
Navigating Extracted Data with Schema Discovery

Michael J. Cafarella
University of Washington

Seattle, WA 98195
mjc@cs.washington.edu

Dan Suciu
University of Washington

Seattle, WA 98195
suciu@cs.washington.edu

Oren Etzioni
University of Washington

Seattle, WA 98195
etzioni@cs.washington.edu

ABSTRACT
Open Information Extraction (OIE) is a recently-introduced
type of information extraction that extracts small individ-
ual pieces of data from input text without any domain-
specific guidance such as special training data or extrac-
tion rules. For example, an OIE system might discover the
triple Frenzy, year, 1972 from a set of documents about
movies. Because OIE is domain-independent, it promises to
help users when they have a corpus of structured data, but
that structure is unknown, such as when browsing a novel
domain or formulating a query. We can describe the struc-
ture to the user by displaying a relational schema that fits
the extracted data.

Unfortunately, the extractions do not carry full schema
information: we have extracted values, but not the cor-
rect relations, their rows, or their columns. In response we
propose TGen, an algorithm for schema discovery, which
automatically derives a high-quality relational schema for
the extracted data. Different applications have different
schema-design requirements, which can be encoded as input
to TGen. We show that our data-mining approach runs
in minutes on millions of documents while still resulting in
schemas that are useful for exploring unfamiliar data or for
composing queries over extracted data.

1. INTRODUCTION
Open Information Extraction (OIE), introduced by Banko,

et al., is a domain-independent model of information extrac-
tion, in which the sole system input is a collection of texts
and the output is a set of extracted triples [5]. IE systems
have traditionally required domain-specific guidance ahead
of time, for example in the form of a target database schema,
hand-written extraction rules, or specially-chosen training
data [16, 13, 1]. They have been quite successful in populat-
ing databases with information from unstructured text, but
they have only been applied in situations where the schema
is known in advance.

In many cases, especially with extracted Web data where

Copyright is held by the author/owner.
Proceedings of the 10th International Workshop on Web and
Databases (WebDB 2007), June 15, 2007, Beijing, China

there is a vast number of domains and no central admin-
istrator, users must manage data where the appropriate
schema is unknown. Indeed, learning about the data’s struc-
ture is sometimes the user’s main goal, as when exploring a
novel data set or when composing a query. Since relational
schemas are the best-known and most widely-used technique
for describing structured data, it seems natural to present
the extracted information in relational form.

Schema discovery is the problem of constructing a rela-
tional schema that best describes the extracted data. Schema
design is a well-studied area, but instead of minimizing data
duplication or maximizing representational efficiency, we are
interested in the schema as a tool for data understanding.
To motivate the problem of schema discovery for navigation,
we describe two concrete applications in which the user is
unfamiliar with the data’s structure but needs to learn about
it. The schema should depend on not only on the data, but
also on application-specific design preferences.

1.1 Structured Data Browsing
In structured data browsing, the user wants to see the

most important and interesting subdomains within a set of
extracted data. The user can indicate a rough topic area
with, say, a search engine keyword query. TGen then op-
erates over the extractions from the resulting pages and
displays the resulting schema. To the user, a structured
data browsing application should behave like a keywords-in,
structured-answer-out search engine. For example, a key-
word query for nutrition should display relations repre-
senting drugs, vitamins, vegetables, etc.

There are a few desirable qualities in a good relation for
structured data browsing. It should have a good number of
related attributes; a relation with a single attribute is not
likely to be interesting, even if it contains every single extrac-
tion. However, a relation with a vast number of attributes
cannot easily be browsed on-screen. Further, a relation that
contains just one extraction is not interesting, though it is
not necessary to contain a vast number. Finally, the relation
should not contain too many NULLs, or else browsing it will
be monotonous.

To produce an application-appropriate schema, our TGen
algorithm requires that the application provides:

• Preferences for relations with certain numbers of at-
tributes (i.e., “width”)

• Preferences for relations with certain numbers of ex-
tractions (i.e., “height”)

• The relative importance of filled versus NULL values



(i.e., “density”)

1.2 Query Formulation
In the query formulation scenario, the user also examines

a schema for an unfamiliar domain, this time to select useful
attributes for a query. For example, consider someone who
wants to use nutrition extractions to find all items that con-
tain magnesium. Formulating a query involves first finding
the best attribute name from among, e.g., contains, has,
or is-packed-with. The user can compare the attributes
and then issue the query, e.g., contains = magnesium.

For query formulation, the usefulness of a given attribute
depends substantially on how many extractions exhibit that
attribute. It would be interesting to find a few tightly-
related attributes that appear together in many extractions,
but in general the number of supporting rows is more im-
portant. In general, a good relation for query formulation is
likely to have more “height” and less “width” than one for
data browsing.

1.3 Contributions
The contributions of this paper are as follows:

1. We propose the problem of schema discovery for ex-
tracted data, motivated by the problems of structured
data browsing and query formulation. Unlike previous
work in schema discovery for relational data, we are
concerned with the schema as an application-driven
tool for navigating the data, not in pursuing tradi-
tional schema design goals (such as minimizing data
duplication).

2. We propose TGen, an algorithm that automatically
generates schemas from extracted data. It incorpo-
rates application-specific schema design requirements.
We show that schemas generated by TGen are useful
for the above unstructured applications.

The remainder of this paper is organized as follows. We
cover the precise problem definition in Section 2, and de-
scribe the algorithm in Section 3. Experimental results are
presented in Section 4 and we conclude with related work in
Sections 5 and 6.

2. PROBLEM DEFINITION
In this section we formalize the schema discovery task.

We describe a formal Open Information Extraction model,
discuss a sample schema discovery task for OIE output, and
finally cover the precise schema discovery inputs, outputs,
and schema scoring function.

2.1 Open Information Extraction Model
IE systems have traditionally relied on domain-specific hu-

man guidance. The KnowItAll system [13] required hand-
written extraction rules for each relation, Mansuri and Sarawagi’s
system [16] required an existing database to populate, and
many systems have relied on hand-chosen training samples [6,
1].

Wrapper induction systems, which attempt to extract in-
formation from database-backed documents have also em-
ployed training data [15, 19]. Some wrapper induction sys-
tems, like iepad [8], roadrunner [11], and exalg [4], use
pattern discovery to extract likely database values, and so
have avoided the use of training data. However, they do not

1. Create table set S = {}
2. For each input row r, let Attr(r) be the set of its attributes.

3. If there exists a table T ∈ S s.t. Attr(T ) = Attr(r) then
assign r to T .

4. Otherwise, create a new table T with attributes Attr(T ) =
Attr(r), assign r to T and insert T in S.

Figure 1: The Näıve algorithm constructs a database
from extracted data.

Title Year Length Filmtype

r0 Amelie 2001 129 color
r1 Babe 1995 89 color
r2 Cocktail 1988 104 color
r3 Dracula 1931 75 bw
r4 Evita 1996 134 color
r5 Frenzy 1972 116 color
r6 Gaslight 1944 114 bw
r7 Hamlet 1990 242 color
r8 Indiscreet 1958 100 color
r9 John Q 2002 116 color

Figure 2: This is the database constructed by Näıve
when the source data is perfect and uncorrupted.

attempt to find a label for each extracted value, forcing a
human to later mark the different attributes.

Open IE systems do not require domain-specific assis-
tance, and can thus extract data when the target domain
is unknown. The recent TextRunner system uses a com-
bination of linguistic processing, a self-trained classifier, and
frequency counts to extract domain-independent entity, re-
lationship, entity triples from text [5].

A good OIE data model would not only capture Tex-
tRunner output but also that of non-open IE systems,
for use when there happens to be a domain-specific ex-
tractor available, or for when a traditional system can be
adapted for domain-independent use (e.g., it might learn
extraction rules automatically). We assume the extraction
system emits a set of unstructured tuples. Each unstructured
tuple consists of a key that uniquely identifies the tuple,
plus some associated attribute/value pairs. The key can be
a natural-language string (e.g., a person’s name), can be a
synthetic value computed from the source document (e.g., a
record identifier for a movie review), or could even be the re-
sult of a reference-reconciliation step. For example, by run-
ning an extractor over a posting on a movie review site, we
might produce as its key the record identifier r, with a num-
ber of associated pairs: title/Frenzy, filmtype/color,
and year/1972. Values are non-probabilistic, so any prob-
abilities emitted by the extractor are thresholded prior to
processing.

In some cases the correct label for an extracted value will
not be clear. For example, it is easy to recognize a phone
number using a regular-expression-based extractor, but it
may not be obvious whether the value is a home-phone or an
office-phone. We allow the IE system to communicate this
ambiguity to the schema discovery system. An extracted
value can be emitted with one or more possible labels.

By placing the tuple in a relational schema, the schema
discovery system may be able to choose the correct attribute.
For example, the set of tuples about corporations may have



Title Year Filmtype

r0 Amelie 2001 color

Title Year Length Filmtype

r1 Babe 1995 89 color

Title Year Filmtype Noise-4

r2 Cocktail 1988 color noiseval

Length

r3 75

Year Length Filmtype Noise-2

r4 1996 134 color noiseval

Title Filmtype Length Noise-4 Noise-5

r5 Frenzy 116 color noiseval noiseval

Title Year Length Filmtype Noise-1

r6 Gaslight 1944 114 bw noiseval

Title Year Length

r7 Hamlet 1990 242

Year Filmtype Length Noise-5

r8 1958 color 100 noiseval

Title Year Length Filmtype Noise-2 Noise-3

r9 John Q 2002 116 color noiseval noiseval

Figure 3: This database was also created by Näıve,
but the input data has now been corrupted with
delete probability 0.2 and add probability 0.2. The
schema is confusing and useless for understanding
the domain.

many examples of office-phone but very few of home-phone.
In the case where the labelling is ambiguous, the schema dis-
covery system can choose office-phone, so that the tuple
matches the others.

2.2 Challenges
Unfortunately, IE-derived data is inevitably noisy. Input

documents are written by humans, who naturally include
many off-topic facts or miss relevant ones. The extractors
themselves similarly introduce spurious facts and miss good
ones.

Consider a user who has a set of extracted data about
movies and is using a structured data browser to learn more
about the domain. A sample extraction might be r0, Length,
129, indicating that the movie r0 has a running length of
129 minutes. We could assemble these extractions into a
database using the Näıve algorithm, described in Figure 1.
If we have a sample set of 40 perfectly-extracted triples, cov-
ering 4 attributes of 10 movies, the result is the single-table
schema seen in Figure 2. This schema obviously describes
the domain quite effectively.

However, when we delete 20% of these triples at random
and add an equal percentage of spurious extractions, the
output of Näıve can be seen in Figure 3. In contrast, this
database is close to useless. There is only one underlying set
in this data, but each row is in a different relation. Spurious
(and rare) columns appear alongside the true (and common)
ones.

The database in Figure 4 would be a better choice. All of
the relevant attributes are present, and none of the spurious
ones. This single table contains almost all the rows1, but
it also contains less of the extracted data and more NULLs
than Figure 3. Overall, the database from Figure 4 is a
better tool for users unfamiliar with the domain.

2.3 Inputs and Outputs
1All were included but r3, Dracula, which had just one field
survive the corruption step.

Title Year Length Filmtype

r0 Amelie 2001 NULL color
r1 Babe 1995 89 color
r2 Cocktail 1988 NULL color
r4 NULL 1996 134 color
r5 Frenzy NULL 116 color
r6 Gaslight 1944 114 bw
r7 Hamlet 1990 242 NULL
r8 NULL 1958 100 color
r9 John Q 2002 116 color

Figure 4: This database was created by TGen run-
ning on the same corrupted data sent to Näıve in
Figure 3. There are some unavoidable NULL val-
ues, as some values were deleted as part of the cor-
ruption step. Unlike the Näıve database, the schema
accurately shows that all extracted data rows in this
domain are members of the same set. Tuple r3 has
been dropped, but so have all of the 8 spurious val-
ues added by the corruption step.

The schema discovery algorithm receives as input a set of
unstructured tuples U. To illustrate, consider two possible
unstructured tuples from the above example:

Dracula [movie (1), monster (2)]

1931 [year (1)]

75 [length (1)]

color [bw (1)]

Evita [title (1), person (1)]

1996 [year (1)]

134 [length (1)]

color [filmtype (1)]

The OIE system has correctly extracted the value Dracula,
with two possible attribute names: movie or monster, with
the former being more preferable. For the second tuple, the
extraction for Evita has two possible labels, each equally
preferred.

In general an unstructured tuple U can be described as

U = (Key, {V1, V2, . . .})

where Key is a unique key (here, r3 and r4) and each Vi is a
value description, consisting of a value v and a set of (label,
preference)-pairs:

Vi = (v, {(L1, P1), (L2, P2), . . .})

where v is the actual value, Li is a candidate label for that
value, and Pi is its preference rank.

The input to the schema-discovery system is the set of all
input tuples, U, and the set of all labels occurring in all
tuples, denoted L.

The output is a schema S, and an assignment A. The
schema is a set of table schemas S = {T1, T2, . . .}, where
each table schema is defined as a set of attributes from L 2.
Thus, each Ti can be identified with a set of attributes,
Attr(Ti), s.t. Attr(Ti) ⊆ L. The assignment, A, is a many-
to-many relationship between the unstructured tuples in U

2We do not currently attempt to generate names for the
output tables.



0

0.5

1

0 5 10 15 20
0

0.5

1

0 5 10 15 20

Figure 5: The structured browser width function
w(), at left, should peak at an easily-displayed 6-
8 attributes; the graph pictured runs from 0 to 20
attributes on the x-axis and w() between 0 and 1 on
the y-axis. The height function h(), at right, counts
rows on the x-axis. Ten rows are enough to show
that the relation is interesting, but more are not
necessary.

0

0.5

1

0 5 10 15 20
0

0.5

1

0 5 10 15 20

Figure 6: Relation width is substantially irrelevant
to query formulation (except for near-synonyms),
so w() (left) has only a small preference for wider
relations. (We use the same axes as in Figure 5.) In
contrast, h() (right) climbs steadily as the number of
rows in a relation increases, indicating that popular
attributes are the most important ones.

and the tables in S, i.e., it consists of a set of pairs (U, T ),
where U ∈ U and T ∈ S.

An unstructured tuple may be assigned to more than one
table (e.g., by partitioning the tuple by attribute), and, of
course, one table may contain more than one tuple. Nor-
mally we expect that an unstructured tuple U will be as-
signed to a table T if U and T share many attributes, but
we make no such requirements in the problem definition. A
tuple U may be assigned to a table T even if they share few
attributes (or none at all!), and it may be possible for some
values of an unstructured tuple to remain unassigned to any
table.

Once an unstructured tuple U is assigned to a table T , the
following structured row r is inserted into T : (a) r.Key =
U.Key, (b) for every attribute L ∈ Attr(T ), if U has some
value v with an associated label L, then r.L = v; if sev-
eral values v, v′, . . . have associated label L, then the most-
preferred one is picked, (c) if no value in U has label L,
then r.L = NULL. Note that it is possible to have no single
most-preferred labelling for a row, in which case we choose
a labelling at random.

2.4 The Solution Score
We measure the quality of the system’s output (S, A)

with a schema design scoring function f(S,A). This score
includes a measure of how (S,A) fit the input data U and

the application-centric design preferences.
We first define the data-centric score, which gives higher

scores to schemas that have the most values, the fewest
NULLs, and which best fit the application’s width and height
design preferences. The weighting between these factors, of
course, is an input to the system. This score is given by
independent contributions of each table in S, and each row
in each table, as follows.

For a table T ∈ S, and each row r ∈ T , let v(r) be the
number of non-null values in r, and let n(r) be the number
of null values in r: thus v(r)+n(r) = |Attr(T )|. We consider
it generally beneficial to include more values in the solution,
and bad to include NULLs. Thus, we define a row’s score
to be:

frT (r) = v(r)− wN · n(r) (1)

where wN is a user-chosen weight indicating the penalty we
assign to a NULL compared to the reward for a non-NULL
value. To indicate that a reasonable minimum density of 2
true data values for each NULL, we would use wN = 0.5.

Second, we define the score for the entire table T as the
product of three terms: the row-score “density” (i.e., the
table sum of row scores normalized by the number of data
cells), and two user-chosen functions, w() and h(). These
functions receive as input, respectively, the number of at-
tributes and the number of rows:

ftS,A(T ) =

P
r∈T frT (r)

|Attr(T )||Rows(T )|w(|Attr(T )|)h(|Rows(T )|)

(2)
A näıve choice of the functions w() and h() is w(|Attr(T )|) =

|Attr(T )| and h(|Rows(T )) = |Rows(T )|. In that case, the
score of a table is simply the sum of its row scores. For
certain applications, however, users may have better choices
for w() and h(). For the structured data browser, we might
prefer the w() and h() functions in Figure 5. For query
formulation, the functions in Figure 6 would probably be
better.

Third, we define the overall score function:

f(S,A) =
X
T∈S

ftS,A(T ) (3)

We can now model the schema discovery problem as one
of score-optimization. Consider that the input data has an
input set of rows U and unique attribute labels L. For
each possible table, each attribute may be present or not

present; thus there are 2|L| possible unique tables. Each

table may contain a row or not, so there are 2|U| possible
row assignments to each table. That means we must find the

highest-scoring (S,A) from among 2|L|+|U| possibilities.
Both U and L can be large. U is as large as the un-

structured tuple input set, which can easily extend into tens
of thousands when extracted from just a few million doc-
uments. The set of unique attributes is slightly harder to
predict. The input data is expected to have enough com-
monality to enable a useful schema, but there may be a large
number of eccentric attribute labels. It would not be sur-
prising to see several thousand in L (indeed, we see 13,377
labels in just the nutrition dataset described in Section 4).
Thus the overall space of possible outputs is enormous.

The schema discovery problem is: given unstructured tu-
ples U and scoring inputs wN , w(), and h(), find the out-



0

20

40

60

80

100

120

140

160

180

0 20 40 60 80 100

m

Se
co

nd
s e

lap
se

d

Data Exploration Query Formulation

0

10

20

30

40

50

60

70

0 2000 4000 6000 8000 10000

# input values

Se
co

nd
s e

lap
se

d

Data Exploration Query Formulation

Figure 7: The left-hand image shows performance as we vary the size of the memory buffer m between 1 and
100. The right-hand shows performance as we vary the number of input values from 1000 to 10,000. In both
cases, runtime for TGen grows roughly linearly.

puts (S,A) with the largest score f(S,A). Not surprisingly,
schema extraction is an NP-hard problem, as seen by reduc-
tion from the set-cover optimization problem.

Definition 2.1. The set cover optimization problem is
the following. Given a set U (called “universe”), a set S
of subsets of U , find the subcollection C ⊂ S that uses the
smallest number of sets whose union is U .

Using the fact that set cover optimization is NP-hard [10]
we can show:

Theorem 2.2. The schema extraction problem is NP-hard.

3. TGEN
TGen is a data-mining style algorithm that takes as input

the set of unstructured tuples U and repeatedly computes
the single best table to add to S. After a table is computed
for S and the assigned value extractions are added to A,
all of the assigned values are removed from U before the
next table computation. The algorithm terminates when the
application does not require any more tables (e.g., because
the interface cannot display any more).

Computing a single best table from input U and user-
chosen parameter m (the memory buffer size) works as fol-
lows:

1. Initialize k = 0, T0 = {TNULL} where TNULL is the
table with no attributes.

2. Starting at iteration k = 1, repeat the following:

(a) Create a hypothesis set Tk of m potential table
schemas, each with k attributes, as follows. For
each T in Tk−1, extend T in all possible ways with
one more attribute. Prune to size m by choosing
the m tables with the highest predicted score, us-
ing attribute co-occurrence statistics to perform
predictions.

(b) For each tuple u ∈ U, for each T ∈ T, test to see
if u would result in a positive frT (u) score. If so,
we add the score to the ft(T ) computation.

(c) Compute the final score for each T ∈ T and store
the highest-scorer so far.

(d) Increment k; exit when k reaches a maximum al-
lowable table size.

The number of potential tables is exponential in |L|, so we
can rarely consider every possible table schema. We rely on
the attribute statistics heuristics to choose T effectively; if a
table T is not in the m set of hypothesis tables, it will never
even be tested against the data and will never be emitted.
Pruning can be inaccurate, so a larger m makes it likelier
that high-quality tables will be available in the hypothesis
set, but at the cost of running times and memory use.

Note that even if the highest-scoring table is present in T,
we may not find the correct assignment of tuples for it. We
allocate the assignment using only local information about
the score frT , but even a positive value could lower the
overall table score when the user-chosen interface functions
are incorporated.

4. EXPERIMENTAL RESULTS
Most of our experiments were carried out on a set of

nutrition-oriented extractions, obtained by running the Tex-
tRunner extractor over a set of 2.5 million web pages gath-
ered from a focused web crawl. We seeded a breadth-first
crawl by first picking a number of classes in the domain,
then using WordNet [17] to find instances of those classes,
and then performing random search queries using these in-
stances to obtain the seeds. To ensure high-quality extrac-
tions, we removed all those that occurred fewer than 3 times,
leaving 12,575 unstructured tuples and 13,377 unique at-
tributes. The universal table for this data would be very
sparse, with just 55,249 extracted values in a table of over
168M cells.

As long as TGen has a nontrivial memory buffer m, it is
successful at obtaining tables that match the given interface
constraints. When m = 100, the data browsing problem on
nutrition data elicits tables with a median of 21.5 rows and
6 attributes, and an average of 25.2 and 5.5, respectively.
These match the given w() and h() functions very closely.
For the query formulation problem, we obtain only single-
attribute columns, strictly sorted by the number of rows
that have a value for the relevant column.

Performance for TGen is roughly linear in both the size of
the memory buffer parameter and the input values, as seen
in Figure 7. Runtimes on the order of minutes are not fast
enough for web-search-style interactivity, but are reasonable
for learning a domain for the first time.

How well does the actual schema output help with the
applications? Figure 8 shows a summary of the top-10 rela-
tions when TGen is run on the nutrition dataset for the data



Rank Topic # Rows Frac. good Example Rows # Attrs Frac. good Example Attrs

1 nutrients/minerals 25 0.84 vitamin c, thiamine 6 1.0 is found in, is essential for
2 health actors 10 0.80 adults, men 6 0.67 take, often have
3 info-related words 14 1.0 this report, this site 6 1.0 is provided as
4 research-related objects 24 0.96 conference, program 6 0.67 was supported by
5 foods 36 0.94 soybeans, carrots 6 1.0 are low in, are high in
6 health authorities 21 0.86 health officials, fda 4 1.0 said, warned
7 diseases 71 0.73 influenza, lyme disease 5 1.0 is spread by, is caused by
8 info-related words 16 0.95 this lesson, this unit 5 1.0 presents, was published in
9 no clear topic 16 N/A the sun, the animal 6 N/A is under, was in
10 organs 13 0.92 the pancreas, the skin 5 1.0 secretes, produces

Figure 8: Overview of the top-10 relations emitted by TGen on the nutrition dataset with m = 100 for the
data browsing task. Rows and attributes were checked by hand to see if they are specific (e.g., “people” is
too vague) and on-topic. The relations in italics, at rank 3, 8, and 9, contain rows that are not specific to
nutrition or do not have an obvious topic. We might remove these relations with an improved extractor or
by collecting statistics about extractions that frequently occur outside the current corpus.

browsing task. As mentioned above, it generates a series of
single-attribute relations when run on the query formulation
task. While three of the top-10 relations are not helpful, the
remaining seven are on-topic and closely match the applica-
tion’s design preferences.

5. RELATED WORK
There is extensive related work in the area of information

extraction, discussed above in Section 2.1.
The field of schema matching and creation contains a sub-

stantial amount of work, but most of it has focused on clean
data from traditional databases. Schema matching systems
have used a number of different structure-matching tech-
niques [7, 20, 21]. Doan, et al. examined the data as well as
the structural elements [12]. Miller, et al. described “schema
discovery” for data without any given schema, suggesting
a domain-independent clustering approach [18]. TGen, in
contrast, uses only extractions from text; it has no struc-
tured inputs at all. Because the inputs are assumed to be
quite noisy, and the result is not designed for transactional
use, TGen outputs a database that is probably “dirtier”
than most traditional schema matchers could accept.

The XTRACT system attempted to find a high-quality
DTD for a set of clean XML documents, choosing the can-
didate DTD that is both small in size without overgener-
alizing beyond the inputs [14]. Its tradeoff between DTD
concision and precision is somewhat similar to the compet-
ing schema design criteria embodied in the scoring function
from Section 2.4.

The motivation for our work is probably closest to that of
Cong and Jagadish, who created compact schema summaries
that describe much more complicated schemas [9]. However,
in our case there is no preexisting schema to compress (and
to constrain the space of outputs), merely a set of noisy
extracted triples.

The Apriori algorithm attempts to learn association rules
from a database of itemsets by repeatedly generating and
then testing a set of candidate rules with a pass through
the database [2, 3]. TGen uses the same execution model,
computing candidate tables and testing them with a pass
through the unstructured tuple data. However, unlike Apri-
ori’s association rules, a table in TGen can accrue score
from a tuple even when the tuple only supports some of the
table’s attributes (in short, TGen must allow NULLs in the

table).

6. CONCLUSIONS
Schema discovery for data navigation is a novel prob-

lem whose solution enables two very helpful applications for
managing unstructured data (now found in abundance on
the Web). TGen is a promising start for a schema discov-
ery system.

7. REFERENCES
[1] E. Agichtein and L. Gravano. Snowball: Extracting relations from large

plain-text collections. In Procs. of the Fifth ACM International Conference on
Digital Libraries, 2000.

[2] R. Agrawal, T. Imielinksi, and A. Swami. Mining association rules between
sets of items in large databases. In Proceedings of the 1993 ACM SIGMOD
International Conference on Management of Data, pages 207–216, 1993.

[3] R. Agrawal and R. Srikant. Fast algorithms for mining association rules.
In VLDB 1994, 1994.

[4] A. Arasu and H. Garcia-Molina. Extracting structured data from web
pages. In SIGMOD Conference, pages 337–348, 2003.

[5] M. Banko, M. Cafarella, S. Soderland, M. Broadhead, and O. Etzioni.
Open information extraction from the web. In Procs. of the 20th International
Joint Conference on Artificial Intelligence (IJCAI 2007), 2007.

[6] S. Brin. Extracting Patterns and Relations from the World Wide Web. In
WebDB Workshop at 6th International Conference on Extending Database Technology,
EDBT’98, pages 172–183, Valencia, Spain, 1998.

[7] S. Castano and V. Antonellis. A schema analysis and reconciliation tool
environment for heterogeneous databases. In Proceedings of the International
Database Engineering and Applications Symposium (IDEAS-99), pages 53–62, 1999.

[8] C.-H. Chang and S.-C. Lui. Iepad: information extraction based on
pattern discovery. In WWW, pages 681–688, 2001.

[9] Y. Cong and H. Jagadish. Schema summarization. In VLDB, 2006.
[10] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to

Algorithms: Second Edition. MIT Press, 2002.
[11] V. Crescenzi, G. Mecca, and P. Merialdo. Roadrunner: automatic data

extraction from data-intensive web sites. In SIGMOD Conference, page 624,
2002.

[12] A. Doan, P. Domingos, and A. Halevy. Reconciling schemas of disparate
data sources: A machine-learning approach. In Proceedings of the 2001 ACM
SIGMOD International Conference on Management of Data, 2001.

[13] O. Etzioni, M. Cafarella, D. Downey, S. Kok, A. Popescu, T. Shaked,
S. Soderland, D. Weld, and A. Yates. Web-Scale Information Extraction in
KnowItAll. In WWW, pages 100–110, New York City, New York, 2004.

[14] M. Garofalakis, A. Gionis, R. Rastogi, S. Seshadri, and K. Shim. Xtract:
A system for extracting document type descriptors from xml documents.
In Proceedings of the 2000 ACM SIGMOD International Conference on Management
of Data, pages 165–176, 2000.

[15] N. Kushmerick, D. Weld, and R. Doorenbos. Wrapper Induction for
Information Extraction. In Procs. of the 15th International Joint Conference on
Artificial Intelligence (IJCAI), pages 729–737, Nagoya, Aichi, Japan, 1997.

[16] I. Mansuri and S. Sarawagi. A system for integrating unstructured data
into relational databases. In Proc. of the 22nd IEEE Int’l Conference on Data
Engineering (ICDE), 2006.

[17] Miller et al. Introduction to wordnet: An on-line lexical database.
International Journal of Lexicography, 3(4):235–312, 1990.

[18] R. J. Miller and P. Andritsos. Schema discovery. IEEE Data Eng. Bull.,
26(3):40–45, 2003.

[19] I. Muslea, S. Minton, and C. Knoblock. Hierarchical Wrapper Induction
for Semistructured Information Sources. Autonomous Agents and Multi-Agent
Systems, 4(1/2):93–114, 2001.

[20] L. Palopoli, D. Sacca, and D. Ursino. Semi-automatic semantic discovery
of properties from database schemes. In Proceedings of the International
Database Engineering and Applications Symposium (IDEAS-98), pages 244–253,
1998.

[21] E. Rahm and P. Bernstein. A survey of approaches to automatic schema
matching. VLDB Journal, 10(4):334–350, 2001.


