
Automatically Refining the Wikipedia Infobox Ontology

Fei Wu
Computer Science & Engineering Department,

University of Washington, Seattle, WA, USA
wufei@cs.washington.edu

Daniel S. Weld
Computer Science & Engineering Department,

University of Washington, Seattle, WA, USA
weld@cs.washington.edu

ABSTRACT
The combined efforts of human volunteers have recently extracted
numerous facts from Wikipedia, storing them as machine-harvestable
object-attribute-value triples in Wikipedia infoboxes. Machine learn-
ing systems, such as Kylin, use these infoboxes as training data,
accurately extracting even more semantic knowledge from natural
language text. But in order to realize the full power of this informa-
tion, it must be situated in a cleanly-structured ontology.This paper
introduces KOG, an autonomous system for refining Wikipedia’s
infobox-class ontology towards this end. We cast the problem of
ontology refinement as a machine learning problem and solve it
using both SVMs and a more powerful joint-inference approach
expressed in Markov Logic Networks. We present experiments
demonstrating the superiority of the joint-inference approach and
evaluating other aspects of our system. Using these techniques, we
build a rich ontology, integrating Wikipedia’s infobox-class schemata
with WordNet. We demonstrate how the resulting ontology maybe
used to enhance Wikipedia with improved query processing and
other features.

Categories and Subject Descriptors:
H.4.m [Information Systems]: Miscellaneous

General Terms:
Experimentation.

Keywords:
Semantic Web, Ontology, Wikipedia, Markov Logic Networks.

1. INTRODUCTION
The vision of a Semantic Web will only be realized when there

is a much greater volume of structured data available to power
advanced applications. Given the recent progress in information
extraction, it may be feasible to automatically gather thisinfor-
mation from the Web, using machine learning trained extractors.
Wikipedia, one of the world’s most popular Websites1, is a logi-
cal source for extraction, since it is both comprehensive and high-
quality. Indeed, collaborative editing by myriad users hasalready
resulted in the creation ofinfoboxes, a set of subject-attribute-value
triples summarizing the key aspects of the article’s subject, for nu-
merous articles. DBpedia [5] has aggregated this infobox data,
yielding over 15 million pieces of information.

Furthermore, one may use this infobox data to bootstrap a pro-
cess for generating additional structured data from Wikipedia. For

1Ranked8th in January 2008 according to comScore World Metrix.

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). Distribution of these papers is limited to classroom use,
and personal use by others.
WWW 2008, April 21–25, 2008, Beijing, China.
ACM 978-1-60558-085-2/08/04.

example, our autonomous Kylin system [35] trained machine-learning
algorithms on the infobox data, yielding extractors which can accu-
rately2 generate infoboxes for articles which don’t yet have them.
We estimate that this approach can add over 10 million additional
facts to those already incorporated into DBpedia. By running the
learned extractors on a wider range of Web text and validating with
statistical tests (as pioneered in the KnowItAll system [16]), one
could gather even more structured data.

In order to effectively exploit extracted data, however, the triples
must be organized using a clean and consistent ontology. Unfortu-
nately, while Wikipedia has a category system for articles,the facil-
ity is noisy, redundant, incomplete, inconsistent and of very limited
value for our purposes. Better taxonomies exist, of course,such as
WordNet [1], but these don’t have the rich attribute structure found
in Wikipedia.

1.1 KOG: Refining the Wikipedia Ontology
This paper presents the Kylin Ontology Generator (KOG), an au-

tonomous system that builds a rich ontology by combining Wiki-
pedia infoboxes with WordNet using statistical-relational learning.
Each infobox template is treated as a class, and the slots of the tem-
plate are considered as attributes/slots. Applying a Markov Logic
Networks (MLNs) model [28], KOG uses joint inference to predict
subsumption relationships between infobox classes while simulta-
neously mapping the classes to WordNet nodes. KOG also maps
attributes between related classes, allowing property inheritance.

1.2 Why a Refined Ontology is Important
Situating extracted facts in an ontology has several benefits.
Advanced Query Capability: One of the main advantages of

extracting structured data from Wikipedia’s raw text is theability
to go beyond keyword queries and ask SQL-like questions suchas
“What scientists born before 1920 won the Nobel prize?” An on-
tology can greatly increase the recall of such queries by supporting
transitivity and other types of inference. For example, without rec-
ognizing that particle physicist is a subclass of physicistwhich is
itself a subclass of scientists, a Wikipedia question-answering sys-
tem would fail to return “Arthur Compton” in response to the ques-
tion above. In many cases the attributes of different Wikipedia in-
fobox classes are mismatched, for example one infobox classmight
have a “birth place” attribute while another has “cityofbirth” —
matching corresponding attributes for subclasses is clearly essen-
tial for high recall.

Faceted Browsing: When referring to Wikipedia, readers use
a mixture of search and browsing. A clear taxonomy and aligned

2Kylin’s precision ranges from mid-70s to high-90s percent,de-
pending on the attribute type and infobox class.

Figure 1: Architecture of Kylin Ontology Generator.

attributes enable faceted browsing, a powerful and popularway to
investigate sets of articles [36].

Improving Extractors with Shrinkage: As long as an infobox
class has many instances (articles), Kylin has sufficient training
data to learn an accurate extractor. Unfortunately, long-tail distri-
butions mean that most infobox classesdon’t have many instances.
When learning an extractor for such a sparsely-populated class,C,
one may use instances of the parent and children ofC, appropri-
ately weighted, as additional training examples [17, 34].

Semiautomatic Generation of New Templates:Today, Wiki-
pedia infobox templates are designed manually with an error-prone
“copy and edit” process. By displaying infobox classes in the con-
text of a clean taxonomy, duplication and schema drift couldbe
minimized. Base templates could be automatically suggested by in-
heriting attributes from the class’ parent. Furthermore, by applying
the extractors which Kylin learned for the parent class’ attributes,
one could automatically populate instances of the new infobox with
candidate attribute values for human validation.

Infobox Migration: As Wikipedia evolves, authors are con-
stantly reclassifying articles, which entails an error-prone conver-
sion of articles from one infobox class to another. For example,
our analysis of five Wikipedia dump “snapshots” between 9/25/06
and 7/16/07 shows an average of 3200 conversions per month; this
number will only grow as Wikipedia continues to grow. An editing
tool that exploited KOG’s automatically-derived schema mappings
might greatly speed this process, while reducing errors.

1.3 Contributions
KOG embodies several contributions:
• We address the problem of ontology refinement and identify

the aspects of the Wikipedia data source which facilitate (as
well as those which hinder) the refinement process. We cod-
ify a set of heuristics which allow these properties to be con-
verted into features for input to machine learning algorithms.

• We cast the problem of subsumption detection as a machine
learning problem and solve it using both support-vector ma-
chines and Markov Logic Networks (MLNs). The MLNs
model is especially novel, simultaneously constructing a sub-
sumption lattice and a mapping to WordNet using joint in-
ference. Our experiments demonstrate the superiority of the
joint inference approach and evaluate other aspects of our
system.

• Using these techniques, we build a rich ontology which in-
tegrates and extends the information provided by both Wiki-
pedia and WordNet; it incorporates both subsumption infor-
mation, an integrated set of attributes, and type information
for attribute values.

• We demonstrate how the resulting ontology may be used to
enhance Wikipedia in many ways, such as advanced query
processing for Wikipedia facts, facetted browsing, automated
infobox edits and template generation. Furthermore, we be-
lieve that the ontology can benefit many other applications,
such as information extraction, schema mapping, and infor-
mation integration.

2. DESIDERATA & ARCHITECTURE
In order to support the applications described in the previous sec-

tion, an ontology (and the process used to create it) must satisfy
several criteria. First, we seekautomaticontology construction.
While researchers have manually created ontologies, such as [12],
this is laborious and requires continual maintenance. Automatic
techniques, likely augmented with human review, have the poten-
tial to better scale as Wikipedia and other document stores evolve
over time.

Second, the ontology should contain a well-defined ISA hierar-
chy, where individual classes are semantically distinct and natural
classes are well represented.

Third, each class should be defined with a rich schema, listing
a comprehensive list of informative attributes. Classes should be
populated with numerous instances. We note that, while Wikipedia
infobox classes have rich schemata, many duplicate classesand at-
tributes exist. Furthermore, many natural classes have no corre-
sponding Wikipdia infobox.

Fourth, classes (and attributes) should have meaningful names.
Randomly-generated names, e.g. G0037, are unacceptable and overly
terse names, e.g. “ABL” (the name of a Wikipedia infobox class),
are less favored than alternatives such as “Australian Baseball League.”

Finally, the ontology should have broad coverage — in our case,
across the complete spectrum of Wikipedia articles. While these
desiderata are subjective, they drove the design of KOG.

2.1 Architecture
As shown in Figure 1, KOG is comprised of three modules: the

schema cleaner, subsumption detector, and schema mapper. The
schema cleanerperforms several functions. First, it merges dupli-
cate classes and attributes. Second, it renames uncommon class
and attribute names, such as “ABL,” mentioned above. Third,it
prunes rarely-used classes and attributes. Finally, it infers the type
signature of each attribute.

The subsumption detectoridentifies subsumption relations be-
tween infobox classes, using wide range of different features: TF/IDF-
style similarity, the WordNet mapping, Wikipedia categorytags,
Web query statistics, and the edit history of the individualarticles.

The schema mapperbuilds attribute mappings between related
classes (especially between parent-child pairs in the subsumption
hierarchy). Wikipedia’s edit history is essential to this process.

Section 6 reports on several alternative designs for these mod-
ules. Our experiments show that a joint inference approach,which
simultaneously constructs the ISA-tree, while mapping classes to
WordNet, achieves the best performance. The next three sections
provide details for each module.

3. SELECTING & CLEANING SCHEMATA
Schemata obtained from the Web are frequently noisy, requiring

deduplication, attribute alignment and other cleaning before they

{{Infobox Settlement
|official_name = B

�
ij�ng

|other_name =
|native_name = ��
|settlement_type = [[Municipality of

China|Municipality
|image_skyline = SA Temple of Heaven.jpg
|image_caption = The [[Temple of

Heaven]], a symbol of Beijing
|citylogo_size =
|image_map = China-Beijing.png
|mapsize = 275px
|map_caption = Location within China
|subdivision_type = Country
|subdivision_name = [[People's Republic of China]]
|subdivision_type1 = [[Political divisions of

China#County level|County-
level divisions]]

|subdivision_name = 18
|subdivision_type2 = [[Political divisions of

China#Township
level|Township divisions]]

|subdivision_name2 = 273
|leader_title =[[Communist Party of

China|CPC]] Beijing
|leader_name =[[Liu Qi (Communist)|Liu Qi]]

Committee Secretary
|leader_title1 = [[Mayor]]
|leader_name1 =[[Wang Qishan]]
|established_title = Settled
|established_date = ca. 473 BC
…
}}

Figure 2: Sample Wikipedia infobox and the attribute / value
data used to generate it.

may be organized into an ontology. Consider the Wikipedia in-
fobox class schemata as a case study. Widely used to display a
concise, tabular summary of an article, an infobox defines subject-
attribute-value triples with the intent that infoboxes of the same
class will share most attributes. For example, Figure 2 shows the
“Beijing” infobox for the classsettlement; this was dynamically
generated from the data shown in Figure 2. The set of attributes
used in a class’ infoboxes, and the types of the associated val-
ues, implicitly define the schema of individual classes. Buteven
the explicitly defined Wikipedia schemata are noisy, with duplicate
schemata, sparse instantiation, obscure class names, and untyped
attributes. We now explain how to cope with these problems.

3.1 Recognizing Duplicate Schemata
One challenge stems from the need to group distinct but nearly-

identical schemata. In the case of Wikipedia, users are freeto mod-
ify infobox templates allowing schema evolution during thecourse
of authoring and causing the problem of class/attribute duplication.
For example, four different templates: “U.S. County” (1428), “US
County” (574), “Counties” (50), and “County” (19), were used to
describe the same class in the 2/06/07 snapshot of Wikipedia. Sim-
ilarly, multiple tags are used to denote the same semantic attributes
(e.g., “Census Yr”, “Census Estimate Yr”, “Census Est.” and“Cen-
sus Year”).

Schema matching has been extensively studied in the data-manage-
ment community, and the resulting techniques apply directly to the
task of duplicate detection [14, 23]. In the case of Wikipedia, how-
ever, the task is facilitated by additional features from the collabo-
rative authoring process: redirection pages and the edit history.

Wikipedia uses redirection pages to map synonyms to a singlear-
ticle. For example, “Peking” is redirected to “Beijing”. Bycheck-
ing all redirection pages, KOG notes when one infobox template
redirects to another.

Next, KOG converts class names to a canonical form: parenthe-
ses are replaced with “of” (e.g., “highschool (american)” to “high-
school of american”). Underscores, “_”, are replaced with aspace

Figure 3: The number of article instances per infobox class has
a long-tail distribution.

and digits are discarded (e.g., “musical artist_2” to “musical artist”3).
Finally, all tokens are converted to lowercase. Classes mapping to
the same canonical form are considered to be duplicates.

Conveniently, Wikipedia records a full edit history of changes to
the site; KOG exploits this information to locate duplicateattributes
within each class. For example, if authors have renamed attributes
from one name to another more times than a threshold (e.g., 5)
then this suggests that they likely denote the same semantics and
could be treated as duplicates. Similarly, if two attributes of class
c never have values filled simultaneously, and they have been both
transferred to the same attribute of classd, this edit pattern also
indicates duplication. KOG combines these edit-history features
with the evidence from canonical forms to render its final match.

3.2 Ignoring Rare Classes and Attributes
Another consequence of free authoring is schema sparseness—

many classes and attributes are used rarely, leading to a long-tailed
distribution. For example, Figure 3 shows the number of Wikipedia
article instances (log scale) per infobox class. Of the 1935classes,
25% have fewer than 5 instances and11% have only one. The case
is even worse for infobox-class attributes — only46% of attributes
are used by at least15% of the instances in their class.

We observed that rare infobox classes and attributes often indi-
cate non-representative uses (e.g., the “mayor” attributefor “U.S.
County”), or result from noisy data — As a first step, KOG elimi-
nates them from processing. Currently, KOG uses simple statistics
for pruning — infobox classes with fewer than 5 articles are ig-
nored. For each class, we keep only those attributes used by more
than15% of instance articles. In the future, we plan more sophisti-
cated methods for dealing with rare items.

3.3 Assigning Meaningful Names
In Wikipedia a number of infobox classes have obscure or terse

names, such as “ABL,” mentioned earlier, and “pref gr,” which de-
notes “prefectures of Greece.” Even humans may find it difficult
to discern the underlying meaning, yet without an intuitivename a
class has limited value.

KOG detects which names may need renaming by identifying
those which are missing (even after stemming) from a dictionary,
WordNet in our case. If any token from a class name fails to match
a WordNet node, KOG passes the name to the four-step procedure
described below. If this procedure succeeds at any step, it termi-
nates and returns the recovered full name.

Step 1: Split the name using case boundary information. For
example, “horseRacers” would be split into “horse Racers.”

Step 2: Use spell checking (i.e., the statistically-basedGoogle-
SpellSuggestionfunction) to find transmutations, e.g. correcting
“hungerstriker” to “hunger striker.”

3Sometimes authors add digits to names to indicate a minor differ-
ence. Inspection suggests that the variants should be merged when
creating a general purpose ontology.

Step 3: Collect the category tags of all instance articles within
the class, and pick the most frequentk (2 in our case) tags. If
the abbreviated form of one tag matches the class name, the tag is
treated as the recovered name. Otherwise, the most frequenttag is
returned. With the “ABL” class, for example, “Australian Baseball
Team” and “Australian Baseball League” are the two most frequent
tags, and “Australian Baseball League” would be returned.

Step 4: Query Wikipedia to see if there is an article correspond-
ing to the given class. If it is a redirected page and the titlehas
a good form (as measured heuristically), such as “Video Game”
redirected from “cvg”, KOG uses the title for the new class name.
Otherwise, it uses the definition phrase in the first sentenceof the
article as the final result. For example, for the “amphoe” class, there
is an “Amphoe” article whose first sentence reads “An amphoe is
the second level administrative subdivision of Thailand,”and so
KOG uses“second level administrative subdivision of Thailand”
as the class name.

These four heuristics may also be used to rename obscurely named
attributes, such as “yrcom,” (year of commission). In addition,
KOG uses Wikipedia’s edit history to see if people have manually
renamed the attribute in some instances of the class. For example,
“stat_pop” can be renamed “population estimation,” because users
have made some transfers between these two attributes.

3.4 Inferring Attribute Types
Even though infobox classes have associated schemata, there is

no type system for attribute values. Indeed, since infoboxes are
intended solely to provide convenient visual summaries forhu-
man readers, there is noguaranteethat users are consistent with
datatypes. Yet inspection shows that most attributesdohave an im-
plicit type (e.g. “spouse” has type “person”), and if types could
be inferred, they would greatly facilitate extraction, fact checking,
integration, etc.

KOG infers attribute types from the corresponding set of values,
using the following five-step procedure:

Step 1: Let c be an infobox class with attributea. For example,
a might be the “spouse” attribute of the “person” class. KOG gen-
erates the set of possible values ofa, and finds the corresponding
Wikipedia objects,Vc,a; note not every value will have correspond-
ing Wikipedia article.

Step 2: Create a partial functionω : Vc,a → Nw from value ob-
jects to WordNet nodes by combining two preexisting partialmap-
pings. The first source, “DBpediaMap,” is DBpedia’s [5] manually
created mapping from 287,676 articles to corresponding WordNet
nodes. If DBpediaMap does not have an image forv ∈ Vc,a, then
KOG uses “YagoMap,” an automatically-created mapping, which
links a greater number, 1,227,023, of Wikipedia articles toWord-
Net nodes [32].

Step 3: Consider the set of WordNet nodes {n : there exist at
leastt distinctv ∈ Vc,a such thatω(v) = n} for some threshold,
t (we uset = 10). If there are at least2 nodes in this set, KOG
considers the two which are mapped by the most values inVc,a and
finds their relationship in WordNet. If the relationship isalterna-
tive, sibling, or parent/child, KOG returns their least common par-
ent synset as the final type for the given attribute. For example, if
the two most frequent nodes are “physicist” and “mathematician”,
then KOG would choose type “scientist,” because it is the direct
parent of those two siblings. If no relationship is found, KOG sets
the type equal to the synset of the most frequent node.

Step 4: If no WordNet node is mapped by at leastt values in
Vc,a, KOG creates a larger set of values,V , by adding the values
of a similar class,c′ which also has attributea. For example, Wi-
kipedia entities from “Person.Spouse” and “Actor.Spouse”would

be put together to compute the accumulated frequency. The most
frequent WordNet node would be returned as the type of the target
attribute.

Step 5: If Step 4 also fails, KOG analyzes the edit history to find
the most related attribute, which has the highest number of transfers
with the target attribute. The type of this most-related attribute is
then returned as the type ofa.

KOG can also generate a type signature for a complete infobox
class. Indeed, this is easy after the class has been mapped toa
WordNet node, which is described in the next section.

4. DETECTING SUBSUMPTION
Detecting subsumption relations, i.e. that one classISA subset

of another, is the most important challenge for KOG. We model
this task as a binary classification problem and use machine learn-
ing to solve it. Thus, the two key questions are: 1) which features
to use, and 2) which machine learning algorithm to apply. In fact,
we implemented two very different learning frameworks: SVMs
and a joint inference approach based on Markov logic. The next
subsection defines the features: a mixture of similarity metrics and
Boolean functions. Section 6 shows that our joint inferenceap-
proach performs substantially better.

4.1 Features for Classification
KOG uses six kinds of features, some metric and some Boolean.
Similarity Measures: Class similarity is an indication of sub-

sumption, though not a sufficient condition. KOG uses four differ-
ent similarity metrics.

Attribute Set Similarity:KOG models a class as the set of its
attributes, compresses each set into a bag of words, and computes
the TF/IDF similarity score between the bags.

First Sentence Set Similarity:For each class, KOG creates a bag
of words by taking the first sentence of each instance of the class.
Again the TF/IDF score between the bags defines the similarity.

Category Set Similarity:The bags are created from the category
tags attached to the class instances.

Transfer Frequency:This similarity score is computed from Wi-
kipedia’s edit history. Ifc andc′ denote two classes, define their
transfer-frequencysimilarity as the number of articles whose class
membership switched fromc to c′ or vice versa. We normalize this
frequency to[0, 1.0].

Class-Name String Inclusion:Inspired by [33], we say that the
featureisaFT(c,d,Contain)holds iff: 1) the name ofd is a substring
of c’s name, and 2) the two names have the same head (as deter-
mined by the Stanford parser [2]). For example, the feature holds
for c = “English public school” andd = “public school,” since
both have “school” as head.

Category Tags:Many infobox classes have their own Wikipedia
pages, and sometimes a special type of category, “XXX infobox
templates,” is used to tag those pages. We say that the feature
isaFT(c,d,HasCategory)holds if class c has a special category tag
called “〈name of d〉 infobox templates.”

For example, the page for the “volleyball player” class has acate-
gory tag called “athlete infobox templates,” and there exists another
class named “athlete,” soisaFT(“volleyball player”, “athletes”,
HasCategory). This feature is strongly linked to subsumption (e.g.,
“volleyball player” ISA “athlete,” but nothing is guaranteed. For
example, both “athlete” and “Olympic” classes have the category
tag “Sports infobox templates”, but neither of themISAsports.

Edit History: The edit patterns from Wikipedia’s evolution con-
tain useful information — intuitively, when changing the type of an
instance, an author is more likely to specialize than generalize. We
define thedegreeof classc as the number of classes transferring

with c. Given a pair of classesc andd, KOG checks: 1) whether
the transfer-frequencybetweenc andd is high enough (e.g, bigger
than 5 in our case); 2) Whether the degree ofd is much bigger than
that ofc (e.g. more than twice as big). If both conditions are true,
we say the featureisaFT(c,d,EditH)holds — weak evidence for“A
ISA B”.

Hearst Patterns: Following [19, 16], KOG queries Google
to collect type information about class names using patterns such
as“NP0, like NP1” and“NP0 such as NP1”, which often match
phrases such as “. . . scientists such as phsyicists, chemists, and ge-
ologists.” We sayisaFT(c,d,HPattern)holds if the Google hit num-
ber for HPattern(c,d) is big enough(e.g. 200 in our case) while very
small for HPattern(d,c)(e.g. less than 10 in our case).

WordNet Mapping: By computing a mapping from infobox
classes to WordNet concept nodes, KOG gains useful featuresfor
predicting subsumption. For example, if bothc andd have perfectly
corresponding nodes in WordNet and one WordNet node subsumes
the other (sayisaFT(c,d,isaWN)), then this is likely to be highly
predictive for a learner. Since computing the mapping to WordNet
is involved, we describe it in the next subsection.

4.2 Computing the WordNet Mapping
In this section we explain how KOG generates two mappings

between infobox classes and WordNet nodes:ω(c) returns a node
whose name closely matches the name ofc, while ϕ(c) denotes
the node which most frequently characterizes theinstancesof c ac-
cording to Yago [32]. Based on these two mappings, KOG seeks
the closest semantic match̟(c) for each classc in WordNet (e.g.,
“scientist” class should map to the “scientist” node instead of the
“person” node), and outputs one of the seven mapping types char-
acterizing different degrees of match; in descending orderof strength
we have:LongName, LongHead, ShortNameAfterYago, ShortHead-
AfterYago, HeadYago, ShortName, andShortHead. The following
steps are tried in order until one succeeds.

Step 1: If classc’s name (after cleaning) has more than one to-
ken, and has an exact match in WordNet,ω(c), thenω(c) is output
as the closest semantic match̟(c) with mapping typeLongName.
This kind of mapping is very reliable — a random sample of 50
cases showed perfect precision.

Step 2: KOG uses the Stanford parser to locate the head ofc’s
name and returns the WordNet node which matches the longest sub-
string of that head,ω(c). For example, “beach volleyball player,”
is matched to “volleyball player” in WordNet, instead of “player.”
If the matched head has more than one token, thenω(c) is returned
with typeLongHead; a sample shows that it is also very reliable.

Step 3: If neither of the previous techniques work, KOG looks
for a consensus mapping amongst articles which instantiatethe
class, much as it did when determining an attribute’s type inSec-
tion 3.4. However, instead of using both the DBpediaMap and
YagoMap to define the mapping, as done previously, KOG just
uses YagoMap, saving the higher-quality, manually-generated DB-
pediaMap to use as training data for the learner. LetIc denote the
instances of infobox classc; for all o ∈ Ic let ϕ(o) be the Word-
Net node defined by Yago. Letϕ(c) be the most common node in
ϕ(Ic). If c’s head is a single token, and has a matched nodeω(c)
in WordNet, KOG checks the relationship betweenω(c) andϕ(c)
in WordNet. Ifω(c) is a child or alternative ofϕ(c) and the head is
the class name itself (i.e.,c’s name is a single token), KOG returns
ω(c) with typeShortNameAfterYago; otherwise, KOG returnsω(c)
with typeShortHeadAfterYago. If no relationship is found between
ω(c) andϕ(c), KOG returnsϕ(c) with typeHeadYago. If no ϕ(c)
is found, KOG returnsω(c) with type of eitherShortNameor Short-
Head, depending on whetherc is single token. As in Yago [32], we

select the most frequent sense of the mapped node in WordNet,
which turns out to work well in most cases.

To finally determine whether̟ (c) is returning a good mapping,
KOG encodes its mapping type as a Boolean feature:mapType(c,t),
wheret denotes one of the seven types (e.g.,LongName). A support
vector machine (SVM) is learned using DBpediaMap as a training
set (We used the LIBSVM implementation [3]). In this way, the
SVM learns relative confidences for each mapping type and outputs
a score for the WordNet mappings. This score can be used to easily
control the precision / recall tradeoff. Furthermore, the score could
also identify potentially incorrect mappings for further verification
(whether manual or automatic).

Now, when given two classesc andd, KOG can check whether
̟(c) subsumes̟ (d) in WordNet. If so, KOG constructs the fea-
ture, isaFT(c,d,isaWN), which is likely to be highly predictive for
the subsumption classifier described next.

We close by noting that, in addition to being a useful feature
for the subsumption classifier, the WordNet mapping has other im-
portant benefits. For example, each node in WordNet has an as-
sociated set of synonyms which can be used for query expansion
during query processing over the infobox knowledge base. For
example, consider a query about ballplayers born in a given year.
Even though there is no “ballplayer” class in Wikipedia, WordNet
knows that “ballplayer” and “baseball player” are synonymsand
so a query processing system can operate on records of the “base-
ball player” class. Additionally, associating the attributes from a
Wikipedia schema (as well as a long list of class instances) with
a WordNet node may also provides substantial benefit to WordNet
users as well.

4.3 Max-Margin Classification
One might think that there would be no need to learn a sec-

ond classifier for subsumption, once KOG has learned the mapping
from infobox classes to WordNet, but in practice the WordNetmap-
ping is not 100% correct, so the other features improve both preci-
sion and recall. But even if the first SVM classifier could learn a
correct mapping to WordNet, it would be insufficient. For exam-
ple, “television actor” and “actor” are both correctly mapped to the
WordNet node “person,” but this mapping is incapable of predict-
ing that “actor” subsumes “television actor.” Instead, KOGtreats
the mapping as just another feature and learns the subsumption re-
lation using all available information.

KOG uses the “DBpediaMap” to constructs the training dataset
(details in section 6.2) to train an SVM classifier for subsump-
tion. By automatically weighing the relative importance ofall fea-
tures, KOG finds an optimal hyperplane for classifying subsump-
tion. With a confidence threshold of 0.5, the SVM achieves an av-
erage precision of 97.2% at a recall of 88.6%, which is quite good.

4.4 Classification via Joint Inference
While the SVM’s performance is quite good, there is still space

to improve. First, the SVM classfier predictsISAbetween each pair
of classes sequentially and separately. This local search ignores
evidence which is potentially crucial. For example, if“c ISA d”
and “d ISA e” , then it is likely that“c ISA e” , even if no strong
features observed for the pair ofc ande.

Secondly, the SVM classifiers separate the WordNet mapping
andISAclassification as input and output, so that the crosstalk be-
tween these two parts is blocked. In reality, however, thesetwo
problems are strongly intermixed and evidence from either side can
help to resolve the uncertainty of the other side. For example, given
that classc andd have correct mappings to WordNet and“ ̟(c) ISA
̟(d)” , it is likely that “c ISA d” ; on the other hand, if“c ISA d”

but the retrieved mappings̟ (c) and̟(d) have noISA relation-
ship in WordNet, then it is clear that something is wrong — butthe
SVM won’t recognize the problem.

In contrast, a relational-learning model capable of joint inference
can exploit this global information. To see if this would lead to
greater performance, we applied the Markov Logic Networks(MLNs)
model. By addressingISA classification and WordNet mapping
jointly, our MLNs model achieves substantially better performance
for both tasks. Section 6 provides detailed experiments, but we note
that with a confidence threshold of 0.5, our MLNs model elimi-
nated43% of the residual error while simultaneously increasing
recall from 88.6% to 92.5%.

Before describing our MLNs classifier in more detail, we provide
background on Markov Logic Networks.

Markov Logic Networks
A first-order knowledge base can be seen as a set of hard con-

straints on the set of possible worlds: if a world violates even one
formula, it has zero probability. The basic idea of MLNs is tosoften
these constraints: when a world violates one formula in the KB it
is deemed less probable, but not impossible. The fewer formulas a
world violates, the more probable it is. Each formula has an asso-
ciated weight that reflects how strong a constraint it is: thehigher
the weight, the greater the difference in log probability between a
world that satisfies the formula and one that does not, other things
being equal.

(From Richardson & Domingos [28]) AMarkov Logic Network
L is a set of pairs(Fi, wi), whereFi is a formula in first-order logic
andwi is a real number. Together with a finite set of constantsC =
{c1, c2, . . . , c|C|}, it defines a Markov networkML,C as follows:

1. ML,C contains one binary node for each possible grounding
of each predicate appearing inL. The value of the node is 1
if the ground predicate is true, and 0 otherwise.

2. ML,C contains one feature for each possible grounding of
each formulaFi in L. The value of this feature is 1 if the
ground formula is true, and 0 otherwise. The weight of the
feature is thewi associated withFi in L.

Thus, there is an edge between two nodes ofML,C if and only
if the corresponding ground predicates appear together in at least
one grounding of one formula inL. An MLNs can be viewed as
a templatefor constructing Markov networks. The probability dis-
tribution over possible worldsx specified by the ground Markov
networkML,C is given by

P (X = x) =
1

Z

∏

i

φi(x{i}) (1)

whereZ is the normalization factor,φi(x{i}) is the potential func-
tion defined on theith clique which is related to a grounding of
formula Fi, andx{i} is the discrete variable vector in the clique.
Usually, it is represented as follows,

φi(x{i}) =

{

ewi Fi(x{i}) = True

1 Fi(x{i}) = False
(2)

In this way, we can represent the probability as follows,

P (X = x) =
1

Z
exp

{

∑

i

wini(x)

}

(3)

whereni(x) is the number of true groundings ofFi in x.

Using MLNs to Classify Subsumption
KOG uses the open source Alchemy system [22] to implement

its MLNs classifier. As described in Section 4.1, two predicates are
used to represent features:mapType(c,t)and isaFT(c1,c2,f). Two
query predicatesisa(c1, c2) andmap(c)are used to express the un-
certainty ofISAclassification and WordNet mapping, respectively.
After learning, Alchemy computes the probabilities of these predi-
cates.

We use three kinds of logical formulas to guide KOG’s learning.
The first represents the loose connection between WordNet map-
pings and the corresponding types. For example,

mapType(c,LongName) ⇔ map(c)

which means “Class c has a long class name and exactly matches
a node in WordNet if and only if this mapping is correct.”4 Re-
member that Alchemy will learn the best probabilistic weight for
this and the other rules. By using a metavariable, “+t,” instead of
the constantLongName, we direct Alchemy to learn weights for all
possible indications:mapType(c,+t) ⇔ map(c).

The second class of formulas encode the intuition that 1)ISA is
transitive, and 2) features such asisaFT(c1,c2,Contain)are likely
correlated with subsumption:

isa(c1, c2) ∧ isa(c2, c3) ⇒ isa(c1, c3)

isaFT (c1, c2, +f) ⇔ isa(c1, c2)

The final formulas encode the connection between the WordNet
mapping andISAclassification:

isaFT (c1, c2, isaWN) ∧ map(c1) ∧ map(c2) ⇒ isa(c1, c2)

which means “ifc1 andc2 both have correct WordNet mappings
and the mapped nodes areISA in WordNet, thenc1 ISAc2.”

Two other formulas complete the intuition:

isaFT (c1, c2, isaWN) ∧ isa(c1, c2) ⇒ map(c1) ∧ map(c2)

map(c1) ∧ map(c2) ∧ isa(c1, c2) ⇒ isaFT (c1, c2, isaWN)

Discriminative learning is used to determine the weights offormu-
las [30], and MC-SAT is used for inference [27]. Experimental re-
sults show that this joint inference approach improves the precision
of both ISAclassification and WordNet mapping.

5. MAPPING ATTRIBUTES ACROSS SCHEMATA
Schema mapping is a well-studied database problem, which seeks

to identify corresponding attributes among different relational sche-
mata [14, 23]. With KOG, we take a simple approach which ex-
ploits the structure of Wikipedia, relying on the edit history (e.g.,
Wikipedia’s sequential record of every edit to every page) and string
similarity comparison to find attribute mappings.

Let c andd denote two classes, typically a parent/child pair from
the subsumption lattice constructed in the previous section. KOG
considers different pairs of attributes, looking for a match by check-
ing the following conditions in turn:

Step 1: If the transfer frequencybetween two attributesc.a and
d.b is high enough (≥ 5 in our case), KOG matches them.

Step 2: If data is sparse, KOG considers attribute names inde-
pendent of class, looking at the edit history of all classes with at-
tributes nameda andb. For example, it treats “actor.spouse” and
“person.spouse” both as “spouse,” and “person.wife” and “musi-
cian artist.wife” both as “wife,” and computes the sum of thetrans-
fer frequencies between all possible pairs of attributes(a, b). If an
4In fact, Alchemy converts the bidirectional implication into two
separate clauses, one for each direction; this allows it to learn dif-
ferent weights for each direction.

attributec.a wasn’t mapped in Step 1 and thetransfer frequencybe-
tween attributea andb is over threshold in this aggregate fashion,
then KOG mapsc.a to d.b.

Step 3: If the previous steps fail, KOG uses the lexical, string
comparison method, like that of Section 3.1.

Once mapping is complete, KOG iterates over all attributes,col-
lecting every corresponding attribute into a bag of alternative names.
For example, the “birth place” attribute of “person” is given the fol-
lowing alternative names: birthplace, place of birth, place birth, lo-
cation, origin, cityofbirth, born.” This naming information is help-
ful for query expansion and for other tasks (e.g., query suggestion,
information integration, etc.)

Since KOG has already estimated a type signature for each at-
tribute, it uses this to double-check whether the attributemapping
is consistent. Those which fail to match are tagged for subsequent
verification and correction, which could be manual or automatic. In
the future, we intend to add the attribute mapping phase, with type
consistency, into our joint inference approach.

6. EXPERIMENTS
To investigate KOG’s performance, we downloaded the English

version of Wikipedia for five dates between 09/25/2006 and 07/16/2007.
We evaluated ontology refinement on the 07/16/2007 snapshot; pre-
vious versions were used to compute edit-history information. There
are many measurements for taxonomy creation. We chose the most
general criteria of precision and recall.

6.1 Selecting & Cleaning Schemata
This section addresses three questions: How does KOG recog-

nize duplicate schemata? How does it assign meaningful names?
And what is the precision for attribute type inference?

Recognizing Duplicate Schemata
Our data set contained 1934 infobox templates. By following

redirected pages, KOG found 205 duplicates; checking canonical
forms identified another 57. A manual check yielded an estimate
of 100% precision. To estimate recall, we randomly selected 50
classes and found 9 duplicates by manual checking. KOG suc-
cessfully identified 7 of them, which leads to an estimated recall
of 78%. Since KOG also prunes classes containing less than 5 in-
stance articles, 1269 infobox classes are selected.

For attributes, KOG found 5365 duplicates — about 4 per class.
We randomly selected 10 classes and manually identified 25 true
duplications. On this set KOG predicted 23 duplicates of which 20
of them were correct. This leads to an estimated precision of87%,
and estimated recall of 79%. Since KOG ignores attributes which
are used by less than 15% instance articles, 18406 attributes (out of
40161) survived cleaning.

Assigning Meaningful Names
By referring to WordNet, KOG selected 318 out of 1269 in-

foboxes for name recovery. KOG found names for 302 of these
candidates and manual checking rated 267 of them to be correct.
This is quite encouraging, because many class names are extremely
hard to interpret — even for human beings. For example, KOG cor-
rectly renamed “wfys” to be “youth festivals” and renamed “nycs”
to “New York City Subway.” Table 1 shows the detailed contribu-
tion of each heuristic, where “All” means the combination ofevery
heuristic, as described in section 3.1.

For attributes, we randomly selected 50 classes which contain a
total of 654 attributes. By referring to WordNet, KOG identified
153 candidates, and it reassigned names to 122 of them; 102 ofthe
new names were correct. This leads to an estimated precisionof
84% and recall of 67%. We note that KOG didn’t perform as well

Heuristic Precision(%) Recall(%) F-Measure(%)
CaseCheck 97.0 10.1 18.2
GoogleSpell 91.7 6.9 12.9

Category 86.7 61.3 71.8
WikiQuery 90.0 5.7 10.7

All 88.4 84.0 86.1

Table 1: Performance of assigning meaning full class names.

here as it did when renaming class names. One explanation may
be that less attention is paid by humans to attribute names, and this
provides a weaker signal for KOG to exploit.
Inferring Attribute Types

In order to check the performance of type inference, we ran-
domly picked 20 infobox classes, which had a total of 329 at-
tributes. KOG predicted a type for 282 of these and 186 predictions
were correct. This leads to an estimated precision of 66% with a
recall of 57%. These results are acceptable given the problem diffi-
culty and lack of labeled training data, but we anticipate that by in-
corporating the techniques introduced by the REALM model [15],
KOG could do substantially better.

6.2 Subsumption Detection
We now focus on three additional questions: What are the preci-

sion and recall of subsumption detection? How does KOG identify
incorrect WordNet mappings? And what is the benefit (if any) of
joint inference? First, however, we describe how KOG automati-
cally derive a training dataset based on open Web resources.
Training dataset construction

Recall that “DBpediaMap” contains manually-created mappings
from 287,676 articles to their corresponding WordNet nodes; the
articles come from 266 of the infobox classes. KOG uses this data
to construct the pseudo-training dataset for subsumption detection5.
We call it “pseudo” because it is constructed indirectly, asfollows.
For each class covered by “DBpediaMap”, we first select the most
frequent aggregated label over its instance articles. Thenwe de-
cide whether this is aNameMapor HeadMap: if the label exactly
matches the class name or one of its alternative terms in WordNet,
we call it aNameMap; otherwise call it aHeadMap. Besides “DB-
pediaMap”, two other mapping types are also added to the pseudo
dataset due to their high precision: one isLongNameand another
LongHead. In this way, we get a dataset of 401 classes with pseudo-
labeled WordNet mappings. Then KOG produces positive and neg-
ative ISApairs by following the hyponym tree in WordNet:

• Suppose both classc andd haveNameMap̟ (c) and̟(d).
If ̟(c) ISA ̟(d), KOG labels“c ISA d” . Otherwise,“c
NOT ISA d”;

• Suppose classc hasHeadMap̟ (c) and classd hasNameMap
̟(d). If ̟(c) ISA̟(d)” , or ̟(c) is an alternative term of
̟(d), we label“c ISA d” .

In this way, KOG gets205 positive and358 negative ISA pairs
for training.
Results

To better understand the source of performance at subsumption
classification, we also implemented a simplified MLNs classifier;
it uses exactly the same features as the SVM classifier (without the
formulas for crosstalk between WordNet mapping andISAclassifi-
cation). For clarity, we call the simplified model “MLN,” andthe
fully-functional one “MLN+.” We test each model’s performance
with 5-fold cross validation on the pseudo-labeled dataset.
5Other datasets, like the automatically compiled “YagoMap”or the
“Category Ontology” from [26] can also serve for this purpose

Figure 4: Precision vs. recall curve of ISA-tree construction.

Figure 5: ISA classification with confidence threshold set as0.5.

Figure 4 shows the precision/recall curves for subsumptionclas-
sification. All three models perform well. We suspect most people
are willing to trade away recall for higher precision. In this sense,
both MLNs models perform better than the SVM classifier, and
MLN+ is the best by further extending the recall. To have a close
look, we set the confidence threshold at 0.5, and compared three
models’ performance in Figure 5. The SVM classifier achieves
an excellent precision of 97.2% and recall of 88.6%. The MLN
model drops precision to 96.8% but has better recall at 92.1%. And
MLN+ wins on both counts, extending precision to 98.8% (elimi-
nating residual error by 43%) and recall to 92.5%. Since the only
difference between the two MLNs are the formulas inducing joint
inference, it is clear that this is responsible.

As we mentioned before, the WordNet mapping is useful in its
own right. To check how joint inference affects this task, weagain
implemented a simplified MLNs and compared the performance of
three models. Figure 6 shows that both MLNs models achieve a big
improvement over the SVM classifier.The MLN+ model has over-
all better performance than MLN, especially at high recall.This
improvement stems from MLN+’s ability to identifying incorrect
WordNet mappings, as shown in Figure 7. This ability may trans-
late into an effectivemixed-initiative interface, since the MLN+
model will be able to drive active learning, asking humans tocor-
rect examples which it knows are incorrect.

6.3 Mapping Attributes Across Schemata
This section evaluates the precision and recall of KOG’s schema

mapping capability. In particular, we are interested in theability to

Figure 6: Precision vs. recall curve of WordNet mapping.

Figure 7: Relative performance detecting incorrect WordNet
mappings.

accurately map corresponding attributes between parent and child
schemata. To perform the evaluation, we took a random sample
of 10 ISAclass pairs (comprising 20 classes) from the constructed
subsumption lattice. Manual checking revealed a total of 91true
mappings. KOG made 84 predictions and 79 of them were cor-
rect. This leads to an estimated precision of 94% and recall of
87%. There are two main causes for incorrect mappings: first,
some ambiguous attributes are invented for flexible visualization
purpose. For example, “free” and “free_label” are widely used
by users to define attributes. This ambiguity misleads KOG to
link several attributes to these free attributes. Secondly, the string-
similarity heuristic also produces errors occasionally. For example,
“road.direction_a” is mapped to “route.direction_b” since only one
character is different. In the future we hope to incorporaterecently-
developed schema-mapping techniques from the database commu-
nity in order to boost precision and recall.

6.4 Enabling Advanced Queries
The main motivation for KOG was the hope that the resulting

ontology would support advanced queries over data extracted from
Wikipedia and the Web. As preliminary confirmation of this, we
did a case study to check its support for query over Wikipediain-
foboxes. It turns out KOG helps to extend the recall in many cases.
For example, given a query like:

• “Which performing artists were born in Chicago?”

Without the refined ontology, one would likely return zero re-
sults, because there is no “performing artist” infobox in the current
Wikipedia. However, with KOG we know “performer” is an alter-
native of “performing artist” and its “location” attributehas “born”
as an alias. As a result, the answer “Michael Ian Black” wouldbe
successfully retrieved from an infobox. Furthermore, by follow-
ing the ISA tree, we know “actor” and “comedian” are childrenof
“performer”, and their attributes “birthplace”, “birth place”, “city-
ofbirth”, “place of birth”, “origin” are duplicates, all mapping to
the “location” attribute of “performer.” This expansion allows the
return of 162 additional answers from “actor” and one additional
answer from the “comedian” class.

7. RELATED WORK
Ontology Construction Based on WikipediaSuchanek et al. built
the Yago system by unifying WordNet and Wikipedia, where leaf
category tags are mapped to WordNet nodes with rule-based and
heuristic methods [32]. Strube et al. derived a large scale taxonomy
based on the Wikipedia category system by applying several heuris-
tics to identify the ISA relationships among category tags [26].
In contrast with this work, we focus on combining Wikipedia in-
foboxes with WordNet, and trained a sophisticated MLNs model
to jointly infer the WordNet mapping and ISA classification.In
some sense, their work and ours are complementary to each other:
they achieve greater coverage with category tags, and we provide
detailed schemata together with attribute mappings.

Herbelot et al. extracted ontological relationships from Wiki-
pedia’s biological texts, based on a semantic representation derived
from the RMRS parser [21]. In contrast, KOG constructs a broad,
general-purpose ontology. Hepp et al. propose to use standard Wiki
technology as an ontology-engineering workbench and show an ap-
plication of treating Wikipedia entries as ontology elements [20].
We are also motivated by the special structures (e.g., infoboxes)
in Wikipedia, and try to address more advanced problems, such as
subsumption extraction and schema mapping.

Learning Relations from Heterogenous EvidenceCimiano et al.
trained an SVM classifier to predict taxonomic relations between
terms by considering features from multiple and heterogeneous sou-
rces of evidence [10]. For KOG, we also used SVM classifiers to
handle diverse features from heterogenous evidences. Furthermore,
we also applied an MLNs model, showing the benefit of joint infer-
ence: by using a single MLNs classifier, KOG creates the WordNet
mapping and ISA classification simultaneously — getting better
performance on both tasks.

Snow et al.’s work [31] is closer to ours in the sense of handling
uncertainty from semantic relationships and WordNet mappings all
together over heterogenous evidence. However there are several
important differences. First, they use local search to incrementally
add one new relation in each step, greedily maximizing the one-step
increase in likelihood. This hill-climbing model risks slipping into
a local maximum, with no ability to jump to a globally better solu-
tion. In contrast, we use a MLNs model to jointly infer the value
of all relations, more likely finding the optimal solution. Second,
Snow et al. assume that each item of evidence is independent of all
others given the taxonomy, and depends on the taxonomy only by
way of the corresponding relation. In contrast, our MLNs model
doesn’t make any independence assumption during inference.

Schema MatchingSeveral of the problems addressed by KOG
may be seen as instances of the schema-matching problem: recog-
nizing duplicate schemata, finding duplicate attributes, and match-
ing the attributes of one schema with those of a subsuming class.
Many researchers have investigated this general problem, especially

those in the database and IR communities. For example, Doan
et al. developed a solution combining several types of machine
learning [14]. Madhavan et al. proposed a corpus-based match-
ing approach which leverages a large set of schemata and map-
pings in a particular domain to improve robustness of matching
algorithms [23]. He and Chang proposed a statistical schemamap-
ping framework across Web query interfaces by integrating large
numbers of data sources on the Internet [18]. Bilke and Naumann
exploit the existence of duplicates within data sets to perform auto-
matic attribute mappings [6]. We would like to incorporate these
approaches into KOG, but to date have implemented a simpler,
heuristic approach which exploits Wikipedia-specific structure to
yield acceptable performance.

General Ontology Construction The most widely used method
for automatic ontology extraction is by lexico-syntactic pattern anal-
ysis. This is first proposed by Marti Hearst to acquire hyponyms
from large text corpora [19], and later followed by many successful
systems, such as KnowItAll [16] and PANKOW [8, 9]. Cafarella
et al. proposed the TGen system to discover schemas from the un-
structured assertions harvested from the Web [7]. Another general
way to learn ontology is clustering concept hierarchies as in [11].
Linguistic approaches are also applied, such as OntoLearn [33] and
TextToOnto [29]. All these methods mainly focus on unstructured
texts, while we fully exploited the rich (semi)structured informa-
tion available on the Web, such as infoboxes in Wikipedia, tohelp
ontology construction. These two methods can benefit each other
by either improving precision or extending coverage.

Other Wikipedia-Related SystemsMilne et al. implemented a
new search engine interface called Koru, which harnesses Wiki-
pedia to provide domain-independent, knowledge-based informa-
tion retrieval [24]. Adler and Alfaro proposed a reputationsys-
tem for Wikipedia which checks whether users’ edits are preserved
by subsequent authors [4]. Nguyan et al. try to gather assertions
from Wikipedia articles by locating entity pairs in sentences and us-
ing an SVM to classify them into 13 predefined relationships [25].
DeRose et al. proposed a Cwiki approach to combine both ma-
chine and human’s contributions to build community portalssuch
as Wikipedia [13]. One of their core tasks is to address the in-
consistency between machine and human contributors; here,our
automatically-refined Wikipedia ontology could be helpful. On the
flip side, Cwiki provides a good platform to implement applica-
tions, such as faceted browsing, or structured querying, which were
based on our refined ontology.

8. CONCLUSION
Wikipedia is developing as the authoritative store of humanknowl-

edge. Recently, the combined efforts of human volunteers have ex-
tracted numerous facts from Wikipedia, storing them as machine-
readable object-attribute-value triples in Wikipedia infoboxes. Fur-
thermore, machine-learning systems, such as Kylin [35], can use
these infoboxes as training data, and then accurately extract even
more triples from Wikipedia’s natural-language text. Thishuge
repository of structured data could enable next-generation question
answering systems which allow SQL-like queries over Wikipedia
data, faceted browsing, and other capabilities. However, in order to
realize the full power of this information, it must be situated in a
cleanly-structured ontology.

This paper makes a step in this direction, presenting KOG, an
autonomous system for refining Wikipedia’s ontology. We cast
the problem of ontology refinement as a machine learning prob-
lem and present a novel solution based on joint inference imple-
mented using Markov Logic Networks. Our experiments show that

joint-inference dominates other methods, achieving an impressive
96.8% precision at92.1% recall. The resulting ontology contains
subsumption relations and schema mappings between Wikipedia’s
infobox classes; additionally, it maps these classes to WordNet.

In the future we intend to use the ontology to develop an im-
proved query interface for Wikipedia and the Web. Combining
Kylin with KOG is an obvious first step. We also anticipate an in-
ference scheme which combines multiple facts to answer a broader
range of questions. There are also several ways to improve KOG it-
self, including improved word sense disambiguation and extending
our joint-inference approach to include schema mapping.

AcknowledgmentsWe thank Eytan Adar, AnHai Doan, Oren
Etzioni, Raphael Hoffmann, Stephen Soderland and the anonymous
reviewers for valuable suggestions. This work was supported by
NSF grant IIS-0307906, ONR grant N00014-06-1-0147, SRI CALO
grant 03-000225 and the WRF / TJ Cable Professorship.

REFERENCES
[1] http://wordnet.princeton.edu/.
[2] http://nlp.stanford.edu/downloads/lex-parser.shtml.
[3] http://www.csie.ntu.edu.tw/ cjlin/libsvm/.
[4] B. T. Adler and L. de Alfaro. A content-driven reputation

system for the wikipedia.WWW ’07: Proceedings of the 16th
international conference on World Wide Web, pages
261–270, New York, NY, USA, 2007. ACM.

[5] S. Auer, C. Bizer, J. Lehmann, G. Kobilarov, R. Cyganiak,
and Z. Ives. Dbpedia: A nucleus for a web of open data.
Proceedings of ISWC07, 2007.

[6] A. Bilke and F. Naumann. Schema matching using
duplicates.Proceedings of ICDE05, 2005.

[7] M. J. Cafarella, D. Suciu, and O. Etzioni. Navigating
extracted data with schema discovery.Proceedings of
WebDB07, 2007.

[8] P. Cimiano, S. Handschuh, and S. Staab. Towards the
self-annotating web.Proceedings of WWW04, 2004.

[9] P. Cimiano, G. Ladwig, and S. Staab. Gimme’ the context:
Context-driven automatic semantic annotation with
c-pankow.Proceedings of WWW05, 2005.

[10] P. Cimiano, A. Pivk, L. Schmidt-Thieme, and S. Staab.
Learning taxonomic relations from heterogeneous sources of
evidence.Ontology Learning from Text: Methods,
Evaluation and Applications, 2005.

[11] P. Cimiano and S. Staab. Learning concept hierarchies from
text with a guided agglomerative clustering algorithm.
Proceedings of Workshop on Learning and Extending Lexical
Ontologies with Machine Learning Methods, ICML05, 2005.

[12] P. Clark and B. Porter. Building concept representations from
reusable components.Proceedings of AAAI97, 1997.

[13] P. DeRose, X. Chai, B. Gao, W. Shen, A. Doan, P. Bohannon,
and J. Zhu. Building community wikipedias: A
human-machine approach.Proceedings of the IEEE 24th
International Conference on Data Engineering (ICDE-08),
Cancun, Mexico, 2008.

[14] A. Doan, P. Domingos, and A. Y. Halevy. Learning to match
the schemas of data sources: A multistrategy approach.
Machine Learning, 50(3):279–301, 2003.

[15] D. Downey, S. Schoenmackers, and O. Etzioni. Sparse
information extraction: Unsupervised language models to the
rescue.Proceedings of ACL07, 2007.

[16] O. Etzioni, M. Cafarella, D. Downey, S. Kok, A. Popescu,
T. Shaked, S. Soderland, D. Weld, and A. Yates.

Unsupervised named-entity extraction from the Web: An
experimental study.Artificial Intelligence, 165(1):91–134,
2005.

[17] D. Freitag and A. McCallum. Information Extraction with
HMMs and Shrinkage.Proceedings of the AAAI-99
Workshop on Machine Learning for Information Extraction,
Orlando, Florida, 1999.

[18] B. He and K. Chang. Statistical schema matching across web
query interfaces.Proceedings of SIGMOD03, 2003.

[19] M. Hearst. Automatic acquisition of hyponyms from large
text corpora.Proceedings of COLING92, 1992.

[20] M. Hepp, K. Siorpaes, and D. Bachlechner. Harvesting wiki
consensus: Using wikipedia entries as vocabulary for
knowledge management.IEEE Internet Computing,
11(5):54–65, 2007.

[21] A. Herbelot and A. Copestake. Acquiring ontological
relationships from wikipedia using rmrs.Proceedings of
Workshop on Web content Mining with Human Language
Technologies, ISWC06, 2006.

[22] S. Kok, M. Sumner, M. Richardson, P. Singla, H. Poon, and
P. Domingos. The alchemy system for statistical relational
AI, technical report, university of washington, 2006.

[23] J. Madhavan, P. Bernstein, A. Doan, and A. Halevy.
Corpus-based schema matching.Proceedings of ICDE05,
2005.

[24] D. Milne, I. H. Witten, and D. Nichols. A knowledge-based
search engine powered by wikipedia.Proceedings of
CIKM07, 2007.

[25] D. P. T. Nguyen, Y. Matsuo, and M. Ishizuka. Relation
extraction from wikipedia using subtree mining.Proceedings
of AAAI07, 2007.

[26] S. P. Ponzetto and M. Strube. Deriving a large scale
taxonomy from wikipedia.Proceedings of AAAI07, 2007.

[27] H. Poon and P. Domingos. Sound and efficient inference with
probabilistic and deterministic dependencies.Proceedings of
AAAI06, 2006.

[28] M. Richardson and P. Domingos. Markov logic networks.
Machine Learning, 2006.

[29] D. Sanchez and A. Moreno. Web-scale taxonomy learning.
Proceedings of Workshop on Extending and Learning
Lexical Ontologies using Machine Learning, ICML05, 2005.

[30] P. Singla and P. Domingos. Discriminative training of
markov logic networks.Proceedings AAAI05, 2005.

[31] R. Snow, D. Jurafsky, and A. Ng. Semantic taxonomy
induction from heterogenous evidence.Proceedings of
ACL06, 2006.

[32] F. M. Suchanek, G. Kasneci, and G. Weikum. Yago: A core
of semantic knowledge - unifying WordNet and Wikipedia.
Proceedings of WWW07, 2007.

[33] P. Velardi, R. Navigli, A. Cucchiarelli, and F. Neri.
Evaluation of ontolearn, a methodology for automatic
learning of domain ontologies.Ontology Learning and
Population, 2005.

[34] F. Wu, R. Hoffmann, and D. Weld. Information extraction
from Wikipedia: Moving down the long tail.In Submission,
2008.

[35] F. Wu and D. Weld. Autonomouslly semantifying wikipedia.
Proceedings of CIKM07, Lisbon, Porgugal, 2007.

[36] K. Yee, K. Swearingen, K. Li, and M. Hearst. Faceted
metadata for image search and browsing.Proceedings of
SIGCHI03, 2003.

