2 = B}. No-
tice that the fourth CNF has no valid groundings and can be
removed.

In general, a CNF can be partitioned into subsets of iden-
tical but disjoint CNFs using constraint satisfaction tech-
niques, as in Kisynski and Poole [22]. In summary:
Proposition 2 Let X = {x1, . . . , xt} be a decomposer
of C. Let {{X1,1, . . . , X1,m1}, . . . , {Xk,1, . . . , Xk,mk}} be a
partition of the constants in the domain and let C ′ =
{CX1,1 , . . . , CX1,m1

, . . . , CXk,1 , . . . , CXk,mk
} be a partition ofC

such that (i) for all i, j, j′ such that j 6= j′, CXi,j is identi-
cal to CXi,j′ , and (ii) CXi,mi

is a CNF formed by substituting
each variable inX by the constant Xi,mi . Then C ′ is a lifted
decomposition of C under S.

5.3 LIFTING THE SPLITTING STEP

Splitting on a non-ground atom means splitting on all
groundings of it consistent with the current substitution
constraints S. Naively, if the atom has c groundings con-
sistent with S this will lead to a sum of 2c recursive calls
to LWMC, one for each possible truth assignment to the c
ground atoms. However, in general these calls will have
repeated structure and can be replaced by a much smaller
number. The lifted splitting step exploits this.

We introduce some notation and definitions. Let σA,S de-
note a truth assignment to the groundings of atom A con-
sistent with substitution constraints S, and let ΣA,S denote
the set of all possible such assignments. Let C|σA,S de-
note the CNF formed by removing ¬A from all clauses
it appears in, and setting to Satisfied all ground clauses
that are satisfied because of σA,S . This can be done in a
lifted manner by updating the substitution constraints asso-

ciated with each clause. For instance, consider the clause
R(x)∨ S(x, y) and substitution constraint {x 6=A}, and sup-
pose the domain is {A, B, C} (i.e., these are all the constants
appearing in the PKB). Given the assignment R(A) = False,
R(B) = True, R(C) = False and ignoring satisfied clauses,
the clause becomes S(x, y) and the constraint set becomes
{x 6= A, x 6= B}. R(x) is removed from the clause because
all of its groundings are instantiated. The constraint x 6= B

is added because the assignment R(B) = True satisfies all
groundings in which x = B.

Definition 3 The partition {Σ(1)
A,S , . . . ,Σ

(l)
A,S} of ΣA,S is

called a lifted split of atom A for CNF C under substitu-
tion constraints S if every part Σ

(i)
A,S satisfies the following

two properties: (i) all truth assignments in Σ
(i)
A,S have the

same number of true atoms; (ii) for all pairs σj , σk ∈ Σ
(i)
A,S ,

C|σj is identical to C|σk.

Proposition 3 If {Σ(1)
A,S , . . . ,Σ

(l)
A,S} is a lifted split ofA for

C under S, then

LWMC(C, S,W)=

l∑
i=1

niW
ti
AW

fi
¬ALWMC(C|σj ; Sj ,W)

where ni = |Σ(i)
A,S |, σj ∈ Σ

(i)
A,S , ti and fi are the num-

ber of true and false atoms in σj , respectively, and Sj is
S augmented with the substitution constraints required to
form C|σj .
Again, we can derive rules for identifying a lifted split by
using the counting arguments in de Salvo Braz [10] and the
generalized binomial rule in Jha et al. [20]. We omit the
details for lack of space. In the worst case, lifted split-
ting defaults to splitting on a ground atom. In most in-
ference problems, the PKB will contain many hard ground
unit clauses (the evidence). Splitting on the correspond-
ing ground atoms then reduces to a single recursive call to
LWMC for each atom. In general, the atom to split on in Al-
gorithm 5 should be chosen with the goal of yielding lifted
decompositions in the recursive calls (for example, using
lifted versions of the propositional heuristics [35]).

Notice that the lifting schemes used for decomposition and
splitting in Algorithm 5 by no means exhaust the space of
possible probabilistic lifting rules. For example, Jha et al.
[20] and Milch et al. [24] contain examples of other lifting
rules. Searching for new probabilistic lifted inference rules,
and positive and negative theoretical results about what can
be lifted, looks like a fertile area for future research.

The theorem below follows from Theorem 2 and the argu-
ments above.

Theorem 3 Algorithm LWMC(C, ∅, W) correctly com-
putes the weighted model count of CNF C under literal
weights W .

5.4 EXTENSIONS

Although most probabilistic logical languages do not in-
clude existential quantification, handling it in PTP is desir-
able for the sake of logical completeness. This is compli-

cated by the fact that skolemization is not sound for model
counting (skolemization will not change satisfiability but
can change the model count), and so cannot be applied.
The result of conversion to CNF is now a conjunction of
clauses with universally and/or existentially quantified vari-
ables (e.g., [∀x∃y (R(x, y) ∨ S(y))] ∧ [∃u∀v∀w T(u, v, w)]).
Algorithm 5 now needs to be able to handle clauses of this
form. If no universal quantifier appears nested inside an
existential one, this is straightforward, since in this case
an existentially quantified clause is just a compact repre-
sentation of a longer one. For example, if the domain is
{A, B, C}, the unit clause ∀x∃y R(x, y) represents the clause
∀x (R(x, A) ∨ R(x, B) ∨ R(x, C)). The decomposition and
splitting steps in Algorithm 5 are both easily extended to
handle such clauses without loss of lifting (and the base
case does not change). However, if universals appear in-
side existentials, a first-order clause now corresponds to a
disjunction of conjunctions of propositional clauses. For
example, if the domain is {A, B}, ∃x∀y (R(x, y) ∨ S(x, y))
represents (R(A, A)∨S(A, A))∧(R(A, B)∨S(A, B))∨(R(B, A)∨
S(B, A)) ∧ (R(B, B) ∨ S(B, B)). Whether these cases can be
handled without loss of lifting remains an open question.

Several optimizations of the basic LWMC procedure in Al-
gorithm 5 can be readily ported from the algorithms PTP
generalizes. These optimizations can tremendously im-
prove the performance of LWMC.

Unit Propagation When LWMC splits on atom A, the
clauses in the current CNF are resolved with the unit clauses
A and ¬A. This results in deleting false atoms, which may
produce new unit clauses. The idea in unit propagation is
to in turn resolve all clauses in the new CNF with all the
new unit clauses, and continue to do this until no further
unit resolutions are possible. This often produces a much
smaller CNF, and is a key component of DPLL that can also
be used in LWMC. Other techniques used in propositional
inference that can be ported to LWMC include pure liter-
als, clause learning, clause indexing, and random restarts
[3, 35, 4].

Caching/Memoization In a typical inference, LWMC will
be called many times on the same subproblems. The so-
lutions of these can be cached when they are computed,
and reused when they are encountered again. (Notice that a
cache hit only requires identity up to renaming of variables
and constants.) This can greatly reduce the time complexity
of LWMC, but at the cost of increased space complexity. If
the results of all calls to LWMC are cached (full caching),
in the worst case LWMC will use exponential space. In
practice, we can limit the cache size to the available mem-
ory and heuristically prune elements from it when it is full.
Thus, by changing the cache size, LWMC can explore var-
ious time/space tradeoffs. Caching in LWMC corresponds
to both caching in model counting [35] and recursive con-
ditioning [5] and to memoization of common subproofs in
theorem proving [39].

Knowledge-Based Model Construction KBMC first uses
logical inference to select the subset of the PKB that is rel-

evant to the query, and then propositionalizes the result and
performs standard probabilistic inference on it [40]. A sim-
ilar effect can be obtained in PTP by noticing that in Equa-
tion 2 factors that are common to Z(K ∪ {(Q, 0)}) and
Z(K) cancel out and do not need to be computed. Thus we
can modify Algorithm 3 as follows: (i) simplify the PKB
by unit propagation starting from evidence atoms, etc.; (ii)
drop from the PKB all formulas that have no path of unifi-
able literals to the query; (iii) pass to LWMC only the re-
maining formulas, with an initial S containing the substi-
tutions required for the unifications along the connecting
path(s).

5.5 THEORETICAL PROPERTIES

We now theoretically compare the efficiency of PTP and
first-order variable elimination (FOVE) [29, 10].
Theorem 4 PTP can be exponentially more efficient than
FOVE.

Proof sketch. We provide a constructive proof. Consider the
hard CNF (R1(x1) ∨ R2(x1, x2) ∨ R3(x2, x3)) ∧ (¬R1(x1) ∨
R2(x2, x1)∨ R4(x2, x3))∧ (R1(x1)). Neither counting elim-
ination [10] nor inversion elimination [29] is applicable
here, and therefore the complexity of FOVE will be the
same as that of (propositional) variable elimination, i.e., ex-
ponential in the treewidth. The treewidth of the CNF is
polynomial in the domain size (number of constants), and
therefore variable elimination and by extension FOVE will
require exponential time. On the other hand, PTP will solve
this problem in polynomial time. Since R1(x1) is a unit
clause, PTP will remove the first clause because it is sat-
isfied (clause deletion). It will then remove R1 from the
second clause (unit propagation), yielding the hard CNF
R2(x2, x1) ∨ R4(x2, x3). PTP will solve this reduced CNF
by first running lifted decomposition (x2 is a decomposer)
followed by two lifted splits over R2(A, x1) and R3(A, x3).
Thus, the overall time complexity of PTP is polynomial in
the domain size. 2

Theorem 5 LWMC with full caching has the same worst-
case time and space complexity as FOVE.

The proof of Theorem 5 is a little involved. The main in-
sight for this result comes from previous work on recursive
conditioning [5] and AND/OR search [12]. Specifically,
these papers show that the worst-case time and space com-
plexity of propositional WMC with caching (and without
unit propagation and clause deletion) is the same as that
of variable elimination (VE) (exponential in the treewidth).
Specifically the authors show that both WMC and VE are
graph traversal schemes that operate by traversing the same
graph in a top-down and bottom-up manner respectively.
Lifting can be seen as a way of compressing this graph via
Propositions 1 and 3; specifically by aggregating nodes in
the graph that behave similarly. Since FOVE is a lifted
analog of VE, it traverses the compressed lifted graph in
a bottom-up manner while LWMC with caching traverses
it in a top-down manner; assuming that they use the same

rules for lifting. Since the lifting rules used by LWMC are
at least as general as FOVE, its worst-case time and space
complexity is the same as FOVE.

De Salvo Braz’s FOVE [10] and lifted BP [38] completely
shatter the PKB in advance. This may be wasteful because
many of those splits may not be necessary. Like Poole [29]
and Ng et al. [26], LWMC splits only as needed.

5.6 DISCUSSION

PTP yields new algorithms for several of the inference
problems in Figure 1. For example, ignoring weights and
replacing products by conjunctions and sums by disjunc-
tions in Algorithm 5 yields a lifted version of DPLL for
first-order theorem proving (cf. [2]).

Of the standard methods for inference in graphical mod-
els, propositional PTP is most similar to recursive condi-
tioning [5] and AND/OR search [12] with context-sensitive
decomposition and caching, but applies to arbitrary PKBs,
not just Bayesian networks. Also, PTP effectively performs
formula-based inference [17] when it splits on one of the
auxiliary atoms introduced by Algorithm 2.

PTP realizes some of the benefits of lazy inference for re-
lational models [31] by keeping in lifted form what lazy
inference would leave as default.

6 APPROXIMATE INFERENCE

LWMC lends itself readily to Monte Carlo approximation,
by replacing the sum in the splitting step with a random
choice of one of its terms, calling the algorithm many times,
and averaging the results. This yields the first lifted sam-
pling algorithm.

We first apply this importance sampling approach [33] to
WMC, yielding the MC-WMC algorithm. The two al-
gorithms differ only in the last line. Let Q(A|C,W)
denote the importance or proposal distribution over A
given the current CNF C and literal weights W . Then
we return WA

Q(A|C,W)MC-WMC(C|A;W) with probability

Q(A|C,W), or W¬A

Q(¬A|C,W)MC-WMC(C|¬A;W) other-
wise. By importance sampling theory [33] and by the law
of total expectation, it is easy to show that:

Theorem 6 If Q(A|C,W) satisfies WMC(C|A;W) > 0
⇒ Q(A|C,W) > 0 for all atoms A and its true and false
assignments, then the expected value of the quantity out-
put by MC-WMC(C,W) equals WMC(C,W). In other
words, MC-WMC(C,W) yields an unbiased estimate of
WMC(C,W).

An estimate of WMC(C,W) is obtained by running
MC-WMC(C,W) multiple times and averaging the results.
By linearity of expectation, the running average is also un-
biased. It is well known that the accuracy of the estimate
is inversely proportional to its variance [33]. The variance
can be reduced by either running MC-WMC more times or
by choosing Q that is as close as possible to the posterior

distribution P (or both). Thus, for MC-WMC to be effec-
tive in practice, at each point, given the current CNF C, we
should select Q(A|C,W) that is as close as possible to the
marginal probability distribution of A w.r.t. C and W .

The following simple procedure can be used to construct
the proposal distribution Q. Let A be an atom that needs
to be sampled and (abusing notation) let o = (A1, . . . , An)
be an ordering of its ground atoms (we select the order-
ing randomly). Given a truth assignment to the previous
i − 1 atoms, let ni,t and ni,f denote the number of ground
clauses that are satisfied by assigning Ai to true and false
respectively. Then, we use Q(Ai|A1, . . . , Ai−1, C,W) =
ni,tWA/(ni,tWA + ni,fW¬A). Thus we perform only a
one-step look ahead for constructing Q. In future, we envi-
sion using more sophisticated heuristics.

MC-WMC suffers from the rejection problem [18]: it may
return a zero. We can solve this problem by either back-
tracking when a sample is rejected or by generating samples
from the backtrack-free distribution [18].

Next, we present a lifted version of MC-WMC, which is
obtained by replacing the (last line of the) lifted splitting
step in LWMC by the following lifted sampling step:

return niW
ti
A

W
fi
¬A

Q(Σ
(i)

A,S
)

MC-LWMC(C|σj ; Sj ,W)

where ni, ti, fi, σj and Sj are as in Proposition 3

In the lifted sampling step, we construct a distribution Q
over the lifted split and sample an element Σ

(i)
A,S from it.

Then we weigh the sampled element w.r.t. Q and call the al-
gorithm recursively on the CNF conditioned on σj ∈ Σ

(i)
A,S .

Notice that A is a first-order atom and the distribution
Q(Σ

(i)
A,S) is defined in a lifted manner. However, seman-

tically, each Σ
(i)
A,S represents all of groundings of A and

therefore given a ground assignment σj ∈ Σ
(i)
A,S , the prob-

ability of sampling σj is QG(σj) = Q(Σ
(i)
A,S)/ni. Thus,

ignoring the decomposition step, MC-LWMC is equivalent
to MC-WMC that uses QG to sample all the groundings
of A. In the decomposition step, given a set of identical
and disjoint CNFs, we simply sample just one of the CNFs
and raise our estimate to the appropriate count. The cor-
rectness of this step follows from the fact that the expected
value of the product of k identical and independent random
variables R1, . . . , Rk equals E[R1]k, and (σR1

)k is an un-
biased estimate ofE[R1]k where σR1 is a random sample of
R1. Therefore, the following theorem immediately follows
from Theorem 6.

Theorem 7 If Q(Σ
(i)
A,S) satisfies WMC(C|σj ; Sj ,W) >

0 ⇒ Q(Σ
(i)
A,S) > 0 for all elements Σ

(i)
A,S of the lifted split

of A for C under S, then MC-LWMC(C, S,W) yields an
unbiased estimate of WMC(C,W).

MC-LWMC has smaller variance than MC-WMC and is
therefore likely to have higher accuracy. The smaller vari-
ance is due to the smaller time complexity of MC-LWMC,

#Objs. 10 20 50
Clause PTP FOVE PTP FOVE PTP FOVE
Size ↓

3 14.5 18.93 34.5 93.45 82.1 X
5 23.9 X 43.5 X 132.4 X
7 8.2 X 18.7 X 37.1 X
9 2.3 X 5.2 X 15.9 X

Table 1: Impact of increasing the number of objects and clause
size on the time complexity of FOVE and PTP. Time is in seconds.
‘X’ indicates that the algorithm ran out of memory.

which in turn is due to the decomposition step. Recall that
we group identical and independent CNFs, sample just one
CNF from the group, and raise the estimate by the number
of members in the group. Thus, for each lifted decomposi-
tion of sizemi > 1, we have a factor ofmi speedup. There-
fore, given a specific time bound, the estimate returned by
MC-LWMC will be based on a larger sample size (or more
runs) than the one returned by MC-WMC.

7 EXPERIMENTS

7.1 EXACT INFERENCE

In this subsection, we compare the performance of PTP and
FOVE on randomly generated and link prediction PKBs.
We implemented PTP in C++ and ran all our experiments
on a Linux machine with a 2.33 GHz Intel Xeon processor
and 2GB of RAM. We used a constraint solver based on
forward checking to implement the substitution constraints.
We used the following heuristics for splitting. At any point,
we prefer an atom which yields the smallest number of re-
cursive calls to LWMC (i.e., an atom that yields maximum
lifting). We break ties by selecting an atom that appears in
the largest number of ground clauses; this number can be
computed using the constraint solver. If it is the same for
two or more atoms, we break ties randomly.

Random PKBs with Varying Clause Size In the first set
of experiments, we show that PTP’s advantage relative to
FOVE increases with clause length. In order to compare
the performance in a controlled setting, we generated ran-
dom PKBs parameterized by five integer constants: n,m, s,
e and c, where n is the number of predicates, m is the num-
ber of clauses, s is the number of literals in each clause, e is
the number of evidence atoms, and c is the number of con-
stants in the domain. The PKB is generated as follows. All
predicates are unary. We generate m clauses by randomly
selecting s predicates and negating each with probability
0.5. We then choose e ground atoms as evidence, each of
which is set to either True or False with equal probability.

We set n = m = 40, varied s from 3 to 9 in increments of
2 and c from 10 to 50, and set e = c/10. Table 1 shows the
impact of increasing the number of objects c and the clause
size s on the time complexity of FOVE and PTP. The results
are averaged over 10 PKBs. We can see that PTP always
dominates FOVE. When the PKB has small clauses, PTP is
only slightly better than FOVE. However, when the clauses
are large, PTP is substantially better than FOVE, which runs

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 10 20 30 40 50 60 70 80

T
im

e
(s

ec
o

n
d
s)

Percentage of evidence objects

PTP
FOVE

(a)

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 100 200 300 400 500

T
im

e
(s

ec
o
n
d

s)

Number of objects

PTP
FOVE

(b)

Figure 2: (a) Impact of increasing the amount of evidence on the
time complexity of FOVE and PTP in the link prediction domain.
The number of objects in the domain is 100. (b) Impact of in-
creasing the number of objects on the time complexity of FOVE
and PTP in the link prediction domain, with 20% of the atoms set
as evidence.

out of memory on all the instances, typically after around
20 minutes of run time. When large clauses are present, unit
propagation is very effective and causes a large amount of
pruning. Because of this, PTP is much faster than FOVE.

Link Prediction We experimented with a simple PKB con-
sisting of two clauses: GoodProf(x)∧ GoodStudent(y)∧
Advises(x, y)⇒ FutureProf(y) and Coauthor(x, y)⇒
Advises(x, y). The PKB has two types of objects: profes-
sors (x) and students (y). Given data on a subset of papers
and “goodness” of professors and students, the task is to be
predict who advises whom and who is likely to be a profes-
sor in the future.

We evaluated the performance of FOVE and PTP along two
dimensions: (i) the number of objects and (ii) the amount
of evidence. We varied the number of objects from 10 to
1000 and the number of evidence atoms from 10% to 80%.

Figure 2(a) shows the impact of increasing the number of
evidence atoms on the performance of the two algorithms
on a link prediction PKB with 100 objects. FOVE runs
out of memory (typically after around 20 minutes of run
time) after the percentage of evidence atoms rises above
40%. PTP solves all the problems and is also much faster
than FOVE (notice the log-scale on the y-axis). Figure 2(b)
shows the impact of increasing the number of objects on a
link prediction PKB with 20% of the atoms set as observed.
We can see that FOVE is unable to solve any problems af-
ter the number of objects is increased beyond 100 because
it runs out of memory. PTP, on the other hand, solves all

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0 10 20 30 40 50 60

N
eg

at
iv

e
lo

g
 l

ik
el

ih
o
o
d

Time (minutes)

Lifted-BP
MC-SAT

MC-WMC
MC-LWMC

(a)

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0 10 20 30 40 50 60

N
eg

at
iv

e
lo

g
 l

ik
el

ih
o
o
d

Time (minutes)

Lifted-BP
MC-SAT

MC-WMC
MC-LWMC

(b)

Figure 3: Negative log-likelihood of the data as a function of time
for lifted BP, MC-SAT, MC-WMC and MC-LWMC on (a) the en-
tity resolution (Cora) and (b) the collective classification domains.

problems in less than 100s.

7.2 APPROXIMATE INFERENCE

In this subsection, we compare the performance of MC-
LWMC, MC-WMC, lifted belief propagation [38], and
MC-SAT [30] on two domains. We used the entity res-
olution (Cora) and collective classification datasets and
Markov logic networks used in Singla and Domingos [37]
and Poon and Domingos [30] respectively. The Cora
dataset contains 1295 citations to 132 different research pa-
pers. The inference task here is to detect duplicate cita-
tions, authors, titles and venues. The collective classifica-
tion dataset consists of about 3000 query atoms.

Since computing the exact posterior marginals is infeasible
in these domains, we used the following evaluation method.
We partitioned the data into two equal-sized sets: evidence
set and test set. We then computed the probability of each
ground atom in the test set given all atoms in the evidence
set using the four inference algorithms. We measure the
error using negative log-likelihood of the data according to
the inference algorithms (the negative log-likelihood is a
sampling approximation of the K-L divergence to the data-
generating distribution, shifted by its entropy).

The results, averaged over 10 runs, are shown in Figures
3(a) and 3(b). The figures show how the log-likelihood of
the data varies with time for the four inference algorithms
used. We see that MC-LWMC has the lowest negative log-
likelihood of all algorithms by a large margin. It signifi-
cantly dominates MC-WMC in about 2 minutes of run-time
and is substantially superior to both lifted BP and MC-SAT

(notice the log scale). This shows the advantages of approx-
imate PTP over lifted BP and ground inference.

8 CONCLUSION

Probabilistic theorem proving (PTP) combines theorem
proving and probabilistic inference. This paper proposed
an algorithm for PTP based on reducing it to lifted weighted
model counting, and showed both theoretically and empiri-
cally that it has significant advantages compared to previous
lifted probabilistic inference algorithms. An implementa-
tion of PTP will be available in the Alchemy system [25].

Directions for future research include: extension of PTP
to infinite, non-Herbrand first-order logic; new lifted infer-
ence rules; theoretical analysis of liftability; porting to PTP
more speedup techniques from logical and probabilistic in-
ference; lifted splitting heuristics; better handling of exis-
tentials; variational PTP algorithms; better importance dis-
tributions; approximate lifting; answering multiple queries
simultaneously; applications; etc.

Acknowledgements This research was partly funded by
ARO grant W911NF-08-1-0242, AFRL contract FA8750-09-C-
0181, DARPA contracts FA8750-05-2-0283, FA8750-07-D-0185,
HR0011-06-C-0025, HR0011-07-C-0060 and NBCH-D030010,
NSF grants IIS-0534881 and IIS-0803481, and ONR grant
N00014-08-1-0670. The views and conclusions contained in this
document are those of the authors and should not be interpreted as
necessarily representing the official policies, either expressed or
implied, of ARO, DARPA, NSF, ONR, or the U.S. Government.

References
[1] F. Bacchus. Representing and Reasoning with Probabilistic

Knowledge. MIT Press, Cambridge, MA, 1990.
[2] P. Baumgartner and C. Tinelli. The model evolution calculus

as a first-order DPLL method. Artif. Intell., 172(4-5):591–
632, 2008.

[3] R. J. Bayardo, Jr. and J. D. Pehoushek. Counting models us-
ing connected components. In AAAI, pages 157–162, 2000.

[4] M. Chavira and A. Darwiche. On probabilistic inference by
weighted model counting. Artif. Intell., 172(6-7):772–799,
2008.

[5] A. Darwiche. Recursive conditioning. Artif. Intell., 126:5–
41, 2001.

[6] Adnan Darwiche. A logical approach to factoring belief net-
works. In KR, pages 409–420, 2002.

[7] M. Davis, G. Logemann, and D. Loveland. A machine pro-
gram for theorem proving. CACM, 5:394–397, 1962.

[8] M. Davis and H. Putnam. A computing procedure for quan-
tification theory. JACM, 7(3), 1960.

[9] L. De Raedt, A. Kimmig, and H. Toivonen. Problog: A
probabilistic prolog and its application in link discovery. In
IJCAI, pages 2462–2467, 2007.

[10] R. de Salvo Braz. Lifted First-Order Probabilistic Inference.
PhD thesis, Univ. of Illinois, Urbana-Champaign, IL, 2007.

[11] R. Dechter. Bucket elimination: A unifying framework for
reasoning. Artif. Intell., 113:41–85, 1999.

[12] R. Dechter and R. Mateescu. AND/OR search spaces for
graphical models. Artif. Intell., 171(2-3):73–106, 2007.

[13] S. Della Pietra, V. Della Pietra, and J. Lafferty. Inducing fea-
tures of random fields. IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence, 19:380–392, 1997.

[14] P. Domingos and D. Lowd. Markov Logic: An Interface
Layer for Artificial Intelligence. Morgan & Claypool, 2009.

[15] M. R. Genesereth and N. J. Nilsson. Logical Foundations of
Artificial Intelligence. Morgan Kaufmann, 1987.

[16] L. Getoor and B. Taskar, editors. Introduction to Statistical
Relational Learning. MIT Press, 2007.

[17] V. Gogate and P. Domingos. Formula-based probabilistic
inference. In UAI, pages 210–219, 2010.

[18] Vibhav Gogate and Rina Dechter. SampleSearch: Impor-
tance Sampling in presence of Determinism. Artif. Intell.,
175(2):694-729, 2011.

[19] J. Halpern. An analysis of first-order logics of probability.
Artif. Intell., 46:311–350, 1990.

[20] A. Jha, V. Gogate, A. Meliou, and D. Suciu. Lifted inference
from the other side: The tractable features. In NIPS, pages
973–981, 2010.

[21] K. Kersting, B. Ahmadi, and S. Natarajan. Counting Belief
Propagation. In UAI, pages 277–284, 2009.

[22] J. Kisynski and D. Poole. Constraint processing in lifted
probabilistic inference. In UAI, pages 293–302, 2009.

[23] B. Milch, B. Marthi, S. J. Russell, D. Sontag, D. L. Ong,
and A. Kolobov. BLOG: Probabilistic models with unknown
objects. In IJCAI, pages 1352–1359, 2005.

[24] B. Milch, L. S. Zettlemoyer, K. Kersting, M. Haimes, and
L. P. Kaelbling. Lifted probabilistic inference with counting
formulas. In AAAI, pages 1062–1068, 2008.

[25] S. Kok, M. Sumner, M. Richardson, P. Singla, H. Poon,
and P. Domingos. The Alchemy system for statistical rela-
tional AI. Tech. Rept., Dept. CSE, Univ. Washington, 2006.
http://alchemy.cs.washington.edu.

[26] K. S. Ng, J. W. Lloyd, and W. T. Uther. Probabilistic mod-
elling, inference and learning using logical theories. AMAI
Journal, 54(1-3):159–205, 2008.

[27] N. Nilsson. Probabilistic logic. Artif. Intell., 28:71–87, 1986.
[28] James D. Park. Using weighted MAX-SAT engines to solve

MPE. In AAAI, pages 682–687, 2002.
[29] D. Poole. First-order probabilistic inference. In IJCAI, pages

985–991, 2003.
[30] H. Poon and P. Domingos. Sound and efficient inference

with probabilistic and deterministic dependencies. In AAAI,
pages 458–463, 2006.

[31] H. Poon, P. Domingos, and M. Sumner. A general method
for reducing the complexity of relational inference and its
application to MCMC. In AAAI, pages 1075–1080, 2008.

[32] J. A. Robinson. A machine-oriented logic based on the res-
olution principle. JACM, 12:23–41, 1965.

[33] Reuven Y. Rubinstein. Simulation and the Monte Carlo
Method. John Wiley & Sons Inc., 1981.

[34] T. Sang, P. Beame, and H. Kautz. Solving Bayesian networks
by weighted model counting. In AAAI, pages 475–482, 2005.

[35] T. Sang, P. Beame, and H. A. Kautz. Heuristics for fast exact
model counting. In SAT, pages 226–240, 2005.

[36] P. Sen, A. Deshpande, and L. Getoor. Bisimulation-based
approximate lifted inference. In UAI, pages 496–505, 2009.

[37] P. Singla and P. Domingos. Discriminative training of
Markov logic networks. In AAAI, pages 868–873, 2005.

[38] P. Singla and P. Domingos. Lifted first-order belief propaga-
tion. In AAAI, pages 1094–1099, 2008.

[39] H. Tamaki and T. Sato. OLD resolution with tabulation. In
ICLP, pages 84–98, 1986.

[40] M. Wellman, J. S. Breese, and R. P. Goldman. From knowl-
edge bases to decision models. Knowl. Eng. Rev., 7, 1992.

